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ABSTRACT. Froper homotopy equivalent compact P:-irreducible and sufficiently large

3-manifolds are homeomorp,ic. The result is not kF,cwn for irreducible 3-manifolds

that contain 2-sided projective planes. ven if one assumes the Poincareconjecture.
i this paper to such a 3-mnifold M is associated a graph G(M) that specifies

Low a maximal system of mutually disjoint non-isotopic projective pla,es is embedded

in M; ad it is sho:; that G(M) is an invaria:t of the homotupy type cf M. On

the uth hand it is shown that ay giveF, graph can be realzed as G(M) for

infir.itely man;, irreducible and boundary irreducible M.
As an applicatior, it is shown that any closed irreducible 3-manifold M that

contains 2-sidle projective planes c; be obtied from a P’-iFreducible 3-manifold

nO p’ x S by removing a so!d Klein bottle from ech and gluing egether

resulting bcuFdaries" furthermoare , ccrtains an orientation preservir,g simple

closed cure such that eny nontrivial Dehn surgery along yields a
p2-irreducihl -mani fold.

KF.Y WORDS #KD PHRASES. P2--irreducible 3-manifolds, incompressible surfaces.
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]. IITRODUCT ION

The classificatio theorem for compact p2-irreducible, sufficiently large

3--manifolds : ed N asserts that if (M, M) is homotopy equivaler.t to (N, ’,
then M is hr.meomnrphic to N [11], [3]. The assumption of being "P:-irrducible

and :.ufficiently arge" makes ,I nd N aspherical whicI allows /or modifications
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of homotopy equivalences. Also, the assumption of being "irreducible" is needed to

avoid the Poincare conjecture.

In this paper, we consider P2-comzu]g 3-manifolds, that is, 3-manifolds that

contain a 2-sided projective plane. Epstein [1] showed that any irreducible,

compact, non-orientable 3-manifold with finite fundamental group is homotopy

equivalent to p2 I, and the Poincare conjecture would imply that it is in fact

homeomorphic to p2 I.
As a first step in trying to prove a classification theorem modulo the Poincare

conjecture for irreducible p2-containing 3-manifolds M, we associate to M a
P2-gaph that specifies how a maximal system of mutually disjoint non-isotopic

projective planes is embedded in M, and shew that it is an invariant of homotopy
type. On the other hand, it is shown that any given graph can be realized as a

p2-graph of infinitely many irreducible and @-irreducible 3-,anifolds. As an

application, it is shown that any closed irreducible p2-containing 3-manifold ’, can
be obtained frum a p2-irreducible 3-mani#old and p2 1S by removi1g a solid Klein
bottl from each and gluing together the resulting boundaries.

2. p2-GRAPHS
Tv:o disjoint 2-sided projective planes PO and P1 in a 3-manifold M are

FoJmZe (paeo-pgZe/ resp.) if there is a submanifold Q of i homeomorphic
{homotopy equivalent) to p2 such that BQ PouP!" A maximal set ef pairwis

disjuint non-parallel (non pseudo-parallel) 2-sided projective planes in Int M is

called a compZet (p,edo-compet) system of projective planes in . Since 2-sided

projective planes are incompressible, it follows from Haken’s Theore [2] that a

(pseudo-)complete system in a compact 3-manifeld M is finite. Moreover if M is

e.lso irreducible, a complete system is uniquely determined up to ambient isotopy [9_.
We define the (coloured) P-gaaph G(M) of an irreducible 3-manifold M as

follows" Choose a vertex v in the interior of each component C. of M cut open
along a complete systeB, IP Let v be coloured white if C P and C
contains a projective plane; otherwise let v be coloured black. Join v and vj
by an edge if C and C: meet along a common p2 e P. The resulting aph
may be embedded in M so that each ecge intersects its corresponding p2
transversely in a single point. (See Figure 1.) Note that a white vertex must have

degree I.

projective plane
in OM

Xl



GRAPHS AND PROJECTIVE PLANES IN 3-MANIFOLDS 553

In a similar way, we define the pzezdo P2-lzph G’ (M) by starting with a

pseudo-complete system P’. More explicitly, let P be a complete system,

IP {PI,I PI, P2,1’ P2, Pm,l Pm,m}
where the Pi,j’s have been numbered so that Pi,k is pseudo-parallel to Pi,l for

k,1 . ai but Pi k is not pseudo-parallel to Pj for j. We can also

assume that the P i,j s are numbered in such a way that for each I m the

projective planes Pi,1 and Pi. bound a submanifold i homotopy equivalent to

p2 x in M that contains the )ther Pi,j in its interior. Then IP’ {PI,I’
P2,1 Pm,1 is a pseudo-complete system for M. Let M’ be the quotient

obtained from M by collapsing the components i onto Pi,1 (i 1, m). The

’ is a complete system in M’ and clearly G(M’) is isomorphic to G’(M) as

graphs.

Note that G(M) and G’(M) are homeomorphic as topological spaces. However if

there are 3-manifolds homotopy equivalent to but not homeomorphic to p2 (any

such example would provide a counter example to the Poincar conjecture) then G(M)
is obtained from G’(M) by subdividing edges, and the two graphs may not be

isomorphic as graphs.

Observe also that the homomorphisms on fundamental groups iduced by the

inclusion i" G(M) M are ip.jective and that the natural projection q" M b’ is

a homotopy equivalence.

We now show that the pseudo-graph of M is an invariant of the relative

homotopy type of M"
THEOREM i. Let M and N be compact, irreducible 3-manifolds and let

f: (N, @N) (M, BM) be a map such that f," I(N) I(M) is an isomorphism.

Then G’(N) and G’(M) are isomorphic as coloured graphs.

COROLLARY 2. If f" (N, BN) (M, BM) is a homotopy equivalence then

G’(N) G’(M).
For the proof, we reed a generalization of the lemma on homotopy surgery of maps

[11], [5, Lemma 6.5]-
LEMMA 3. Let M be a compact 3-manifold, X a p.l. k-manifold containing a

properly embedded 2-sided p.l. (k-1)-submanifold Y with ker(1(Y) I(X)) I.

Let f" II X be a map. Then there are disjoint homotopy 3-balls B 1
Bn with

B. in Int M or B n@M B M a disk, ad here is a map o’ M0 M u.B. X

such that

(i) g. (f],O).:1(Mo) Xl(X).
() each component of g-l(y; is a properly embedded, ?-sided incompressible

surface in MO, and

(iii) g maps each fiber p [-1,1] of a product neighbourhood g-1(y) [-1,1]
of g-1(y) homeomorphically to the fiber g(p) [-1,1] of a product

neighborhood Y x [-I ,1] of Y.

To see this, WE follow the proof of Lena 6.5 in [5] and indicate the modifications.

By a homotopy, ce may assume that f-l(x) is a system of 2-sided surfaces.
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(I) If f-l(y) contains a compressible 2-sphere F, then F bounds homotopy

3-cell C in M and we let M’ 0 M U where U is a smaller regular

neighbourhood of C, and g O"
(2) If f-l(y) contains a compressible 2-cell F then F bounds together with

a disk on BM a 3-cell C in M and we proceed as in (1).
(3) If there is a compressible disk D in Int M with D nf’l(Y) and

BD not contractible in f-1(y), choose a regular neighbourhood C of D with

Ca f-1(y) an annulus A properly embedded in C. Let D 1, D2 be the disks in BC

with BA BGlu BD2 arid let E I, E2 be two disjoint disks properly embedded in C

with BE @D i. Let K and L be relative collars on E in C such that

Kiu L is a relative bicollar of E in C and let D’ iuE’.1 be the relative

boundary of Kiu L in C (see Figure 2). The spheres (D DinKi)uD’ (i 1,2)
and (@C Dlu D2u L lu L2) u E’ Iu E’ 2 bound balls B ap.d B respectively in C.

Let M’ 0 M BlU B2u B and let glM C flM C. Since ker(1(Y) I(X)) 1,

we may extend gIBE to map E into Y and extending g to the bicolalr KiuL
of E irto the product neighbourhood of Y we obtain g" ’0 X as required. We

have g, (flM 0), since f(BE i) 0 in X.

PROOF OF THEOREM I. If X l(M) Z2 then both } and N are homotcI.y

equivalent to p2 and the assertion is trivial. Thus assume I(M) 2"
Ccnsider the map f’ q.f, where q" M M’ is the natural projection that

collapses fake homoiepy p2 I’s in M onto a projective plane. Let

P {P1 Pm} be a complefe system i E’ (i.e., IP is a psede-complete system

in M). By Lemma 3, there are 3-balls B B k in Int N such that for

NO ! uiB there is a n,ap g" (NO @N) (M’, @M) with g," I(No) I(M’) an

isomorphism and g-l(p) a system, of incompressible surfaces. We may assume that

G’(N) is embedded in NO For each component F of g-1(p) the man (giF)," I(F)
](IP) is injective (for suitably chosen base points). Since gl)N fl@N the

componer,t F is closed and therefore F is a projective pla,e. Suppose that

Fi, ], Fi are the components of g-l( i). Then all the ,l(Fi,o) re

conjugate to l1(P i) in I(M’), and hence 1(Fi,j) is cor.jugate to l(Fi,l) n
x1(No) (1 <= j,l <= i ). Thus the nontrivial loops carried by Fi. Fi,. are

homotupic to each other in :0 an( it follows from Theorem 4.1 G [I0_ that .heFe s
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a submanifold Qi in NO homotopy equivalent to a punctured p2 x I, with

BQi Fi,1 uFi,’1 and containing the other Fi,j’s in its interior. Collapsing each

Qi in NO to i,1’ we obtain a quotient map p" NO N’ 0 that induces an

isomorphism on fundamental groups (but note that this N’ 0 may still coF,tain fake

homotopy p2 I’s). Again we may assume that G’(N) is embedded in N’ O. We may

assume that uIFi, j is a homeomorphism [5, Theorem 13.1]. If we collapse Qi so

that x Fi,oi is identified with (gFi,1)-1(gFi, .)(,x) e F I’ we obtain a map

g’: (N’ O, BN) (M’, BM) induced by g with g’,: N 0 IM’) an isomorphism

and such that (g’)-l(Pi) is empty or consists of one projective plane F in I’

(i 1 m). Suppose (g’)’l(P i) is empty. If Pi does not separate M’ thn

g’ factors as N M’ U(P i) M’ (where U(.-.) is a regular neighbourhood) and

i, would be an isomorphism, which cannot be. I Pi separates M’ into ! and

M then g’ maps NG into M, say, and it follows that l(M): 2’ hence

consists of Pi and another projective plane P’., homotopic to P i" For the

nontrivial loop B of Pi’ g-l(B) is carried by a projective plane P in N. If

P is not homotopic to a boundary component then P separates (by an argument

smilar to the above) N into N and N with 1(Ni) Z and the isomorphism

g from the free product o$ 1{NI) and ](N2) with amalgamatiun over I(P)
would induce a splitting of M over a projective plane homotopic to Pi i,to two

submanifolds each with fundamental roup different fro, Z (by Swarup [I0], Theorem

5.4), which canno% be. If P is homotopic to a boundary component, by a similar

argment we would ge the excluded case I(M’) Z2.
Therefore (g’)-l(P i) F i, a projection plane in N. The nontivial loops of

F and Fj are not homotopic in N’ 0 since their images are not homotopic in M’.
Therefore (again by [I0]) th system {F I Fm} is a pseudo-complete system

in N O" Also F is pseudo-parallel to a boundary component of N if and only

Pi is parallel to a component of M.

Now if Mj is a compcnent of M’ cu along then Nj (g’)-l(Mj) is a

component of N’ 0 cut along $. We T;ay embed G’(N in N’ 0 such that each edge

intersects F transversely in cne point nd such that g’ maps eack, edge to an arc

in M’ that intersects P transversely in one point. Thor: for G’(M) we may choose

te graph g’(C’(N)) in M’ and thus g’ ir,duces an iso,orphism G’(N) G’(M)
coloured graphs. This poves Thecrem !.

REMhRK. We wish to thank J. Kalliongis and D. McCullough for pointing out a gF

in the original proof of Theorem I. Also it follows from their recent result

(Theure 5.1 of [12") that Thecre is i fact equivalent to Corollary 2.

I V, s closed then each compcpent of M cu a!og a conplete systeD has an

even number of projective plaF.es in its bc, undary, since the Euler cractew’istic of a

cunpact 3-manifold is even. It follows hat every v,rex of G(M) has even megree

and he;ce that G(M) is an Ee Bcp# (i.e. a connected graph each of whose

vertices is incident to an en number of Edges). Conversely, given any EuI’ graph

G, there are infiitely many distinct, closeo irreducible 3-manifolds M with G(M)
somorphic, to G (see [gq,. It is al:o shown in [qq. that any qiven, graph C can be



556 W. HEIL and S. NEGAMI

realized as G(M) for some irreducible 3-manifold M with possible compressible

boundary. We strengthen this in:

THEOREM 4. For any connected graph G with a given colouring of the vertices

of degree 1, there are infinitely many distinct, irreducible and B-irreGucible

3-manifolds M such that G(M) is isomorphic to G.

1

d 2

3

PROOF. We first construct such a 3-manifeld corresponding to the graph of

Figure 3(a) Let 0 $2 d
n

S2x Int U(k) an x Ip, t U(k uL), where U

is a reaular neighbourhood for the link L u and the two properly embedded
-I

arcs k as shown in Figure 4. Here U is invariant under the antipodal map

p d" $2 $2 I. Let o Firl nMn be the covering map of I onto tIc

quotient Mn P,n/(p x id), then @Mn consists of oe projective plane g(S 0),
one p.onorientable surface of genus 3 namely F g((S2 I uU(k)) nMn), and n

Klein bottles K g(BU(l i) nMn). W claim that all obundary components of En are

incompressible, that Mn is irreducible, a;d that {P} is a complete system, wher
p2 is a projective plane in Int M parallel to Q(S 0); it then follows that
i n

G(Mn) is isomorphic to the graph of Figure

S:x

et ’r be obtainud from n by capping of S2 0 by a 3-bal!. Lambert shows

in [6] that 0 is incompressible in IO. Therefore ’;0 s incompressible in NO
and F g(.O is ir.compressible in MO.

No, 0 is the complementary npce of

the prime range k (see [71) and is in particular irreducib. T( see that , i

irreducible, close off the components of k by arcs in S tcgeta in IE ard

observe ".hat the lirkipg number oC and each component of T is +1. Any

2-sphFre S in Int ’n separat" into two components C.. B.n I (j 1,2)
J J p.
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where B= is e, 3-ball in S3. If lies in B I, then so does . Hence
j

L ucBI and B2n(Lu) IB; therefore C2nBn I and C2 B2 in Mn. It

follows that any 2-sphere S in Int Bn either bounds a 3-ball or is parallel to

$2 O. This implies tkat Mn is irreducible, that {P} is a complete system, and

that each K. is incompressible.

We now realize the graph of Figure 3(b) that consists of one vertex ui aegree

d >_-2 and d white vertices each of degree 1. Let B be a copy of M for

1 d-1 and let Bd be a copy of Mn+d. Denote the Klein bottles oi BE,

by K (i 1 n+d). Construct the 3-manifold B(d,n) from the Bj by

identifying K with the Klein bottle of BB (i 1, d-l). Since each K is

incompressible any 2-sided projective plane in B(d n can be deformed off u.k.

(see e.g. [9]) and is therefore parallel to one of the projective plar:es of BB(d,n).

Thus G(B(d,n)) is isomorphic to the graph in Figure 3(b). Note that BB(d,n)

consists of n (incompressible) Klein bottles, d (incompressible) nonorientable

surfaces of gnus 3 and d projective planes. Note that B(1,n) Mn-
Now suppose that v 1, v k are the vertices of C- of degree a2 and that

mong the neighbours of v exactly c are of degree I each. Let fi be the

number of self-loops of G based at v i. Suppose that vertex v_. is joined to v

by dij edges and let gi be the sum of the dij over all neighbours vj of v i.
Then deg v d c + gi + 2f.. For each v. let C be the 3-manifold obtained

from B(d i, mi) by identifying 2f projective plaes of BB(di, mi) in pairs.

construct a 3-manifold M’ from C 1 C k as follows- If vertex v is joined

to vj by dij edges in G, identify dij projective planes in PC with dij
projective planes in Cj. The resulting 3-manifold M’ is irreducible and M’
contains n mI + + mk (incompressible) Klein bottles. Now G(M’) is

isomorphic to G, except that each vertex of degree of G(M’) is colured white.

To change the colour of such a vertex w, attach B(I, O) to M’ by identifyig the

projective plane of M’ corresponding to the vertex w with tle projective plane of

B(1, 0). In this way we construct the desired M such that G(M) G.

Note that BM contains exactly n Klein bottles; wheFe n is an arbitrary

ipteger (independent of G,. Therefore, by varyipg n, we have [,roved Theorem 4. F

j. KLEIN BOTTLE SUM AIID [JEHN SURGERY

In this section, we shall show two methods to construct a p2-containin.q,
FFeduci bl e, closed 3-mani fol d M from a p2_i rreduci bl e closed 3-mani fold M.. One

is a K?_ boC um with p2 S I and the other is a usual Pe ugeptg. Both of

them are modifications of a regular neighbourhcc.d tl() of a knot in M, and

are pplied when tl() is a soli Klein bottle or a soliC torus, respectively.

Lickcrish’s result [8] implies that any two nonorienable close 3-manifolds can be

tdnsformed ipto each othF by a finite sequence of [,ehp surgeries along

Howeer we shall shc that M can e obtained fom suitably chosen M1
ar,c by a

sipgle Klei ottle sum with p2 S or a single Dehn surgery, as apFlications of

the p2-graph G(M).
Let M I and M, be twu ,onorientable compact 3-manifolds and let V

1 e.:c

b solid Kleir bottles in Irt M and Int E2, respectively. If a 3-:a,ifold N is
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obtained from M1 V 1 and M2 V2 by sewing them up along the Klein bottles BV 1
and BV2, then M is said to be a Ken 6ot+Z um of MI and M2 and we write

M MI M2. The homeomorphism type of M depends on a sewing map " BV I BV2,
but is not so various For there are only four isotopy classes of homeomorphisms of

a Klein bottle. (See [8]).
Conversely, suppose that M splits into twe submanifolds M’ 1 and F’ 2 along

K2a 2-sided Klein bottle K2 (i e M M’lUM’ 2, M’lnM’ 2 ). Let M and g?
denote the 3-manifolds obtained from M’ 1 and M’, by cappip,, off each K2 on them

with a solid Klein bottle V (i ], 2). Then we have a Klei bottle suP.

decomposition M F! 2" Since any homeomorphism of a Klein bottle (;xtds to a

homeomorphism of a solid Klein bottle [B], the homeomorphism type of M] and M2 is

uniquely determined, only dependino on the choice of K2 in FI.
Now consider a canonical Klein bottle sum with p2 S I. Let V2 be o rgular

neighbourhood of a nontrivial simple loop , on a fiber pC in p2 S 1. Figure 5

=2x Sshows that M2 V2 is a regular neighbourhood U(p2u) for another

fiber p2 and a simple loop in P2 X S I and is homeomorphic to P2 X [0,1]

v:it.h a 1-handle attached to both pZ 0 and p1 x 1. Notic that the boundary o
any meridian disk of V

2 rus twice through the 1-hancle.

P2X 0

meridian disk of V

B p2X

1-handle
U(p a)

S

Now let M be a closed 3-manifold contai,i,g a projective plane pC Since P
does not separate M, there is a simple loop in M that intersects 2 in a

single poir;t and a regular neighbourbood V of p-u is homeomorpl, ic to M2. Thus

for F’] I V we have M Ml! p2 S I.
By the Mayer-Vietoris exact sequelce of (M 1, M2), w bare

dim HI(M; Z2) dim H I(M 1; 2) + I.

Roughly speaking, [] is an extra generator for H(M; _.). This implies that the’e

is a nonorientable c3oaed 3-manifGld N such thdt , contaips no 2-sidea

pro;ective plane ahd that

fcr finitely .any p2 sl,s
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The number of p2 x S1’s does not exceed dim HI(MI; 2 1 since ay
nonorientable 3-manifold MI has nontrivial H I. Furthermore, we can decrease
only one"

THEOREN 5. Every P2-containing, irreducible closed 3-manifold M can bE

obtained as a Klein bottle sum of a p2-irreducible closed 3-manifold M1 and
p2x S 1.

M M1
p2 S 1.

PROOF. SuppGse that G(M) is embedded itl N naturally. Since M is closed,
G() is an Euler graph. As is well-known, an Euler graph G has an
that is, a closed reduced ege path that contai:s each edge of G exactly once.
Tracing n Euler circuit of G(M), we can find a simple cIGsed curve in M which
crcsses each pFojective plane in a complete system P of M at a point.

.Furthermore, we n;ake a local knot on so that for a ball B3 in M with 3
a knotted arc, B" U() contains no incompressible, B-incompressible, planar
surface. For example, the complements of most of the 2-bridge knots k, except torus
knots, have this pFoperty [4]. So we can take the connected sum (M, ) # (S3, k)
as I.ew

Let p2 be ay member of ), disjoint from B3. Since every 2-sided projectie
plane has to meet with intersection nunber mod 2, there is no 2-sided

projective plane in M disjoint Srom . SincE. a ball cap,not contain a projective
plane, e 2-sphere S2 in M does not ,:eet p2 S 2u, then bounds a ball in M
oisjoi,t from p2u by the irreCucibility of M. Thus, the sub,anifold

M’ I M U(F2ue) is P2--irreducible.
Let MI M’ !UV be the closed 3-manifold obtained fro. M’ I by caIping

its boundary with a solid Klein bottle V. If M is not p2-irreducible, then there
is either a 2-sided projective plane or an incompF.sib!e 2-sphere in MI

wF, i(h

meets V along several meridian disks of V. Figure 5 shows tha hP boundary curve
of a meridi disk of V mu_t pass thrGu(jh B3 twice alor.g the local knot of .
This implies that 3nF1 contains an incompressible, -incompressible, planar
surface, contrary to the assurption of k. Therefore, ’1 is P:-irreducible and we
have a decompusizion N K P: S I. F!.

We ncice that M1 in Theorem 5 CF,T.t be take,, to be universal, that is, there
is nc closed nonorientable 3-mnifold MI such that evury P’-containing closed
3-manifold M ec’..ts a Klein bottle .:.L, ni c:omposition M p2 iS For if
M MI p2 S I, then

diD, I(M]; Z2) + i di H I(M; Z2) >= dip. I(G(M); 2).

The last inequality hold. since there is a re,(:c.tun of M onto G(M). Ho’_ve, w
car, take any large value s dim HI(G(M); Y.,), by Theoten, e-. Is there such a
universal 3-mr.ifol6 M if ve do not restrict the number of p2 S ’s?
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Lt be a knot in M. A 3-manifold M is called the result of a1
(nontrivial) I)e/n su)tge)u/ along if MI can be obtained fFom M U() by sewing

back U() along BU() iF, a different way. If U() is a solid Klein bottle,

then any Dehn surgery does not change the homeomorphism type of M. So we shall

treat only Dehn surgeries along a knot with U() a solid torus.
By the same idea as in the proof of Theorem 5, we can show that:

THEOREM 6. Every PZ-containing, irreducible, closed 3-manifold M contains a

knot with a regular neighbourhood tJ() homeomorphic to D2 S 1 such tlat any

nontrivial Dehn surgery along yields a p2-irreducible closed 3-manifold.

PROOF. Take the same knot as in the proof of Theorem 5. If U(:) is a

solid Kleip. bottle, we add a nontrivial loop o some 2-sided projectie plane to .
Then M U( is p2-irreducible. By similar arguments, we conclude that the result

cl a Dehn surgery along is P-irreducible whenever its surgery instruction passes
through the part of the local knot uf , that is, whenever the surgery is not

trivial. F1
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