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ABSTRACT. Froper homotopy equivalent compact P:-irreducib1e and sufficiently larce
3-marifolds are homeomorphic. The result is not krcwn for irreducible 3-manifolds
that ccntain 2-sided projective planes, even if one assumes the Poincare conjecture.
In this paper to such a 3-manifold M is associated a graph G(M) that specifies
low a maximal system of mutually disioint non-isotopic projective planes is embecded
in M, and it is shown that G(M) 4s an invarient of the homotopy type cf M. On
the ¢ther hand it is shown that any given graph can be realized as G(M) for
infiritely manv irreducible and boundary irreducible M.

As an applicaticn il is shown thet any closed irreducible 3-manifoid M that
contains 2-sidea projective planes can be obtaired from a Pz—irreducible S-manifold
end Pz x S] by removing a sclid klein bcettle from each and gluing tegether the
resuiting beurdaries: furthermoare M ccrtains an orientation preserving simple
closed curve o such that eny nontrivial Dehn surgery alonc o yields a
P2~irreducib1e C-manifold.

KEY WORDS AND PHRASES. P2nirreducib1e 3-manifclds, incompressible surfaces.
1660 AMS SUBJECT CLASSIFICATION CCCE. 57N10.

1. TNTRODUCTICN

The classification theorem for ccmpact Pz-irreducible, sufficiently large
3-manifoids M erd N assertc that if (M, 3M) s homotopy equivalert to (N, cMY,
then M is hemeomorphic vo N [111, [3]. The assumption of being "PE_irreducible
and sufficiently Targe" makes M and N aspherical which allows for medifications
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of homotopy equivalences. Also, the assumption of being "irreducible" is needed to
avoid the Poincare conjecture.

In this paper, we consider P"-containing 3-manifolds, that is, 3-manifolds that
contain a 2-sided projective plane. Epstein [1] showed that any irreducible,
compact, non-orientable 3-manifold with finite fundamental group is homotopy

2

equivalent to P2 x 1, and the Poincaré conjecture would imply that it is in fact
homeomorphic to P2 x I.

As a first step in trying to prove a classification theorem modulo the Poincaré
conjecture for irreducible Pz-containing 3-manifolds M, we associate to M a
Pz-ghaph that specifies how a maximal system of mutually disjoint non-isotopic
projective planes is embedded in M, and shcw that it is an invariant of homotopy
type. On the other hand, it is shown that any given graph can be realized as a
Pz-graph of infinitely many irreducible and 3-irreducible 3-marifolds. As an
application, it is shown that any closed irreducible Pz-containing 3-manifold M can
be obtainec frum a Pz-irreducible 3-manifold and P2 x S1 by removing a solid Klein
bottle from each and gluing together the resulting boundaries.

2. P2-GRAPHS

Two disjoint 2-sided projective planes P0 and P1 in a 3-manifold M are
parallel (pseudo-paratlel resp.) if there is a submanifold Q of M homeomorphic
(homotopy equivalent} to P2 x I such that 3Q = PolJpl. A maximal set of pairwise
dicjoint non-parallel (non pseudo-parallel) 2-sided projective planes in Int M is
called a complete (pseudo-complete) system of projective planes in M. Since 2-sided
grojective planes are incompressible, it follows from Haken's Theorem [2] that a
(pseudc-)complete system in a compact 3-manifold M is finite. Moreover if M is
also irrecucible, a complete system is uniquely determined up to ambient isotopy [9].

We define the (coloured) Pz-gnaph G(M) of an irrecducible 3-manifold M as
follows: Choose a vertex Vi in the interior of each component C. of M cut open
aleng a complete system P. Let Vi be coloured white if c1 = P x I and aci n aM
contains a projective plane; otherwise let Vi be coloured black. Join v; and vj
by an edge if Ci and Cj meet along & cormon P2 € [P. The resulting %deh G(M)
may be embecded in M so that each edge intersects its corresponding P°
transversely in a single point. (See Figure 1.) Note that a white vertex must have
degree 1.
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In a similar way, we define the pseudo Pz-gnaph G'(M) by starting with a
pseudo-complete system P'. More explicitly, let P be a complete system,

» P }

P-= {Pl,l’ cees Pl,a s P2,1’ cees P2,a s cees Pm,l’ o Poga

where the P 's have been numbered so that P1 K is pseudo-parallel to P ) for
1<k, s oy but P Jk is not pseudo-paraliel to P R for i#Jj. We can also
assume that the P 's are numbered in such a way that for each i=1, ..., m the
projective planes Pi 1 and P bound a submanifold t homotopy equivalent to
P2 x 1 in M that conta1ns the Bther P in its 1nter1or. Then P' = {Pl,l’
P2,1’ cees m,1} is a pseudo-complete system for M. Let M' be the quotient
obtazined from M by collapsing the components Ei onto P, (i ....m). The
P' s a complete system in M' and clearly G(M') is 1somorph1c to G (M) as
graphs.

Note that G(M) and G'(M) are homeomorphic as topological spaces. However if
there are 3-manifolds homotopy equivalent to but not homeomorphic to P2 x I - (any
such example would provide a counter example to the Poincaré conjecture) - then G(M)
is obtained from G'(M) by subdividing edges, and the two graphs may not be
isomorphic as graphs.

Observe also that the homomorphisms on fundamental groups induced by the
inclusion i: G(M) + M are injective and that the natural projection q: M+ M' s
a homotopy equivalence.

We now show that the pseudo-graph of M is an invariant of the relative
homotopy type of M:

THEOREM 1. Let M and N be compact, irreducible 3-manifolds and let
f: [N, aN) » (M, aM) be a map such that f,: wl(N) > nl(M) is an isomorphism.

Then G'(N) and G'(M) are isomorphic as colcured graphs.

COROLLARY 2. If f: (N, aN) » (M, aM) 1is a homotopy equivalence then
G'(N) = G'(M).

For the proof, we reed a generalization of the lemma on homotopy surgery of maps
[111, [5, Lemma 6.5]:

LEMMA 3. Let M be a compact 3-manifold, X a p.1. k-manifold containing a
properly embedded 2-sided p.1. (k-1)-submanifold Y with ker(nl(Y) > nl(X)) = 1.
Let f: M+ X be a map. Then there are disjoint homotopy 3-balls Bl’ cees Bn with
Bi in Int M or Bi naM = aBi naM a disk, and there is a map g: MU =M- UiBi > X
such that

(4) = (H1¥g)ainy (M) > vy (X),

(54) 9ach component of g~ (\, is a properly embedded, 2-sided incompressible
surface in MO’ and .

(i1i) g maps each fiber p x [-1,1] of a product neighbourhood g~ *(Y) x [-1,1]
of g'l(Y) homeomorphically to the fiber g(p) x [-1,1] of a product
neighborhood Y x [-1,1] of Y.

To see this, we follow the pruof of Lemma 6.5 in [5] and indicate the modifications.
By a homotopy, we may assume that f'l(X) is a systen of 2-sided surfaces.
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(1) If f'l(Y) contains a compressible 2-sphere F, then F bounds a homotopy
3-cell C in M and we let M'y = M -U where U is a smaller regular
neighbourhood of C, and g = fIM'O.

(2) 1f f'l(Y) contains a compressible 2-cell F then F bounds together with
a disk on 3M a 3-cell C in M and we proceed as in (1).

(3) If there is a compressible disk D in Int M with Dnf l(Y) = 30 and
3D not contractible in f'l(Y), choose a regular neighbourhood C of D with
Cn f'l(Y) an annulus A properly embedded in C. Let Dl’ 02 be the disks in 3C
with 3A = aDlu aD2 and let El’ E2 be two disjoint disks properly embedded in C
with aEi = 301‘ Let Ki and Li be relative collars on Ei in C such that
Kiu Li is a relative bicollar of Ei in C and let D'ilJE% be the relative
boundary of Kyuly in C (see Figure 2). The spheres (Dj - Din Ki)u D'i (i=1,2)
and (sC - Dlu DZU Lyu LZ)U E‘lu E‘2 bound balls B, and B respectively in C.
Let M'g =M -BuB,uB and let g|M-C=f|M-C. Since ker(m, (Y) » (X)) = 1,
we may extend g\aEi to map Ei into Y and extending g to the bicolalr Ki“ Li
of Ei into the preduct neighbourhcod of Y we obtain g: N'O + X as required. We
have g, = (fIM‘O)* since f(aEi) =0 in X.

aD

)

E| 2
Kl—-c /
L—¥ >

PROCF GF THEOREM 1. If nl(M) = Z2 then both M and N are homotopy
equivalent to P2 x 1 and the assertion is trivial. Thus assume "1(M) # 12.

Ccnsider the map f' = q-f, where q: M > M' s the natural projection that
collapses fake homotopy P2 x I's in M onto a projective plane. Let

P = {Pl, e Pm} be a complete system in M' (i.e., P is a pseude-coumplete system
in M). By Lemma 3, there are 3-balls Bl’ cees Bk in Int N such that for

NO =N - UiBi ther$ is a nap g: (NO’ aN) » (M', 3M) with g,: "I(NO) > nl(M') an
isomorphism anc ¢ “(P) a system of incompressible surfaces. We may assume that
G'(N) is embedded in Ng- For each component F of g'l(P) the map  (gjF),: wl(F)
> wl(P) is injective (for suitably chosen base points). Since g{aN = f{aN the
comporient F 15 closed and therefore F 1is a projective plare. Suppose that

Fi,]’ -.+s F5 -~ are the components of g'l(Fi). Then all the g*"l(Fi,J
conjugate to }1(Pi) in nl(M‘), and hence ﬂl(Fi,j) is corjugate *o "l(Fi,l) in
"l(NO) (1s3,1s ai)' Thus the nontrivial loops carried by F, ,, ... i o
homotopic to each other in NO and it follows from Theorem 4.1 of [107 that }here Is

Y are

, F are
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a submanifold Qi in NO’ homotopy equivalent to a punctured P2 x 1, with
aQi = Fi,l ”Fi, _and containing the other Fi,j's in its interior. Collapsing each
Qi in N0 to i1 we obtain a quotient map p: N0 + N‘0 that induces an
jsomorphism on fundamental groups (but note that this N‘0 may still cortain fake
homotopy p? « I's). Again we may assume that G'(N) is embedded in N'q. We may
assume that glFi’j is a homeomorphism [5, Theorem 13.1]. If we cullapse Q; so
that x e Fmi is identified with (glFi,l)'l(glFi’ )(x) € Fy 4, we obtein a map
g': (N'O, 3N) > (M', aM) dinduced by g with g',: ™ N'O) > nl(M') an isomorphism
and such that (g')'l(Pi) is empty or consists of one projective plane F1 in N'G
(i =1, ..., m). Suppose (g‘)fl(Pi) is empty. If Pi does not separate M' then
g' factors as Ny » M- U(Pi) 3 M (where U(s-+) is a regular neighbourhood) and
i, would be an isomorphism, which carnot be. 1f Pi separates M' into Mi and
Mé then g' maps Nb into Mi, say, and it follows that “I(Mé) = 12’ hence aMé
consists of Pi and another projective plane P%, homotopic to Pi‘ For the
nentrivial Toop 8 of P, g;'l(B) is carried by a projective plane P in Nj. If
P is not homotopic to a boundary compenent ther P separates (by an argument
similar tc the above) Né into N1 and N? viith nl(Ni) # l2 anc the isomorphism
g, from the free product of nl(Nl) and “](NZ) with amalgamation cver "1(P)
would induce a splitting of Mi over a projective plane homotopic to Pi into two
submanifolds each with fundamental group different from I, (by Swarup [10], Theorem
5.4), which cannot be. 1f P is hcmotopic to a boundary component, by a similar
argment we would ge the excluded case nl(M') = 12.

Therefore (g')"l(Pi) = F.

i

Fi and F. are not homotopic in N'0 since their images are rct homotupic in M',

Therefore (again by [10]) the system F = {Fl, cees B} isoa pseudo-complete system
in N‘O. Also Fi is pseudo-parcllel to a boundary component of N if and only it

, @ projection plane in Ni. The nontrivial loops of
0

Pi is parallel to a ccmponent of 3M.

Now if Mj is a compcrent of M' cut along P then Nj = (g')'l(Mj) is a
comporient of N'0 cut along F. We may embed G'(N) in N'0 such that each edge
intersects F transversely in cne point and such that g¢' maps each edge to an arc
in M' that intersects P transversely in cre point. Ther for G'(M} we may chcose
the graph ¢'(C'(N)) in M' and thus g' irduces an isomorphism G'(N) » G'(M) of
coloured craphs. Thic proves Thecrem 1. O

REMARK. We wish to thank J. Kalliongis and D. McCullcugh for pointing out a gaf
in the original proof of Theorem 1. Also it follows frem their recent resuit
(Theurer 5.1 of [122) that Thecrem 1 is ip fact equivalent to Corellary 2.

It M 1¢ closed ther each compcrent of M cut along a complete syster has an
even number of projective plares in its boundary, since the Euler characteristic of a
compact 3-marifold is even. It follows that every vertex of G(M) has even uegree
and hence that G(M) is an Euler graph (i.e. a connected aruph each of whose
vertices is incident to an even number of edges). Conversely, aiven any Euler graph
G, there are infiritely many distinct, clcsea irreducible 3-marnifolds M with G(M)
isomorphic to G (see [91). It is also shown in [G} that any civen graph € can be
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realized as G(M) for some irreducible 3-manifold M with possible compressible
boundary. We strengthen this in:

THEOREM 4. For any connected graph G with a given colouring of the vertices
of degree 1, there are infinitely many distinct, irreducible and 3-irrecucible
3-manifolds M such that G(M) is isomorphic to G.

(a) (b)

PRCCF. We first construct such a 3-manifcld corresponding to the graph of
Figure 3(a). Let fiy = S%x I - Int U(K) and A, s2 « 1 - Int U(k uL), where U
is & regular neighbourbood for the link L = 11 and the two properly embedded
arcs k as shown in Figure 4. Here U is 1nvar1ant under the antipodal map
p x id: S2 x I > S? x I. Let o¢: H > M be the covering map of M onto thc
quotient Mn = Mn/(p x id), then aMn cons1sts of one projective p]ane g(S x 0),
one nonorientable surface of genus 3 namely F = g(( x 1ual(k)) nM ), and n
Klein bettles Ki = g(aU(] )R ) We claim that all bounder components of N are
igcompressib]e, that Mn 15 1rreduc1b1e and that {P } is a complete system, where
Pi is a prejective plane in Int M parallel to a(S® x C); it then follows that
G(Mn) is isomorphic to the graph of Figure 3(aqj.

six 1

let N be obtained from En by capping of 52 x 0 by a 3-ball. Lambert shows
in [6] that aMO is incompressible in ﬂO' Therefore 3&0 15 incompressible in MO

and F = g(aMO) is ircompressible in MO' Now &U is the complementary space of

the prime targe k (see [7]) &nd is in particular irreducibie. To see that ﬁn is
2

irreducible, close cff the components of K by arcs in S° x 1 tcgeta link k ard

observe *hat the linkirg number of }i and each component of T is #1. Any

2-sphere S in Int ﬁn separates ﬁ" into two components Cj = B,n ﬁp (i =1,2),
ir
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where B is & 3-ball in 53 If 1 Ties 1n Bl’ then so does k. Hence

Luk cB1 and B, n(Luk) = 9; therefore ¢, naM =P and C, =B, in M. It
follows that any 2 sphere S in Int M e1ther bounds a 3-ball or is parallel to
52 x 0. This implies trat Mn is 1rreduc1b1e that {P2 is a complete system, and
that each Ki is incompressible.

We now realize the graph of Figure 3(b) that consists of one vertex vi aegree
d 22 and d white vertices each of degree 1. Let Bi be a copy of M1 for
i=1, ..., d-1 ard let Bd be a copy of Mn+d' Denote the Klein bottles of 3E
by Ki (i=1, ..., ntd). Construct the 3-manifold B(d,n) from the Bj by
identifying K_i with the Klein bottle of 3B (i=1, ..., d=1). Since each Ki is
incompressible, any 2-sided projective plane 1n B(d,n) can be deformed off lﬁki
(see e.g. [9]) and is therefore parallel to cne of the projective plares of 3B(d,n).
Thus G(B(d,n)) 1is isomorphic to the graph in Figure 3(b). Note that 3B(d,n)
consists of n (incompressible) Klein bottles, d (incompressible) nonorientable
surfaces of genus 3 and d projective planes. Note that B(1,n) = Mn.

Now suppose that Vis «oes V) are the vertices of C of degree 22 and that
«mong the neighbours of ¥ exactly c; are of degree 1 each. Let fi be the
rnumber of self-loops of G based at Vi Suppose that vertex v: is joined to v

c

by dij edges and let 9; be the sum of the d over all ne1ghbours vy of v11
Then deg vy = di =cytgyt ”f1 For each v1 1et C be the 3- man1f01d obtained
from B(di, mi) by identifying 2f. projective planes of BB(di, mi) in pairs. how
construct a 3-nanifoid M' from Cl, cees Ck as follows: If vertex v; is joined
to Vj by dij edges in G, identify dij projective planes in BCi with diJ
projective planes in acj. The resulting 3-manifold M' is irreducible and 3M'
contains n = m ot by (incompressible) Klein bottles. Now G(M') is
jsomorphic to G, except that each vertex of degree 1 of G(M') s colured white.
To change the colour of such a vertex w, attach B(1, 0) to M' by identifying the
projective plane of M' corresponding to the vertex w with the projective plane of
3B(1, 0). 1In this way we ccnstruct the desired P such that G(M) = G.

Note that 3M contains exactly n Klein bottles. where n is an arbitrary
integer (independent of G). Therefore, by varying n, we have proved Thecrem 4. [
3. KLEIN BOTTLE SUM AND LEHN SURGERY

In this section, we shall show two methods to construct a P?-containinq.
irreducible. closed 3-manifold M frem a P2-1rreduc1b1e closed 3-manifold M One
is a Kfein botife sum with P2 x S! and the other is a usual Dehr twtgeny. Both of
them are modificationc of a regular neighbourhccd Ula) of a knot « in M, and
are opplied when U(o) s a solid Klein bottle or a soli¢ torus, respective{y
Lickcrish's result [8] implies that any twc nonoriertable clese¢ 3-manifolds can be
transformed intc each other Ly a finite sequence of Cehn surgeries along kncts.
However we shall shcw that M San be obtainec from suitably chosen Ml eanc o by a
sinrgle Klein tottle sum with P“ x S1 or a single Dehn surgery, as applications cf
the Pz-graph G(M).

Let Ml and M2 be two rnonorientable compact 2-manifolds and let V1 ane v,

be solid Kleir bottles in Irt M1 and Int H?, respectively. If a 3-manifold M i<
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obtained from M1 - V1 and M2 - V2 by sewing them up along the Klein bottles avl
and 3V2, then M is said to be a Klein bottle sum of M1 and M2 and we write
M= Ml& Mz. The homeomorphism type of M depends on a sewing map ¢: 8V1 + 3V?,
but is not so various. For there are only four isotcpy classes of homeomorphisms of
a Klein bottle. (See [8]).

Conversely, suppose that M splits into twe submanifolds M‘1 and M’z along
a 2-sided Klein bottle K2 (i.e. M= M'lu M'z, M'ln M'2 = Kz). Let M1 and M2
denote the 3-manifolds obtained from M'1 and M'2 by cappirg off each K2 on them
witk 8 solid Klein bottle Vi (i =1, 2). Then we have a Klein bottle sum
decomposition M = MI& MZ‘ Since any homeomorphism of a Klein bottle extends to a
homeomorphism of a solid Klein bottle [&], the homeomorphism type of M] and M2 is
uniquely determined, only depending on the choice cf K2 in M.

Now consider a canonical Klein bottle sum with P2 x Sl. Let V2 be @ regular
neighbourhocd of a nontrivial simple loop £ on a fiber P2 in P2 x Sl. Figure 5
shows that M2 = p" x S1 - V2 is a regular neighbourhood U(P2 va) for ancther
fiber P2 and a simple loop o in P2 x sl and is homeomorphic to P2 x [0,1]
with a 1-handle attached to both PE x 0 and PLx 1. Notice that the boundary ot
any meridian disk of V2 runs twice through the l-handle.

L P*x 0

“}— meridian disk of V,

— P’x 1

2
9]
U(P'U a) Pz % sl

1-handle

-

Now let M be & closed 3-manifold containing a projective plane PE. Since PE
does not separate M, there is a simple Toop o 1in M that intersects P2 in a
single poirt and a regular neighbourhood V of PZU @ is homeomorphic to MZ‘ Thus
for M', =M -V we have M =M & Pp%x sl

By‘the Mayer-Vietoris exact‘sequence of (Ml’ MZ)’ we have

dim HI(M; l?) = dim Hl(Ml; 12) + 1.

Roughly speaking, [a] is an extra generator for H,(M; Z.). This implies that theve
is a nonorientable cicsed 2-manifcld M, such that M, contains no Z-sidec
projective plare and that

M=t PP nst8 et

fcr finitely many P"2 x Sl‘s
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The number of P2 x Sl's does not exceed dim Hl(M1; lz) -1 since any

nonorientable 3-manifold M1 has nontrivial Hl‘ Furthermore, we can decrease it to
only one:

THEOREM 5. Every Pz-containing, irreducible closed 3-nanifold M can be
ogtainid as a Klein bottle sum ot a Pz-irreducible closed 3-manifold Ml anc
P® x S°.

M=n, & P?x sl

PROOF. Suppcse that G(M) is embedded in M naturally. Since M is closed,
G(M)Y s an Euler graph. As is well-known, an Euler graph G has an tuler circwit,
that is, a closed reduced eage path that contains each edge of G exactly once.
Tracing er Euler circuit of G(M), we can find a simple clcsed curve « in M which
crcsses each projective plane in a complete system P of M at a puint.
.Furthermore, we make a lTocal knot on o« so that for a ball B3 in M with B3 Na
@ knotted arc, B* - U(e) contains no incompressible, 3-incompressible, planar
surface. For example, the complements of most of the 2-bridge kncts k, except torus
knots, have this property [4]. Sc we can take the connected sum (M, o) # (53, k)
as & Lew a.

Let P2 be any member of P, disjoint from Ba. Since every 2-sided projective
plane has to meet a with intersection nunber 1 mod 2, there is no 2-sided
projective plane in M disioint fron o. Since a ball cannot contain a projective
plane, if & 2-sphere 52 in M does not meet Ptha, then 52 bounds a ball in M
aisjoint from PZlJc by the irreducibility of M. Thus, the submanifold
M'1 =M - U(lela) is Pznirreducib1e.

Let M1 = 1'1lJV be the closed 3-manifold cbtained froT M'1 by capping off
i*s boundary with a solid Klein bottle V. If M, is not P°-irreducible, then there
is either a 2-sided projective plane or an incomp;essib!e 2-sphere in Ml which
meets V along several meridian disks of V. Figure 5 shows that the boundary curve
of a meridiar disk of V must pass thrcough B3 twice alerg the local knot of «.
This implies that B3ﬂ Ml contains an incompressible, 3-incompressible, plarar
surface, contrary to the assuwption of k. Therefore, Fl ic Pz-irreducible and we
have a decompesition M = r’.l& pe x st

We nctice that M1 in Theorem 5 carrct be taker teo be ugiversa], that is, there
is nc closed nonorientable 3-menifold M1 such that every P‘:containing closed
5-manifold M acrits a Klein bettle sum cecomposition M, & PE x Sl. For it
M= & PLx st then )

dinlhl(Ml; 22) + 1 = dir Hl(M; 22) z dini hl(G(M); 12).
The last inequality holds since there is a retraction of M onto G(M). However, we

can take any large value as dim Hl(G(M); 12) by Theoremw &. Is there such a
universal 3-merifold M1 if we do not restrict the number of P2 x Sl's?
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Let o be a knot in M. A 3-manifold M1 is called the result of a
(nontrivial) Dehn surgery along o if M; can be obtained from M - U(e) by sewing
back U(a) along 3U(a) in a different way. If U(a) is a solid Klein bottle,
then any Dehn surgery does not change the homeomorphism type of M. So we shall
treat only Cehn surgeries along a knot e« with U(a) a solid torus.

By the same idea as in the proof of Thecrem 5, we can show that:

THEOREM 6. Every P:-containing, irreducible, closed 3-manifold M contains a
knot « with a regular neighbourhood U(a) hcmeomorphic to 02 x sb such that any
rnontrivial Dehn surgery along o yields & Pz-irreducib1e closed 3-manifold.

FRCOF. Take the same knot o as in the proof of Theorem 5. If U(a) is a
solid Klein bottle, we add a nontrivial loop on some 2-sided projective plane tc «.
Then M - Ule) is 2 irreducible. By similar arguments, we corclude that the result
¢t a Dehn surgery along o is P?-irreducible whenever its surgery instructicn passes
through the part of the local knot of a, that is, whenever the surgery is not
triviel. 0O
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