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ABSTRACT. In this paper we shall establish some new discrete inequalities of the

Gronwall type in N-independent variables. They will have many applications for finite

difference equations involving several independent variables and for numerical

analysis. Their consequence for the case of N 3, generalizes all of the known

theorems obtained by Pachpatte and Singare in [I]. An example, to which those results

established in [I] are inapplicable, is given here to convey the usefulness of the

results obtained.
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1. PRELIMINARIES. It is well-known that the discrete inequalities of the Gronwall

type played a vital role in the theory of finite difference equations and numerical

analysis (see [2-8] and [9-12] and the references therein). Recently, Pachpatte and

Singare [I] have established some new discrete inequalities in three independent

variables. Discrete inequalities involving more than one independent variables are

very useful in the study of many important problems concerning discrete versions of

some partial differential and integral equations in several variables.

The aim of this paper is to obtain several N-independent-variable discrete

inequalities which extend all results obtained in [I] for the case of N 3. In what

follows we shall make use of the following notations and definitions.

Let N be the infinite set consisting of the integers 0,1,2,..., and we shall
o

use the convention of writing

b O, c

j6Z a jZ j
=_ I,

N
n

if Z is the empty set. For simplicity, in the sequel we will denote (x ,x2,... ,xn) o
by x, and (Xl,X2 ,xj), (xj, xj+ ,Xn), and (xi,xi+l,...,Xk) by xj, xj, and

xi, k respectively, here i,k are integers from 1,2,...,n with i < k. Further, we denote

the multlple-summatlon symbol
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xj.-I x.l Xk-

yj=O yj+l=O
by

x,k

where xi’ Yl No’ j < i < k, and < j <_ k < n. Moreover, we define

+I

A.() Z. (. ".+,+) A (-)
X.

3 3

and so on, where xj,xk,... are numbers from

1,2,...,n. We write also here that

/k(r)L(x) = /k L
r

Xl2" "’’r

N and
O

j,k,..., are integers from

N
nfor, any real-valued function L(x) on Nn’ here < r < n, x In addition, we

O On
shall define a class of functions on N by

O

E:f: f(x) O, /(r)f(x) O,r=l,...,n-l,and (n)f() O]

(1)

(2)

(3)

It is obvious that the following properties are true:

if f(x) K and c > 0 is a real number, then cf(x)
_

K.

if f(x), g(x) K then f(x) + g(x) K.

all functions of the form

rl r2 rk- 1. x x. (k ,,...,n)x I x
2 Xk_ I

are

< i < i
2 < < ik_ <_ n.

2. LINEAR INEQUALITIES.

THEOREM I. Let u(x)

N
n

for x and let f(x)
O

K.

in the class K, here r
h _> 0 and ih(h=l,...,k-l) are integers with

and p(x) be real-valued non-negatlve functions defined

be a real-valued positive and nondecreasing function in

Suppose further that the discrete inequality

u(x) - f’(:m) + .. p(y)u(y)
y,l

(2.1)

Whois satisfied for all x e Then we have the inequality
O

u(x) -z f(O,x2)ylO= 1 + G(Yl, + p(y) x @Nn
O (2.2)



DISCRETE INEQUALITIES OF THE GRONWALL TYPE 487

where

x,2

G(
Y2

and herein

(2.3)

k k’ o, ;k+
A(k) :[’(k, 0 ,’k+ 2)

(2.4)

for < k < n-l, x Nn.
PROOF. We define a function U(x)

by definition

N
n

on by the right member of (2.1), so thato

U(Xk_l,O,k+ I) f(k_1,O,k+l)) O,

I_ k_xU(Xk_l,Xk+l Xk+l) U(x)> O, Xk6 N n.o

(2.5)

since f(x) is nondecreasing.

Further, we can obtain from the definition of U(x)

A(n)u() A(’)(,,) + p(,,),()

_Z p(x)U (m_l, Xn+l)
since

(n)
f(x) < 0, p(x) > 0, (2.1), and (2.5).

that,

In view of the fact that

(2.6)

N
nis valid for < k < n-i and x e By applying (2.5) and (2.7), we derive from
O

(2.6)

Zl(-)u (,_ ’",:+ A(’- -- p(x). (2.6’1u(,_,,, +)

Keeping Xn_ fixed in (2.6’) set

obtain the inequality
Xn Yn and sum over Yn 0,1,2,..., Xn-I to

(2.8)
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where gn-1 is given by (2.4). We may rewrite the last inequality as

,(n-2)U(n_2Xn_l+l x (n-2)n / U(x)

U(Xn-2’Xn-1+l’xn

& en_l(Sn_l,O) + _---_ P(Xn_l’Yn)’

since (2.5) and (2.7). Keeping now Xn_2
and Xn fixed

and sum over Yn_l 0,1,2,..., Xn_l-1 to get the inequality

(2.9)

in (2.9), set x
n-l Yn-I

x,n-1

t,(x) 2 ,,,n-2’

y, n-I

+ P (’’’ Yn-1 )’

g’n- (Xn-2’ Yn-1,0)

(2.10)

here gn-2 is given by (2.4). If n-2 > I, then by using a similar argument as used

above for (2.8) to (2.10), we can obtain

x,n-2

_A(n-3)U.(x)_ _z gn_3(n_3,0,n_l) + gn_2(Xn_3, Yn_2,0 XnU(x)
y,n-2

x,n-I

+ gn-l(Xn-3’Tn-2,n-l’O) + y,n-2P(Sn-3’n-2)"
Continuing in this way then we obtain

,/(I)U(x)__ G(x) + p(x 1,’2)
u() y,

where G(x) is defined by (2.3). Obviously, the last inequality can be rewritten as

x,nU(Xl+l’x2) Z. 1 + G(x) + P(xl’Y2)" (2.11)
u(,,) y,2

Keeping x2 fixed in (2.11), set x y and then substitute y I), 1,2,...,

xl-I successively in (2.11), we then get

Xl-I
1 + G(Yl,X2) + p(y)

Yl=O ) 2 (2.12)

Thus the desired bound for

immediately.

u(x) in (2.2) follows from (2.1), (2.5) and (2.12)



DISCRETE INEQUALITIES OF THE GRONWALL TYPE 489

EXAMPLE I. Suppose that the discrete inequality

x,3

v(x,x2,x3).. z_ a +x2x3 + xix2 + Q(y,y2,Y3)v(yI,Y2,Y3
y,l

(*)

(Xl’X2’X3) N3o’ where a > 0 is a constant, v and Q are real-valuedholds for

non-negative functions defined on N3. Then, by Theorem here we have theo
nondecreasing function

4
f(xt,x2,x3) a + x2x3 + XlX2(>O) K,

since the following conditions are satisfied

:(1)f(x1,x2’x3) x2(1 +lCXl +6x21 +2Xl) x_ O,

(2)(x,x2,x3) + x +6xz +x > o, for (xl,x2,x3) - N3o

so that,

()(,,,o,,,3)(,o,,,3) o,
(,,,o,,, 3)

](2)f(xl,x2,O I +4xI +6x21 + 4Xl3

f(xl,x2,0 a + XlX2

Hence we derive the desired bound on v from (*) such that

,3

)t+ , Q(yl,y2,y3
for (xl,x2,x3) (:N3.o

lle note here that the above inequality (*) can not be treated by means of the known

results established in [1].

THEORE 2. LeC u(x), f(x), p(x) be he same as in Theorem 1, and let q(x) be

a real-valued non-negative function defined for x N Suppose ChaC Che inequaliCy
O

y,l z,l

N
II

is satisfied for all x Then we also have
o

x,n Jl x,n

u(x)- F(x) + (y)f(O,Y2) I +G(Zl,Y2) + p(z)+q(z) t2.14)

3 ,I z =0 z,2
1
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N
n

for all x e here G is the same as in above Theorem I, and F(x) is given byo

)f(y,o,,,))+ (yF()= f(O,,) + )f o ) +
y,l y,l 2’

x,n-2

yI

x,n-I

(n-2)f(n-2’O’Xn) + >_ -_ (n-l)f(n_l,O). (2.15)

PROOF. We define two functions V(x) and W(x)

(2.13) and the following equality

(x) V(x) + q(y)V(y)
yl

n
on N

o
by the right number of

(2.16)

respectively, so that by the definitions: (f(x) is nondecreasing)

w(o ,o, )= v( o )= f( t,o, )>oJ+l -J-l’ j+l j- j+l

V(Xj_l,Xj+l,j+l) x_ V(x) > O,

w( +t, - w() > o,
~j-l’ j+l

where N
n

xj e
o’ j=l,2,...,n. In addition, we obtain here

/(r)v(x)= r)f(x)+ P(Xr,Yr+ 1) u(xr,v +
y, r+--- r+ l

x,r y,n

z,l z,r+l

(2.17)

(2.t8)

(2.9)

(2.20)

and

Letting

x,n

(r)w(x) /(r)V(x) + -- q(Xr’gr+l)V(Xr’r+l)" (2.21)
y,r+l

for r z_ n,x N
n
o

r n in the above (2.20) and using A(n)f(.x) < 0 we then derive that

z()v(,,) _z p(,,),(), x N
n

(2.22)o

since p(x), q(x) are non-negative and u(x) < V(x) < W(x). Now by (2.21) we obtain

for x Nn
o
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since q(x) > 0 and V(x) < W(x). It is clear from (2.17) that,

Zh()w( o
r+ 2

w( o,
r+ 2

(r)v(}r, O,r+2)
v(Xr,O,r+ 2

gr(xr,O,xr+2), (2.24)

N
n

where _< r _< n-l, x o’ j=l,2,...,n, and gr is given by (2.4).

Now by following the same argument as used in the proof of Theorem I, and using

(2.17), (2.24), we get from (2.23)

Xl-I
W(X) z_ f(0,x2 I + G(Yl,2) + (p(y)+ q(y)

yl=O
y,2

for x Nn
O

(2.25)

Substituting this bound for W(x) in (2.22), and then rewrite it as follows

(’-)v(_,./) Z%(-)v()
_
h(), (2.26)

where the function h(x) is defined by

Keeping Xn_ fixed in the above (2.26), set Xn Yn and sum over Yn 0,1,2,..., Xn-1
to get the estimate

/,,(-)v(,) A(-)v(_l,o) + n(E,,_,>n
")n

.A(n-1)f(n_l,O + h(Xn_l,Yn)"
)n

Keeping now Xn_2, Xn fixed in the last inequality, set Xn_l= Yn-l and sum over

Yn-I 0,I,2,..., Xn_1-1 to get the inequality

x,n-I

(n-2)V(x-z (n-2)f(xn 2,0 x + (n-I)f( xn
y,n-I c,.,n- 2 Yn- I’ %..]

)7, n

+ t(x Yn- )n- 2 i
y, rl-I
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Continuing in this way then we, obtain

z()v(,) _= v(+,’)- Z()(,o,’3) + Z()f(
y,2 I,Y2,O,x4) +... +

x,n-I x,n

Z(-)f(,g,_,o)+ (,y).y,2 y,2

(2.27)

Keeping x
2

fixed in (2.27), set Xl Yl and substitute Yl 0,I,2,..., xl-I
successively in (2.27)to derive the bound for V(x) such that

V(x) F(x)+ h(y),
y,l

(2.28)

since V(0,x2) f(0,x2), where F(x) is given by (2.15). Hence the desired bound

in (2.14) follows from (2.13), (2.28), and the definitions of V(x) and h(x) immedi-

ately. Q.E.D.

REMARK i. Letting n 3 and f(x) al(x I) + a2(x2) + a3(x3) in above Theorems

1,2, where a.3: No (0, ), Aaj(z) _> 0 for all z No, j 1,2,3, then we derive

the Theorems 1,2 of [I] respectively.

3. A NONLINEAR GENERALIZATION.

THEOREM 3. Let u(x), p(x), and f(x) be the same as in above Theorem I, and
n

let u(x) > u be satisfied for all x N where u is a positive number. Let
0 0 0

W(z) be a real-valued continuous, positive and strictly increasing function defined on

the interval (u ). Suppose further that the inequality
o

u(x) - f(x) + p(y)W(u(y)), (3.1)
y,l

N
n

holds for x Then for 0 < x < X (this is 0 < x
i

< Xi, i 1,2, n) we also
o

have the inequality

u(x) z- K
-I

K f(O,2) + (YI’2 + P(YI’ Z2) (3.2)
y,l z,2

-I
where K denotes the inverse of K and

r

to_
ds() ( for r r _x u ), (3.3)

o o

and the function G*(x) is obtained from G(x) by replacing all of its denominators

N
n

f(xj 0, xj+2) by W[f(xj, 0, xj+2)] respectively, here 1,2,...,n-|. Here x
o
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is chosen so that the expression contained in the brackets {...} in (3.2) belongs to
-Ithe domain of K as long as 0 < x < X.

N
nPROOF. Define a function R(x) on by the right member of (3.1), so thato

R(O i,O )= f(x O u( ,O )A u
o (3.4)o+l ~j-l’ o+l j-I o+l

for j 1,2,...n, and

y,r+l

1 - r- n-l,x N
n
o

/(n)R(.)= ,/(")f(x)+ p(x)W[u(x)] -Z p(x)-wER()] x N
n
o (3.6)

since A (n) f(x) < 0, p(x) > 0, u(x) < R(x), and W(z)

from (3.6) that,

(n-l)R(n_l Xn*l .(n-I )R (x)
[ (_,/)3

is increasing. We can observe

- p(x), (3.7)

since (3.5), R(xj_l xj+l, xj+ I) > Uo, and

keeping Xn_ fixed in (3.7), set Xn Yn
derive the inequality

A(’-z)(,<) A (’-)(n-Z ’)
,[()] , [(_,o)]

W(z) is increasing. Using (3.4) and

and sum over Yn 0,1,2,... ,x -i to
n

p(x yn)n-I,n (3.8)

Replacing now the left member of (3.8) by the smaller term

(n-2)R(n_2,Xn_l+l,xn) ,(n-2)R(x)
[(-,-*,n)] ’[()J

and then keeping Xn_2
and Xn fixed in

Yn-i 0,l,2,...,Xn_l-I to get the estimate

(3.8), set Xn-I Yn-I and sum over

A (n- S" (,.,_, 0, <,_,)
[" (r,_.O. ,.)]

x,n.l

>,n-I

y,n-I
P (i,n_2 Yn_ 1).

A ’’- l (._2, y._ ,o)

,’[r ,, y ,o)](.n-2’ n-I



494 E.H. YANG

Proceeding in this way we then obtain

/k(1)R(x)
G-(x) + P(Xl 2 x N

n

3 o (3.9)

where G*(x) is obtained from G(x) by the method as described in above. Obviously,

(3.9) implies the following

Z-2
o

where x (Xl+l x2). Keeping now x
2

fixed in the last inequality, set Xl Yl
and su over Yl O,1,2,...Xl-1 to obtain the inequality

y)l
";’

Z,2

n
P(YI’ Z2 xe N

o

and hence we have for 0 < x < X

R(X) K- K
-I K[f(O,x("2)) + G’)(-(yl, + P(YI’ Z2) (3.10)

Hence the desired upper bound on u(x) in (3.2) follows from (3.1), (3.10), and the

definition of R(x) immediately. The choice of X N
n

is obvious.
O

REMARK 2. By applying the same argument as used in the proofs of Theorems 2 and

3, we can easily establish an extension of the Theorem 4 of [1], which yields an

upper bound for the solutions of the following inequality

n
Here x N and u(x), f(x), p(x), and W(z) are the same as defined in Theorem 3.

O

Because the proof of this result is not difficult, so we leave it here to the reader.
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