
Internat. J. Math. & Math. Sci.
Vol. 9 No. 3 (1986) 447-458

447

STABILITY ANALYSIS OF LINEAR MULTISTEP METHODS
FOR DELAY DIFFERENTIAL EQUATIONS

V.L. BAKKE and Z. JACKIEWICZ

Department of Mathematical Sciences
University of Arkansas

Fayetteville, AR 72701, USA

(Received August 26, 1985 and in revised form January 28, 1986)

ABSTRACT. Stability properties of linear multistep methods for delay differential

equations with respect to the test equation

y’(t) ay(t) + by(t), t O,

0 < % i, are investigated. It is known that the solution of this equation is

bounded if and only if lal -b and we examine whether this property is inherited by

multistep methods with Lagrange interpolation and by parametrized Adams methods.
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i. INTRODUCTION

Consider the delay differential equation (DDE)

y’(t) f(t,y(t),y(a(t))), t J t o
y(t) g(t), to t t o (1.1)

R
2 ) R are continuous and t o a(t)0, where f:[t0,) R and a:[t0,

< t. Such equations arise in a number of practical applications such as, for example,

control theory, electrodynamics, viscoelasticity, biomathematics, and medical sciences

(compare Hale [i]).

The convergence theory of numerical methods for DDEs is rather well developed and

resembles the convergence theory of corresponding numerical methods for ordinary dif-

ferential equations (ODEs) (see Tavernini [2-4], Jackiewicz [5-7], Zverkina [8]). In

this paper we wish to concentrate on stability analysis of some methods for (1.1).

To investigate the stability properties of numerical methods for (1.1), these

methods are usually applied, with a fixed positive step size h, to various test

equations with known region of stability. The simplest test equation is

y’(t) qy(t-), 0,

y(t) g(t), - J t J 0, (1.2)

T 0, q real, and it is known (see Bellman and Cooke [9]) that the solution of
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this equation tends to zero as t for all q if and only if q (-/2T,0).

The numerical method, with step size h T/m, where m is a positive integer, which

inherits this property is said to be DA0-stable and Cryer [I0] gives some necessary

and sufficient conditions for linear multistep method to be DA0-stable. He also intro-

duced a more general notion of GDA0-stability which relaxes the condition h T/m to

h T/(m-u), where u g [0,i), and investigated the properties of linear multistep

methods with respect to this concept. Barwell [ii] generalized some of Cryer’s results

to the case where q is complex and also considered a more general test equation

y’(t) py(t) + qy(t-), t > 0,

y(t) g(t), -T < t < O, (1.3)

with p and q complex. He introduced the notion of Q- and GQ-stability related to

(1.2) (with q complex) and P- and GP- stability related to (1.3) which are analogues

of Cryer’s DA0- and GDA0-stability and investigated the stability properties of some

simple multistep methods coupled with Lagrange interpolation. Still more general con-

cepts of stability with respect to (1.2) were introduced by van der Houwen and

Sommeijer [12] and stability criteria were derived for a class of linear multistep

methods.

Stability analysis of numerical methods for DDEs is difficult since it is necessary

to consider difference equations of arbitrarily high order. To illustrate this point

suppose that the linear multistep method

k k
Z yh h Z f( ,Yh(t
=0 j

t
i+k-j

=0
t
i+k-j

Yh(S) gh(s)’

i+k-j
)’ Yh (a t

i+k-j
)’

s [to-,t0], (1.4)

i=0,1,..., coupled with Lagrange interpolation of sufficiently high order, and step

size h z/m, where m is a positive integer, is applied to (1.3). Here, t
i

t o
+ ih, i=0,1,...; Yh is an approximate solution; and gh is an approximation to g.

This leads to the difference equation

k k
Z a Yh(t h Z B (pyh(t

j=0
j i+k-j

j=0
j

Yh(S) gh(s),

i+k-j
+ qYh (t

i+k-j-m
)’

s e [t0-,t0], (1.5)

i=0,1 of order m+k. Now in order to establish some stability properties of

(1.4) we should be able to decide whether or not the solution Yh of (1.5) is bounded

(or tends to zero as t ). This is, in general, a nontrivial task and satisfactory

results were obtained only for simplest numerical methods. Barwell [ii] established P-

and GP-stability for first and second order backward differentiation methods and

Jackiewicz [13] determined stability regions for @-methods. Similar results with

respect to the test equation (1.2) were obtained by Cryer [I0] and Barwell [ii]. Cryer

proved that the @-methods are DA0-stable if and only if @ e [1/2,1] and that the

Backward Euler method and the trapezoidal method are GDA0-stable. Barwell proved that

the Backward Euler method is Q-stable and conjectured that it is GQ-stable. For more

general methods some stability results were established by Wiederholt [14], Ai-Mutib

[15], and Oppelstrup [16]. Wiederholt determined numerically (via boundary locus
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method) the set of all (hp,hq) such that Yh (given by (1.5)) tends to zero as t

for second order Milne predictor-corrector method and third order Adams predictor-cor-

rector method for m=l,2, and 3. Similar results were obtained by Ai-Mutib for the

Runge-Kutta-Merson method, the trapezium rule and the fourth order implicit Runge-Kutta

method. Oppelstrup investigated stability properties of Runge-Kutta-Fehlberg method

combined with Hermite-Birkhoff interpolation with respect to the test equation (1.2).

More general test equations for functional differential equations were considered

by Bickart [17] and Brayton and Willoughby [18].

It is the purpose of this paper to present stability analysis of some linear multi-

step methods based on the test equation

y’(t) ay(%t) + by(t), t 0,

y(0) Y0’ (1.6)

where a, b, and % are real and 0 < % < 1. The importance of such equations in

practical applications is discussed, for example, by Fox et al [19]. It follows from

the results of Kato and McLeod [20] (see also Fox et al [19]) that all solutions of

(1.6) are bounded if and only if lal < -b and we investigate whether this property

is inherited by the approximate solution Yh when (1.4) is applied to (1.6). The

problem is that the application of (1.4) to (1.6) leads to difference equations which

are not of fixed order. A a consequence, the approach of Barwell [II], Cryer [I0],

Jackiewicz [13] is not applicable (compare the discussion of this topic in Jackiewicz

[13]), and a different method of attack is needed. Roughly speaking, the approach of

this paper consists of the following. Assuming that Yh(tj) for J i are bounded

by a constant M and fly
h ll[to,ti is bounded by yM for some I, we are looking

for conditions such that Yh(ti+l) and llyhll[ti,ti+l] are bounded by the same

constants M and yM respectively. Denoting the set of all (hb,ha) for which this

is true by Ay, we obtain a lower bound on the stability region with respect to (1.6)

in the form IAY" This approach works reasonably well for simple multistep methods

such as, for example @-methods. We were also able to obtain some sufficient stability

conditions for linear multistep methods with Lagrange interpolation (Section 2) and

for low order parametrized Adams-Bashforth and Adams-Moulton methods (Section 3).

Unfortunately, this approach does not carry over to general linear multistep methods

with Hermite interpolation and high order parametrized Adams methods.

As a byproduct of our analysis we established that the stability region for @-

methods with respect to (1.3) is contained in the stability region with respect to

(1.6). This partially answers the conjecture posed in Jackiewicz [13].

2. STABILITY ANALYSIS OF LAGRANGE INTERPOLATORY EXTENSIONS OF LINEAR MULTISTEP METHODS

A Lagrange interpolatory extension of the linear multistep method for ODEs with

coefficients j, Bj, j=0,1 k, is the method defined by

k k

Yh(t h E F(t (2.1)
j=0

i+k-j
j=O

i+k-j

and
k

Yh(ti+k_l+rh) E U (r)Yh(t (2.2)
j=0

i+k-j
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i=O,l,..., r g [0,i], where F(t) f(t,Yh(tv),Yh(a(t))) and (2.2) is Lagrange

interpolation formula, i.e. UO(1) 1, Uj(1) 0, j=l,2 k, UI(O) I, Uj(0)
k

0, # I; and E U.(r) (compare Tavernini [3], where a more general Hermite
j=0 3

interpolatory extension is defined). This method can be written in the form

k k

aoYh(ti+k_l+rh) + I a (r)Yh(t h Z b (r)F(t (2 3)
j=l

j i+k-j
j=0

j i+k-j

i=0,1 r [0,i], where ao %0; j(r) ajU0(r)-a0Uj(r), j=l,2,...,k; bj(r)=
BjU0(r), j=0,1 k. Denote by Yh the approximate solution obtained when the

method (2.3) is applied to (1.6). We propose the following definition.

DEFINITION. For given values of x hb and y ha, the method (2.3) is said

to be absolutely stable, if Yh is bounded for 0 < % < I. A region of absolute sta-

bility is the set of all points (x,y) such that the method (2.3) is absolutely stable.

The method (2.3) is said to be A-stable if the region of absolute stability includes

the stability region for (1.6), i.e. the set {(x,y): IYl -x}.

We have the following:

THEOREM i. Assume that (x,y) satisfies the inequality

k k
Z l-a + xB + YlYl Z IBjl la0 -xB01, (2.4)

j =0 =0
k

where y--sup{ Z IUj(r) l: r e [0,I]}. Then the method (2.3) is absolutely stable.
j=0 l

PROOF. It is clear from (2.2) that if ly(tj)l,, is bounded by a constant M for

< i then llyll[0,ti is bounded by yM. Here, llyII[0,ti sup{lYh(S) l: s e [0,ti]}.
Assume that lYh(t.) _< M for j _< i. Then it is easy to check, using (2.1) with

+ (t) that lYh(ti+l) M and llyhll[0,ti+l yM provided (2.4)F(t) aYh(%t) bYh

holds, and the proof is complete.

To illustrate this theorem we apply it now to some simple methods for DDEs.

EXAMPLE i. Consider the @-methods with linear interpolation for DDEs (I.i). These

are the methods of the form

Yh(ti+l) Yh(ti) + rh[@F(ti+I) + (l-@)F(ti)],

Yh(ti+rh) (l-r)Yh(ti) + rYh(ti+l),
i=O,l r e [0,i]. Now y and the inequality (2.4) takes the form

+ (l-@)xl + IYl
It is easy to verify that the solution of this inequality is R for 0 @ and

RI U 2 for @ _< i, where

I {(x’y): IYl -x and [Yl 2 + (l-2@)x}

and

2 {(x,y): IY] -2 + (2@-l)x}.

(In particular, the Backward Euler method (@ I) is A-stable). Comparing this with

Jackiewicz [13], p.391, we see that the stability region of @-methods with respect to

(1.3) is contained in the stability region of these methods with respect to (1.6), which

partially answers the conjecture posed in Jackiewicz [13].
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EXAMPLE 2. Consider the trapezoidal method with quadratic interpolation

r r )+F(t )]Yh(ti+rh) (r+l)(2-r)Yh(ti) + (r-l)Yh(ti+l) + (r+l)h[F(ti+l i

i=0,1, r e [0,i]. This method can be written in the form

h
Yh(ti+l) Yh(ti) + [F(ti+l)+F(ti)],
r r

Yh(ti+rh) (r+l)Yh(ti+I) + (l-r2)yh(ti) + (r-l)Yh(ti_l),
5

i=0,1 r e [0,I] (see Tavernini [3]). Now y and the inequality (2.4) reads

5+ 1/2xl + IYl
The solution of this inequality is the set

8R {(x,y): IYl -x and IYl J }.
For comparison, for the trapezoidal rule with linear interpolation (this corresponds

to @ in Example i) the solution of (2.4) is

R* {(x,y): IYl J -x and IYl J 2},

and C This suggest that the trapezoidal rule with linear interpolation may have

better stability properties than trapezoidal rule with quadratic interpolation.

EXAMPLE 3. Consider the method

Yh(ti_l+rh) Yh(ti_2) + (l+r)hF(ti),
i--0,1 r [0,I] or, equivalently

Yh(ti) Yh(ti-2) + 2hF(ti)’
l+r

Yh(ti_l+rh) --Yh(ti) + Yh(ti_2),
i=0,1 r e [0,i]. This method is not of type (2.3), but the same approach can be

used to obtain a sufficient condition for absolute stability. It is clear that y

and inequality (2.4) takes the form

+ 21y 11 2x I.
Therefore, this method is absolutely stable if (x,y) A U A

2, where

A {(x,y): IYl _< -x},

A
2

{(x,y): IYl _< x i}.

In particular, it is A-stable.

EXAMPLE 4. Consider the backward differentiation methods:

k
Y. k, Yh (t hF(t

j=0
i+k-j i+k

k

Yh(ti+k_l+rh) Y. U
k (r)Yh(t

j=0 ’J i+k-j

i=0,1 r e [0,I], k=l,2 6, where

k

k,0
i=

k,j

k r+m-I
U
k j(r) H

m-j
k=1,2

j=l,2 k,

j=l,2 k
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k

Yk := sup{ Z lak I:
j=O

j

(the case k=l corresponds to @--I in Example i). Now ineqltality (2.4) reads

k
Z lk,jl + ykly _< ]k 0-

r [0,i]}, and its solution is

Ak Ak, U Ak, 2,
where

k
_l( kAk, (x,y) x + klyl _< j=ljl l-(j)

k
I( kAE, 2

{(x,y): x ykly _<
J =ljZ l+(j))}

(note that r. -(1-()) 0 for k 2). Unfortunately, this approach cannot be used

to determine the stability of these methods in the neighborhood of the origin for

3. STABILITY ALYSIS OF PRAMETRIZED AD/S METHODS

We will consider the (explicit) Adams-Bashforth and the (implicit) Adams-Moulton

formulas. The Adams-Bashforth methods are given by

k

Yh(ti+k_l+rh) Yh(ti+k_l) + h I bk,j(r)F(t ), (3.I)
j=0

i+k-l-j

i=0,1 r e (0,I], where

r k
s__.)bk, j(r) f ds. (3.2)

0 m0m-3
mj

The method (3.1) can also be written in the form

k

Yh(ti+k_l+rh) Yh(ti+k_l) + h Y.c.(r)VJF(t (3 3)
j=O

i+k-i

i=0,1 r e (0,i], where V is the backward difference operator of order j.

The coefficients Co, j=0,1 k, are independent of k, and are given by
.r

c.(r) (-l)Jf (-S)ds.
0

m

Using the generating function

G(t,r) := Z c (r)tm
l-(l-t)-r

m=0
m ln(l-t)

we also have
m

ZO1.j,. (r) (-l)m+l( -r
c0(r) r, Cm_ m+l

). (3.4)
j=

Expressing VJF(ti+k_ I) in (3.3) in terms of F(ti+k_l_v) and comparing (3.3) and

(3.1) we can easily find the following relationship between b
k

and c.:

k

bk,j(r) (-I) Z (m) Cm(r)" (3.5)
m=j

Consider now the Adams-Moulton formulas for DDEs. These methods read

k

Yh(ti+k_l+rh) Yh(ti+k_l) + hj=0Ebk,j(r)F(ti+k_j), (3.6)

i=0,1 r e (0,i], where

r k

bk,j(r f( H s+m-l)dsm-j" (3.7)
0
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Another representation of (3.6) is
k

Yh(ti+k_l+rh) Yh(ti+k_l) + hj=07, c.(r)j JF(ti+k)’

,
(3.8)

i=O,l r e (0,1], where the coefficients cj, j=O,1 k. are given by

.-l+r
c.(r) (-I) 3 f (-s
3 -I

j)ds.
Using the generating function

, ,
tm (l-t)-(l-t) l-r

G (t,r) E c (r)
m in(l-t)m=O

we also have

, m
* l-r

CO(r) r, E j-- Cm_j(r) (-l)m-l(m+ I) (3.9)
j=0

(compare Tavernini [3]). The relationship between b
k

and c. is

k, ,
b
k j(r)= (-i) E ()Cm(r). (3.10)

m=j

Now we list some properties of the coefficients of the Adams-Bashforth and Adams-Noulton

methods which will be useful later on. To be consistent with Henrici [21] we will use

the following notation:

* *8k, := bk,j(1), j := cj(1), 8k, := bk,j(1), yj := cj(1).
PI. m 0, m _< 0.

P2. YO I, m < O, m _> i.

m ,
P3. Z Yi Ym’ m O.

i=O

P4. 8k
> 0 k 0

0
k
E IBk, 0 k=O 2; u

k
0 k 3P5. Uk Bk’O

j=l J
, ,

P6. 8k, 0
0, 8k,1 0, k 1.

PT. gk,1 gk,0 0, k 1.

k
X ]Bk,jl O, k I; w

k
< O, k 2.P8 Wk k,0

j=l
k

P9. uk* := Bk,O* + B,I j=Z21Bk,j O, k=1,2,3,4,5; u
k

O, k _> 6.

,
PIO. llbk,jll[O,l] Ibk,j(1)l; llbk,jlI[O,ll Ibk,j(1) k O, j=O,l k.

The properties P1-P3 are well known (compare Henrici [21]), where the first few values,
of Ym and Ym are also listed, or Hall [22]). P4 follows from (3.5) for r=l, j=O,

and PI. It is easy to check, using (3.5) for r=l, that

k k k k k k k

UK E Ym E E ()Ym-3 + E ym E E ()m-j + E (2-2m)y
mm=O m=O m=j m=l m=1 j=l m=l

25
Hence, u

0
I, u I, u

2 , u
3 , and Uk+ u

k
for k 3 which

establishes P5. P6 follows from (3.10) for r=l, j=0,1, and P1-P3. Using (3.10) for

r=l we obtain

k, , ,
k,1 Bk,O X (l+i)y

i
i=2
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which, together with P2, establishes P7. In view of (3.10) for r=l we have

k k k k k
* * * * * * *w
k

E Ym + E + E E )Ym YO + 2YI + E (l+m)Ym
m=O m=l

mYm
j=2 m=j m=2

k k k k
* Ym* m*Z Z () Ym Z (l+m+2m-m-I) Z 2my

m=2 j=2 m=2 m=2

which proves P8. Similarly,
k

* 2
m *u

k
+ E 2m)ym.

m=2
* * *It is clear that u
k

> 0 for k=1,2,3,4,5, u
6

< 0 and Uk+ < u
k

for k ! 6 which

proves P9. PIO follows easily from (3.2) and (3.7).

and

We are now in a position to formulate our stability theorems.

THEOREM 2. Denote by A the set of all (x,y) (hb,ha) such that
Y

k k

I1 + Ik,ox + )-i. IIk,jllx + y E Ig
k lYl

j=1 j=0 ’J (3.11)

k
Z IBk l(Ixl + YlYl) < - (3 12)

j=O

and put A Y>UIAY. Then if (x,y) g A the Adams-Bashforth method (3.1) is absolutely

stable.

PROOF. The method (3.1) applied to (1.6) takes the form

k
+rh) Yh(t + h I (r)(aYh(ti+k-I i+k-i j=obk,j Yh (%ti+k-l-j) + bYh(ti+k-l-j) (3.13)

i=O,l r g (0,i]. Let M be a constant such that llyhll[0,tk_1 M. Assume

that ly(tj)l _< M for j=O,l i+k-1, and llyhll[O,ti+k_l < yM, where _> i.

%(t )I M if (3.11) is satisfiedThen, using (3.13) for r--I it follows that y
h i+k

Similarly, using (3.13) and el0 we can see that llYll[O,ti+k <_ yM if (3.12) is

satisfied. Therefore, if (x,y) g A, the approximate solution Yh given by (3.13) is

bounded and the theorem follows.
k

Define u
k

as in P5 and put v
k

:= Z Bk I. It is easy to see, using P4 that
j=0 ’J

A can be written in the form
Y

A

where

B {(x,y): x 0 UkX + YvklY < 0 Vk(-X + YlYl) 2}

C {(x,y): x O, Vk(-X- + YlYl) Y i}.

and

It is clear in view of P5 that B is empty for k 3, therefore this theorem applies
y

only for k=0,1, and 2. It follows after some computations that the boundary of A for

k=0,1, and 2 is given by

+(2+VkX)/(3vk),
Y

+UkX/(Vk(2Bk,oX-l)),

2/v
k

x _<-i/Bk, O,

-I/Bk 0
x _< O.
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These boundaries for y 0 are plotted in Fig. I.

-2 -1 6/11

Fig. i. Stability regions for Adams-Bashforth methods for k=0,1,2.

The coordinates of the points Qi(xi,Yi), i=0,I,2, are given in Table below.

Xk Yk

0 -I I/3
-2/3 i/4

2 -12/23 2/253

Table

For k=O we already obtained a better bound on stability region in Example for @=0.

and

Our next theorem deals with the Adams-Moulton methods (3.6).

TttEOREM 3 Denote by the set of all (x,y) (hb,ha) such that

k k
I1 + tk,lXl + Y. I1k lxl + Y Y.. I1k lYJ I

k
j=2 ’J j=0 ’J (3.14)

k
r. lk,jl(Ix + wlYl) < - , (3.15)

j=0

A* A*and put >UlA Then if (x,y) the Adams-Moulton method (3 6) is absolutelyY Y
stable.

PROOF. The proof is similar to that of Theorem 2. The method (3.6) applied to

(1.6) takes the form
k

+rh) Yh (ti+k-l) + h I bk, (r)(ayh(At + (t )), (3.16)Yh(ti+k-1
j=0

i+k-j bYh i+k-j

i=O,l r (0,i]. For r=l this can be written in the form

k
* *(l-hb

k 0)Yh(ti+k) (l+hb
k l)Yh(ti+k_l) + ha Y. k Yh (xt

k j=0 ’J i+k-j

+ hb T. Bk, Yh )" (3.17)
j=2 ti+k-J
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Denote by i
0

the smallest integer such that t_ < tl and let M be a
10+k i0+k

N. Assume that ly_(t.) < N for ]=0,1constant such that lly ll[o,ti0+k n

yM, where y > I. Then it is easy to checki+k-1, i i0, and flY li[0,i+k_lJ <

using (3.17) that lYh(ti+k) M if (3.14) is satisfied. Similarly, using (3.16) and

A*PI0 it follows that llyhll[0,ti+k ! yM if (3.15) holds. Therefore, if (x,y) the

approximate solution Yh defined by (3.16) is bounded, which is our claim.

For k=0 (this corresponds to the backward Euler method) condition (3.14) and

(3.15) take the form

+ 71Yl _<

Ixl + YlYl < Y- I,

and it can be verified that the boundary of the region is given by

+x/(2x-l), x <_ 0,

Y
_+(x-2)/(2x-l), x _> 2.

We obtained a better bound on stability region in Example for @=I. To get some idea

how the region looks like for k > we rewrite (3.14) and (3.15) in a different
k

* *form. Define w and u as in P8 and P9 and put v
by considering special cases and using P6-P8 that

j=0

where

and

A* B* C*,

B* {(x,y): x < 0 UkX + YvklY < 0 WkX + YvklY 2}

It can be checked

,
C {(x,y): x 0 Vk(-X + y[y[) i}.

In view of P9 the set is empty for k 6, therefore, Theorem 3 is applicable only
V A*for k 5. It follows after some computations that the boundary of the region

for k=i,2,3,4, and 5 is given by
, , , , ,

Z(2-Wk)/((Vk(3-(Wk+Vk)X)), 2/w
k

x -I/Sk, I,
y , , , , ,

ZUkX/(Vk((Uk+Vk)X-l)), -I/Sk, x 0.

Using the table of coefficients of Adams-Moulton methods given in Lapidus and Seifeld, ,
[23] we can compute uk, vk, and w

k
and these boundaries, for k=1,2,3,4,5, are, ,

plotted in Fig. 2. The coordinates of the points Qk(Xk,Yk), k=1,2,3,4,5, are given

in Table 2 below

,
k x

k Yk

-2 2/5
2 -3/2 36/119
3 -24/19 88/425
4 -360/323 4562/39232
5 -1440/1427 303840/8845621

Table 2

As mentioned above, we were not able to apply the approach used in this paper to the

general linear multistep methods with Hermite interpolation or high order Adams methods.
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6 3 90/49 38/45

Y

X

Fig. 2. Stability regions for Adams-Moulton methods for k=1,2,3,4,5.

REMARK. It was pointed out to us by Professor M. Zennaro that the main theorem in

the paper by Jackiewicz [13] gives only sufficient, not necessary and sufficient con-

dition for absolute stability of O-methods for delay differential equations.
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