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ABSTRACT. A subset of a of a finite additive abelian group G is a Z-set if for all

aG, naG for all nZ. The group G is called "Z-good" if in every factorization G

A B, where A and B are Z-sets at least one factor is periodic. Otherwise G is

called "Z-bad."

The purpose of this paper is to investigate factorizations of finite ablian groups

which arise from a variation of Sands’ method. A necessary condition is given for a

factorization G A < B, where A and B are Z-sets, to be obtained by this variation.

An example is provided to show that this condition is not sufficient. It is also

shown that in general all factorizations G A .’ B, where A and B are Z-sets, of a

"Z-good" group do not arise from this variation of Sands’ method.
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I. INTRODUCTION.

Let G be a finlte additive abelian group and let A and B be subsets of G. If

every element g G can be uniquely represented in the form g a + b, where a ,
b B, then we write G A B and call this a factorization of G. A subset A of G

is said to be periodic if there exists an element g 0 such that g + A A. Such an

element g is called a period of A. The set of all periods of A together with 0 forms

a subgroup of G. A subset of G is a Z-set if for all a A, na A for all n Z. We

say G is "good" ("Z-good") if in every factorization G A (+) B, where A and B are

sets (Z-sets) at least one factor is periodic. Otherwise G is called "bad" ("Z-bad").

The problem of classifying a finite abelian group as elther "good" or "bd" arose

from the solution of G. Hajos [I to a group-theoretical interpretation of a conjec-

ture of H. Minkowski on homogeneous linear forms. Hajos [I-3], Rede [2-5], de Bruijn

[6-7], and Sands .6-11] have completely solved this problem of classification. C. Okuda
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[12] classified all finite abelian groups as either "Z-good" of "Z-bad," obtaining

quite different results from the "good"- "bad" classification.

Sands [8] gave a method which yields all factorizations of a finite abelian "good"

group. His method corrects one given previously by Hajos [2].

The purpose of this paper is to investigate factorizations of finite abelian groups

which arise from a variation of Sands’ method. A necessary condition is given for a

factorization G A ’+ B, where A and B are Z-sets, to be obtained by this variation.

An example is provided to show that this condition is not sufficient. It is also

shown that in general all factorizations G A ) B, where A and B are Z-sets, of a

"Z-good" group do not arise from this variation of Sands’ method.

2. PRELIMINARIES.

This section provides some basic unpublished results on Okuda’s 12] "Z-good"

"Z-bad" classification of finite abelian groups as well as an elementary result con-

cerning factorizations G S ’7 A, where S is a subgroup of G and A is a Z-set. For

completeness, we state Sands’ Theorem on the factorizations of finite abellan "good"

groups.

LEMV (Okuda [12]). A finite abelian group G is "Z-good" if and only if at

learnt one Sylow p-subgroup of G is "Z-good."

LEMMA 2 (Okuda 12]). Every cyclic group is "Z-good."

LEMMA 3 (Okuda [12]). If G A B, where A and B are Z-sets, then A and B are

pure in G.

LEFA 4 (Okuda [12]). l.et G be a group isomorphic to Z Z Z + Zp p p p’
where p is an odd prime. Let {a l, a2, b

i,
b2} be a basis of G and def_ne

A (<al, a2> ,\<a2>) CI<a2 + b2>
B (<bl, b2> \ <b + ib2>))!J (, <b + ib

2 + 2a2>)
ii

Then A and B are non-periodic Z-sets and G A + B.

PROPOSITION I. Let S be a subgroup of G. G has a factorization G S + A, A

a Z-set, if and only if S is pure in G.

PROOF. This is a direct consequence of Lemma 3 and the fact that a pure subgroup

of a finite abelian group G is a direct summand of G.

THEOREM (Sands [8]). Let G be a finite abelian "good" group. G A + B if

and only if there exists subsets HI, H2, H
n

such that H + H + + H
i i+I n

K
i

is a subgroup of G, _< i _< n, K G, and

A <0> + H o H
2 + H

3
o H4 +

B <0> H + H
2

H
3 + H4 o

where the notation C D Indicates any of the sets formed by adding to each element of

C some element of D..
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Let us note that the subgroups, Ki, in Sands’ Theorem yield the following series

for G

G KIK2K3 KnKn+ <0>

KI. Hi Ki+1, _< i _< n, Kn Hn. We shall say that the factorization Gwhere

A B arises from the above series if

A HI H3 @ + h2 + h4 +

B H2
/ H4 # + h + h

3 +

where H
i

is a set of coset representatives for Ki modulo Ki+1, and hi Hi, _< i _< n.

Factorizations which arise from the above series can be obtained from Sands’ me-

thod if one computes C o D by adding a fixed element of D to the set C. However, as

shown in Example I, there are factorizations which are obtained from Sands’ method

which do not arise from the corresponding series of subgroups Ki, < i <_ n.

EXAMPLE I. Let G be the cyclic group of order 81. Consider the series G

KI_ K2_ K3 K4_ <0> where K4 <27> K
3 <9> K2 <3> If we choose

H
3 {0, 9, 18} H2 {0, 3, 6} H {0, I, 2} then the following factorization,

G A B, can be obtained from Sands’ method.

A <0> ) H o He H
3

o H4 (H H3) o H4

({0 1,2}’ {0,9,18}) o {0,27,54} {0,1,2,9,10,11 18,19,47}

B- <0> o H H2 o H
3

H4 H
2 H4 {0,3,6} {0,27,54}.

Clearly for every choice of the sets Hi, < i < 3, the set A cannot be written in the

form A H H3 + h2 + h4.
3. TRANSLATIONS.

THEOREM 2. Let G A + B a factorization of G arising from the series G

KI- K2 Kn <0> with coset representatives Ho so that K.l H. + Ko+I,
< i < n-l, K H Then G A’ B’ with A’ A + g1’ B’ + g2’n n

g1’ g2 G arises from the same series with coset representatives H: Hi / u,
u H., < i < n.

PROOF. We will proceed by induction on the length of the series, n. For n 2,

we may assume A H + h20 B H2 + hl, h
i Hi, i 1,2. Suppose G A’ + B’ wth

A’ A + g1’ B’ B + g2’ g1’ g2 G. We can write gl Ul + u2’ u+/- Hi, i 1,2.

Since G (H + u I) H
2
we have h + g2 Zl + Ul + z2’ zi Hi’ i 1,2. Let

H HI + Ul, H H
2 + u

2.
Then

A’ A + gl HI + Ul + h2 + u2 H + h
B’ B + g2 + z2 + Zl + Ul + u2 + Zl + Ul

where we have used the fact that H2 H2 + u
2 H2 + z2 since H2 + K

2
is a subgroup.

Let us assume the theorem is true for seres of length less than n. Let G

A + B be a factorization arising from a series of length n, say G I 2’
K K2

_
Kn <0> We may assume that
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Define

A H H3 + h2 + h4 +

B H2 H4 + h + h
3 +

A H3 ’ H5 + h2 + h4 +

H4 + h3 + h5 +BI=H2

so that A A ’ H B B + h Suppose G A’ B’ whereI’ I"

A’ A / g1’ gl Sl + s2’ Sl HI’ s2 K2’
B’ B + g2’ g2 tl + t2’ tl HI’ t2 K2"

Setting H H + s we have

A’ H L’g" (A + s2),
B’ (h + t I) + (B + t2) h + (B + t2 + k2),

where h + t h + t s + s 1 + k2 / Sl h + k2, k2
e K2, 1 e H1, and

<0>Note that K
2 A @ B arises from the series K2K3_)..._}Kn

Therefore the factorization K2 (A + s2) ") (B + t
2 + k2) arises from

K2 K
3

<0> with coset representatives H’ H + u u H 2 < i< nKn i i i’ i i’
i.e.,

+
B + t2 + k2 H H + + h + h +

Consequently we have

which completes the proof.

THEOREM 3. Let G A ) B be a factorization of G arising from the series G

K K2_ J K <0> with coset representatives H so that K H. K
in i i i +I’

< i < n-l, K H Then each H may be translated to obtain H! < i < n, in
n n" i i’

such a way that OH! < i < n and the factorization G A + B arises from the

original series with eoset representatives H! < i < n, Kn H’
i’ n"

PROOF. We will use induction on the length of the series, n. For n 2, we may

assume A H + h2, B H2 + hl, h
i Hi, i 1,2. We can write 0 Yl + Y2’ Yi Hi’

i 1,2. Define H H + Y2’ H H2, and let h h + Y2" Note that H
2 H2 + Y2

and h2 Y2 H2 since H2 K2 is a subgroup. Thus,

H + Y2 +h2-y2- +

B H2 + h H2 + h + Y2 H + h
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Let us assume the theorem is true for series of length less than n. Let the

factorization G A ’__ B arise from a series of length n, say,

G K K
2 Kn_<O>. We may assume that

A H H
3 + he + h4 +

B H2 @ H4 + + h + h
3 +

Define

B H2 H4 + + h3 + h5 +

so that A A HI, B B + hl, and K2 + A BI.
We can write 0 Yl + Y2 + + Yn’ Yi Hi’ < i < n. Set x2 Y2 + Y3 /

/ Yn" Then x2 K2. Define H H + x2 and let h h + z2, z2 K2. Note that

0 H. We have K2 (A x2) () (B + z2). By Theorem 2 there exists coset repre-

sentatives H, H, H’n translates of H2, H3, Hn respectively such that

By the inductive hypothesis, 0 H 2 < i < n Hence,

This completes the proof.

4. Z-FACTORIZATIONS.

We shall use the te "Z-factorization" when referi to a factorization of the

fo G A B, where A and B are Z-sets.

L 5. t G A B be a Z-factorization of G arisi from the series G

KI’K2
-’ Kn_ <0>. en we may choose the coset representatives, H, _< i _< n,

appearie in the expressions for A and B such that 0 H < i < n, and h’ O,l’ i
1<i<n.

PROOF. We may asse

A H . H
3 + h2 + h4 +

B H2 H4 3 + h + h
3

+

By theorem 3 there exist coset representatives H’ < i < n, such that 0 H
i’ l’

< i < n, and

B H f’ H + h + h +

ObsePve that 0 H H 3 and 0 H H ; Gonsequently
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h + h + A. Since A is a Z-set we have 2(h + h + ...) A. Therefore

/ / ...) / / / /

i 3, 5, Thus,where Hl,
/ / / /

But G H H H and 0 H!, _< i _< n. Hence h h .... 0.

Similarly we have h h .... 0, so establishing the lemma.

We shall assume throughout the rest of the paper that whenever a Z-factorization

G A B arises from the series G KIK2 3Kn<0> the coset representa-

tives have been chosen as in Lena 5 so that A H H
3
, and

B H2 . H4 where 0 Hi, ! i in.
THEOREM 4. If G A B is a Z-factorization of G arising from the series G

-’ <0> then K is pure in KKI-- K2 Kn n n-l"
PROOF. We prove the result for n odd; the proof for n even is similar.

We may assume

A H (. H
3 @ v’Hn

B H2 @ H4 @ Hn_
where 0 e Hi, ! i ! n.

Since Kn_ Hn_1@ Kn we have that Hn_ B( Kn_ is a Z-set. The result fol-

lows from Proposition I.

LEMMA 6. Let G A @ B be a Z-factorization of G arising from the series G

KI_ K2 K ’<0>. For 3 < i < n let i be the natural epimorphism with kernel
n

Ko.z Then i(G) i(A) 5._ i(B) is a Z-factorization of i(G) arising from the series

i(G) i(K1)__’i(K2 ...i(Ki_1)i(Ki).
PROOF. The result follows from the homomorphic properties of the epimorphisms i"
THEOREM 5. If G A . B is a Z-factorization of G arising from the series G

K K2 Kn <0> then Ki/Ki+ is pure in Ki_I/Ki+I, 2_< i _< n-1.

PROOF. By Lepta 6 a Z-factorization of G/Ki+I, 2 ! i ! n-l, arises from the

series G/Ki+ KI/Ki+ K2/Ki+ Ki-I/Ki+1 Ki/Ki+1_-’ Ki+I/Ki+1" Applica-

tion of Theorem 4 completes the proof.

5. EXAMPLES.

We now show that the converses of theorems 4 and 5 are false.

EXA>DLE 2. Let G be a group of type (22, 2, 2) and let a, b, and c of orders

K3 K4 K
522, 2, and 2 respectively generate G. Consider the series G K ’K

2
<0>, where K4 <2a>, K

3
<b> @ <2a> K2 <c> ) <b> ) <2a>. Then Ko/K.i+I is

pure n i-I/Ki+1’ 2 ! i 4. Suppose G ,’: ) B is a Z-fctorizaton arising from

the above series. . may assume A H @ H3, B H2 @ H4, 0 Hi, i 4. The

only possible choices for H
3
are <b> and <2a+b> and H must have the form

H {O,y}, y O, K2. Since K2 contains all the non-zero elements of order 2,

must be of order 22. Thus has
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the form y a + k
2

for some k2 K2. We have that y H H3.
Therefore

2 H @ H3.
But 2, K2. Hence 2, (H ()H3)( K2 H3. Depending on the

choice for H3, we have that 2 b or 2y 2a+b. Clearly both cases are impossible

and we conclude that for every choice of H
3
we cannot choose H such that A H H

3
is a Z-set.

Example 3 answers the following questions negatively"

If G is a "bad" group, are all its "good factorizations" (i.e., the factorizations

in which at least one factor is periodic) obtained from the variation of Sands’ method?

If G is a "Z-good" group, are all its Z-factorizations obtained from the varia-

tion of Sands’ method?

EXAMPLE 3. Let G be a group of type (p,p,p,p,2), p an odd prime, and let

al, a2, bl, b2, and c of orders p, p, p, p, and 2 respectively generate G. Let T

<a1> + <a2> @ <b1> () <b2>,
A’ (<a a2><a_>) <a2 + b2>
B (<b 1, b2> (0 <bl+ ib2>)) (0 <bl+ ib2+ 2a2>)"

i:I i:I

By Lemma 4 we have that A’ and B are non-periodic Z-sets and T A’ B. Thus T is

"Z-bad" and therefore "bad." Consequently, G itself is "bad" [6]. However, in view

of Lemma 2, the Sylow 2-subgroup of G, <c>, is "Z-good" so that G is "Z-good" by

Lemma I.

Let A A’ ’. <c>. Clearly A is a periodic Z-set and <c> S, the subgroup of

periods of A Let s S so that for all a A, a+s A Then for all a’ A’

a’+s A Thus a’ + s a a’ + x, a A, A ,x <c> Hence for all a’ A’

a’ + s x A’ and s x is a period of A’. Since A’ is non-periodic we must have

that s x 0, i.e., s x <c>. Therefore S <c>.

We have that G T <c> A ] B. Suppose this factorization arises from- K2 - K <0>. Since B is non-periodic, H K is not athe series G K n- n n
factor of B. Thus there exist transversals Ho such that 0 Hi, < i < n, and

A Hn + Hn_2 +

B=H +Hn_ +n-1 3
H is contained in the subgroup of periods of A so that H <c>.
n n

Note that B <c> is not a subgroup. Thus K B <c> and consequently
n-1

Hn_ B. But IHn_11 divides IBI p2. Hence IHn_11 p. Hn_ B Kn_ implies

that Hn_ is a Z-set. Thus Hn_ is a subgroup and we conclude that B is periodic,

a contradiction.

Let G be a finite abelian group such that all Sylow subgroups of G are "Z-good."

It remains an open question as to whether all Z-factorizations" of G can be obtained

from the variation of Sands’ method.
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