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ABSTRACT. The Lagrangemanifold (WKB) formalism enables the determination of the

asymptotic series solution of linear differential eNuations modelling wave propaga-

tion in spatially inhomogeneous media at caustic (turning) points. Here the forma-

lism is adapted to determine a class of asymptotic solutions at caustic points for

those equations modelling wave propagation in media with both spatial and temporal

inhomogeneities. The analogous Schrodinger equation is also considered.
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i. INTRODUCTION

Scalar wave propagation in a medium with both spatial and temporal inhomogenel-

ties is commonly represented by an equation of the form

Vz(,t) f(,t)t(’t)-’ g(,t)(,t) 0 (1.1)

In Equation (I.i), (r,t) is the wave function, r refers to the spatial coordinates

and t is the time. When associated with propagation in a plasma, f(,t) is related

to the index of refraction and g(r,t) to the plasma oscillations [i]. Physically,

the spatial inhomogeneity is principally due to refractive effects. The temporal

inhomogeneity occurs when the characteristic frequencies of the medium, e.g., the

resonant absorption frequency of the molecules, the cyclotron frequency of the

plasma, lie within the frequency range of the source. In this case, the component

frequencies of the source signal are not uniformly absorbed and reradiated; the re-

radiated frequency components are propagated with different velocities, leading to a

distortion of the waveform [2].

No general technique exists for solving equations such as Equation (I.i) exact-

ly. Consequently, approximate solutions, each valid under specific assumptions, are

often constructed. One such approach, valid for high frequency waves transmitted

from a time-harmonic source, is the eikonal or geometrical optics solution [3,4],

wh$ch has long been applied to problems involving propagation in media with both

temporal and spatial inhomogeneities [1,2,5,6].
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The approach proceeds by scaling coordinates (r r/l, t t/l; I>>0) so that

Equation (i.i) may be written as

V(,t) f(7, t)8t(’t) %g(,t)(,t) --O, (1.2)

Physically, this implies the regime of long distances and observation times and

slowly varying g(,t). Next, a solution of the form

(r,t) exp{ilS(r,t)}A(r,t,l) (1.3)

where

A(,t,%) l (7, t)(il) -k, A_k 0
k--O

(1.4)

is assumed. S(,t) may be regarded as a phase and A(,t,l) as an amplitude. Sub-

stituting Equation (L3) into Equation (2), followed by a re-grouping by powers

of (iX) obtains

(l.5)

Introducing the wavenumber and frequency,

S
p VS m --{ (1.6)

respectively, into the coefficient of the (i%)2 term leads to a dispersion (the

eikonal) equation

p’p- f(,t)m + g(,t) 0. (l.7)

With the wavevectors regarded as momenta, Equation (1.7) may be considered a

Hamilionian

H p’p- f(r,t)m + g(,t). (l.8)

Equation (1.7) is a first order non-linear partial differential equation for

the phase S(,t) and may be solved by introducing Hamilton’s equations

d--jr V H d- V H (I 9)dy p dy r

d__t =-)H. d H
dy De dy t (i. I0

The solution of Equations (i. 9) and (i.i0) are the space-time ray trajectories (map)

r r(y,G) P P(Y,) (i.ii)

t t(y,o) (y,o), (1.12

where y is the ray-path parameter and a parametrized initial condition [2]. (In

this parametrization, time and frequency (t and ) appear only implicitly in the
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space and wave vector (r and p, respectively) coordinates, i.e., through y and . In

some parametrizations [3,4], time is" chosen as the ray parameter.) Integrating along

the trajectories obtains the phase

r,t
s(,

_
-d- d + S(--o,o) (.3

ro o

Once the phase is known, the amplitudes can be determined from the coefficients

of the il and (il) terms in Equation (1.5). Usually, these terms are re-grouped,

using Equations (1.6), into a first-order (transporO equation

[V’p + f(r,t) + 2 F’V + 2f(,t)] (V2 f(r,t)-r)_I, k>. (1.14)

If the amplitude A is specified at the source, r at some initial time, t and
O O O

with some (from Equation (1.7)) propagation frequency then A at any space-O’ O

time field point may be determined from

A (7 t) A t
Jig(r’

o o(ro o f(r,t) Jt(r’)
(1.15)

where, following Lewis [5], Jt is the Jacobian of the ray transformation M at

each time t, i.e.,

)(r) (1 16)Jt(7’) (-)

where p (y,). With A (,t) known, the other s may be obtained recursively.
O

This algorithm suffices to determine the asymptotic solution at most field

points. At caustic points, points where the spatial and temporal inhomogeneities of

the media effect a focusing of trajectories, the ray transformation from parameter

coordinate space ( r) becomes singular, i.e., J t(,) 0. As an ex-space to

ample, we consider waves propagating from a point source at the origin r (0,0)

at t 0 in a medium with f(,t) i and g(,t) x + t kz. Then the dispersion

equation

p.’p o + x + t k 0 (1.17)

leads to the map

x yz + 20Y cos 8

y 2Oy sin 8

t =y + 2y

Px Y + 0 cos 8

Py 0 sin 8

a-+
In these equations 8 is an initial propagation angle, taken with respect to the posi-

tive x-axis, is the initial frequency and 0 (f2 + k2)1/2. For definiteness, at

t 0, let 3, k 4, 0 5. At (y,8) (5.77,30 ), i.e., the space-time

point (x,y,t) (16.68, 28.85, 67.91), the map r is singular and the technique

predicts unbounded amplitudes. (We note that at y 5.77, 8.77.)
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Such difficulties can often be circumvented using the Lagrange manifold forma-

lism of Maslov [7] and Arnold [8]. A modification of their technique has been ap-

plied to enable straightforward calculation of the field at caustic (turning) points

associated with the vector Helmholtz equation [9] and with dispersive waves [I0].
Here, drawing on Kratsov’s treatment [ii] of the Schrodlnger equation with a poten-

tial that varies both spatially and temporally, we adapt the Lagrange manifold tech-

nique to determine a class of asymptotic solutions at caustic points characteristic

of media with both spatial and temporal inhomogeneltles. Also, we determine the

transport equation at caustic points associated with the Schrodlnger equation con-

sidered by Kratsov, complementing his off-caustic treatment.

2. FORMALISM

To begin the algorithm, we assume that near caustic (turning) points of the

highest order

a(, t) 2g/2(,t) f(,=- X (,t)(g,t) 0 (2.l)

has an asymptotic solution of the form

(,t) fA(,,t, )exp{i(- t S())}d O(k-=) (2.2)

where the amplitude A(r,p,t,X) and its derivatives are assumed bounded and

r-p t S(p) may be regarded as a phase, i.e.,

(,,t,) r’p t S(p) (2.3)

(S(p) will be seen to be the generating function of a canonical transformation; al-

though neither time nor frequency appear explicitly in this transformation, both ap-

pear implicitly, analogous to the development above.) The technique proceeds by

carrying the differentiation in Equation (2.1) across the integral in Equation (2.2)

obtaining

fd exp{iX(r’p-0t-S())}{(iX)2(’-f(,t) + g(,t))A +

i% (2p-V A+2f (, 3A 2A_ )32A)t)) + (iX) (V f(,t- O(X-)
r r t

The coefficient of the (iX)2 term is Maslov’s Hamiltonian

H p-p f(r,t) + g(,t)

cf. Equation (1.8). Then by invoking the stationary phase condition [V 0], we
P

determine the Lagrange manifold

r V S(p)
P

and Maslov’s Hamiltonian becomes an eikonal equation on the Lagrange manifold

p-p f(V S,t) + g(V S,t) 0
P P

cf. Equation (1.7). To obtain the phase we once again use Hamilton’s equations

(Equations (1.9) and (i.i0)) to obtain the trajectories

r r(y,c) p p(y,)

t t(,7) (,7).

(2.4)

(2.5)

(2.6)
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At any space-time point where the map from B (y,) to coordinate space is singular,

i.e., Equation (1.16) is zero, the map p is first inverted to obtain

(p) c c(p)

Then substituting into the coordinate space map determines the Lagrange manifold
explicitly

r r(y(p),o(p)) VpS(p).
Finally, by integrating along the trajectories we obtain

P
S(p) f r. dp

Po

analogous to Equation (1.13), and thus the phase

(r,p,t,) r-p t S(p). (2.9)

In the parametrization specified by the Lagrange manifold, caustic points are those
space-time points at which

(2.7)

(2.8)

det 3z det
32S

0
3PiPj PiPj

(2.10)

Each triplet (p) that satisfies Equation (2.10) corresponds to a point on the caustic

in configuration space obtained by substituting into the Lagrange manifold. The

locus of these points specifies the caustic in configuration space. The level-

equivalence between this parametrization and the classical approach, i.e., that regu-

lar points are carried to regular points and caustic points are carried to caustic

points, is illustrated below.

We note that, from Equation (2.7), the Lagrange manifold may be regarded as a

coordinate transformation from p r (with generating function S (p )) analogous to the

coordinate transformation from r (specified by Hamilton’s equations). Just as

time t appears implicitly in the map r, cf. Equation (1.16), frequency , conju-

gate variable of t, is implicit in the Lagrange manifold. That is, although ap-

pears to be a free parameter, its value is specified at any (y,) by the Hamiltonian

map (as is the value of t), even at the caustic point.

To obtain the transport equation for the field amplitudes, we proceed as with

caustics associated with dispersive waves [I0]. Briefly, Taylor expanding the

Hamiltonian near the Lagrange manifold obtains

--f( t)2+g(,t) p-p-f(VpS t)2+g(VpS t)+(r---VpS)- (r---V S)o
p

where

(-VpS)+VpS,iVrH( ,p,t,)d
0

(2.11)

Substituting into Equation (2.4) leads to

3A i )32A)fd- exp{il} {i% [- (VpA) .D-A(V-D)+2P’VrA+2f (r, t)]+(VrA-f(,t
t

0(
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Then by introducing the flow

d__r 2p
dp

_
dy dy

d_t 2f(7, t)
dm H

dy dy t

and requiring that

i )2A)-(V A)’D-A(V’D)+2p’V A+2f(r t)+ (VZrA-f(,t 0
p r t

(2.12)

(2.13

in a neighborhood of the Lagrange manifold, we obtain the transport equation

dAk Ifv2 f t)-----zl_l 0d--- Vp’D + r- (’ (2.14)

for the evolution of the amplitudes , where

A(r,p,t,) Z A(7,,t)(i) -k

k--0

The asymptotic evaluation of the field integrals

/(r, p, t) exp{iX (,, t,) }d (2.15)

at the caustic point proceeds by transforming the phase to a canonical form, fol-

lowed by a modified stationary phase technique. The procedures for determining the

appropriate canonical form, constructing the coordinate transformations carrying the

phase to the canonical form and actually evaluating the integrals have been detailed

elsewhere [9,10,12]. For brevity, we do not repeat them here.

3. EXAMPLE

Returning to the example above, i.e., a point source of radiation located at the

origin (0,0), propagating in a medium with f(r,t) I and g(r,t) x+t-k2, the

equation we consider is

V_(,t) _(,t) 12 (x+t_k2)(7, t) 0 (3.1)
r t

We assume an asymptotic solution of the form

(,t) /A(,,t,l)exp{i1(’-<0t-S())}d= 0(I-=)

Proceeding through the algorithm, Maslov’s Hamiltonian

H p-p + x + t k

leads to the same map as above

x y2 + 20y cos 8

y 20y sin O

t y + 2y y +.

Then by invoking the stationary phase condition Maslov’s Hamiltonian becomes an

eikonal equation

(32)

(3.3)
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’="- 0) -I" X 4- t k2 0

on the Lagrange manifold

r V S(p)
P

(3.4)

which we determine explicitly by inverting the p map and substituting into the

map from r,

X k + 2 px py2
y 2py(O _py2)I/2 2PxPy

(3.5)

and leads to the phase

3/2Px3 2 0y2) (3.6)(r,p,t,m) r’p t (k + 2 + pyZ)px 3(02
When ffi3, kffi4, 0ffi5, at (y,@)ffi(5.77,30), i.e., the field point (x,y,t)ffi(16.68, 28.85,

67.91), the classical map becomes singular. Corresponding to this field point,

(px,Py,00)ffi(-l.44,2.5,8.77). For these values of (px,Py,), the Hessian determinant

of the phase, Equation (2.10), is zero, demonstrating the level-equivalence of the

classical map and the transformation specified by the Lagrange manifold. For com-

pleteness, let A(r,p,t,%)ffil at the emitter. Then the field at (x,y,t)ffi(16.68, 28.85,

67.91) is represented by

$(16.68,28.85,67.91) fA(16.68,28.85,, 67.91, %) exp{i% (i. 898-8z-8) }d. (3.7)

The asymptotic evaluation of the above integral proceeds from a modification of the

classical stationary phase technique [9,10,11]. The first two terms in the expansion

are

$(16.68,28.85,67.91) .746 e{i%(l.65)}F( )cos( +

7/ (3o8)
.148- exp{il(l.65)}F()sin()

4. VECTOR FINDS

The se algorit applies to vector (electric, , or magnetic, H) field propa-

gation. For exple, using the electric field, , we consider the equation

V (7, t) f(,t)z-(7,t) 2g(,t) 0 (4.1)
r t

where E (r,t) is a column vector. Assuming an asymptotic solution of the form

(,t) (r,p,t,)exp{i(’--et-S(F ))}d 0(-)

and proceeding through the algorithm, we find that requiring

(4.2)

-(V "D)E + DV -E + 2p(V’E) + 2f(r,t) + [Vr_ f(,t) 0
P P t

(403)

where is the operator from Equation (2.11), in a neighborhood of the Lagrange manl-

foid and leads to the transport equation
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.-- 82E]dE (Vp D)E + [V2 f(,t 0
dy t

(4.4)

if we introduce the flow from Equations (2.12).

The zeroth-order approximation to the time-averaged Poynting vector (power

density) S on the caustic
1/2

* elS R E x
e ]JoJ

where e and are the permittivity and permeability, respectively, of vacuum, also
o o

proceeds from the zeroth-order term of Equation (4.3), i.e.,

E
O

-(qp’D)Eo + DVp-Eo + 2Po(V’Eo + 2ef(r,t)--- 0 (4.5)

Following the same procedure used in the consideration of dispersive waves [i0],

scalar multiplication of Equation (4.5) by E* and similarly multiplying the complex
o

conjugate of Equation (4.5) by E and introducing the flow from Equations (2.12)
o

leads to

dE2

dy
2Eo(vp’) 0 (4.6)

and

E2(Y) E2(ffi0)exp{2f(Vp-)dY}O O
(4.7)

paralleling the result for dispersive waves. Another interesting correspondence

concerns the polarization

E
o

(E--. -,
o

1/2 (4.8)

o)

Differentiating Equation (4.8)

d i
dE E dE

o o o
dy E dy E dy

o o
(4.9)

then combining Equation (4.6) with the first term of Equation (4.5) and noting that

the remaining terms

E dE

-(Vp-Eo + 2p(V-Eo + 2f(r, )odyt
o

leads to
dE dE

o __o} 0-o +
dy

o
(4.10)

Dividing by E and comparing with Equation (4. 9) obtains the result that on the flow
o

in Equations (2.12)

i.e., the polarization is a constant, cf. [i0].
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5. THE SCHRODINGER EQUATION
Because the above approach applies so directly to determine asymptotic solutions

at caustic points for the Schrodlnger equation with a potential that varies both in

space and time,

(5.1)a_ V.2 + v(,)i t 2m

where is the reduced Planck’s constant (h/2) and m is the mass, we merely sketch

those aspects of the algorithm that most complement Kratsov’s off-caustic treatment

[ii]. Away from caustics, Kratsov assumes an asymptotic solution of the form

(x, t) exp (i (x, t)/)(x, t) (ih)
k=o

(5.2)

Then following the classical procedure outlined above leads to a Hamilton-Jacobi equa-

tion for the phase

-+-m+P’P V(,t) 0 (5.3)

and a transport equation for the amplitude A (x,t)
o

Ao i+m (2VAo-V + AoVZ) 0 (5.4)

whose solution Kratsov details. Analogously, near caustics, we assume a solution of

the form

(,t) fA(,,t,i- )exp{i(-F-t-S())/ }d 0((i )m) (5.5)

Proceeding through the algorithm leads to the Hamiltonian

H P’P + V(x,t)
2m

(5.6)

and transport equation

(5.7)

where k > 0, A_I 0 and

(-vp VpD f0VrH(E s) + S,p,t,to)d

Equation (5.7) may be re-grouped into a first order ordinary differential equation

using Equation (2.12) flow, after which the procedure detailed above applies dlrect]yo

(A more extensive treatment of this Schrodinger equation using the Lagrange manifold

approach has recently been presented by Bernstein [13 ].)
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