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ABSTRACT. It is usually assumed that a system having N-soliton solutions is completely

integrable. Here we have analyzed a set of equations occuring in case of capillary

gravity waves. Though the system under discussion has N-soliton solutions, it has yet

to be shown that the system is completely integrable. No Lax pair is known for the

system. Here we show that the system is not completely integrable in the sense of

Ablowitz et al.
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I. INTRODUCTION.

In recent years there have been tremendous studies for the understanding of the

complete integrability of non-linear partial differential equations. Usually equations

having N-soliton solutions do possess an Inverse Scattering Transform (IST). But for

some equation, it is still not possible to get hold of an IST but one can find

N-soliton solution by techniques like those of Hirota. One of the most interesting

equations is that of capillary gravity waves initially deduced by KAWAHARA et al

[i] and analysed for N-soliton solution by Ma [2]. As far as we know no IST has been

found for this equation. So here is an example whose solitary wave solutions have

been found but whose complete integrability is still unsettled due to the lack of IST.

In the current literature there has come out two different [3,4] approaches to test the

complete integrability of non-linear partial differential equation. Both of these are

really variant of the celebrated Painlve test for the ordinary differential equation.

In the approach of Weiss et al, [4] it is required to proceed exactly at every stage

of proving the compatibility conditions for the assumed series solution of the non-

linear field variable (x,t). The whole procedure becomes quite tricky and cumbersome

after certain stages of calculation. On the other hand in the methodology of Ablowitz

et al [5,6] it is required to proceed with the leading singularities for the purpose

of avoiding moving singularities in the solution manifold; it is only required to deter-

mine the position of "resonances" and to obtain the expansion coefficients in arbitrary

form. If it can be demonstrated that the expansion coefficients and the wave front of
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the solution manifold is arbitrary then the system is completely integrable. Here we

have carried out an analysis of the above mentioned equations (written below in equa-

tion (2.1)) from this point of view have concluded that the system is not completely

integrable.

2. BASIC EQUATIONS.

The non-linear equations under consideration read

iEt + Exx E

-iGt + Gxx G (2.1)

nt 6x + Bxxx -(EG) x
The second of this set is really the complex conjugate of the first one.

Following the procedure of Ablowitz, et al [6] we set

E #b lajJ(x,t)
G #q IbjJ(x,t) (2.2)

s lcjJ(x,t)
To determine to cominant behavior, we initially assume

E-. Pao, G qbo, n- #Sco
So matching the most singular terms in (2.1) for #(x,t) 0 we get s -2,

p + q s 2 -4. We proceed with p -2, q -2, s -2. We also get

co 6, aobo -36 (2.3)

Now to determine the next to leading order terms, we set,

E ao-2 + arSr-2
G bo-2 + brr-2 (2.4)

Co-2 + crr-2
in the reduced set of equations and obtain

ar(r 2)(r 3) arCo + aoCr

br(r 2)(r 3) brco + bocr (2.5)

Cr(r 2)(r 3)(r 4) -aobr(r 4) arbo(r 4)

This set of homogeneous equations can have a non-vanishing solution only if the deter-

minant is zero, that is,

(r-2) (r-3) c 0 -a
o o

0 [(r-2)(r-3) c -b 0 (2.6)
o o

b (r-4) a (r-4) (r-2)(r-B)(r-4)
o o

Using equations (2.3), we get the resonance positions at

r O, -i, 4, 5, 6

As has been elaborately discussed in the paper by Ablowitz et al., the resonance at

r -i corresponds to the arbitrariness of wavefront.

3. DETERMINATION OF COEFFICIENTS AT RESONANCE POSITIONS.

We now proceed to determine the coefficients at the resonance positions. With no

loss of generality we assume (x,t) x f(t) and all the co-efficients aj, bj and cj

are functions of t only. We then have

co 6, aobo -36 (3.1)
.6

Let ao h(t) which is an arbitrary function of t Hence bo h(t)"
For, j I we now consider the recurrence relation obtained by linearization with
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respect to the non-leading terms

((j-2)(-3) Co 0

(j-2)(j-3) c
o

\ b (j -4 a
o

-4

i(j 3) bj_1 ij
(j 4) cj_2 6j_3

For j 3 (which is not a resonance position) we have

I-i 0 -al la31 I-il 1-6 -b b3 ii
o -ao 0 c

3 -Cl
which yields

i 9 "_’. 361 361 f 54
c
3 [(hf + hf) i + + if]

1
a3 [iI he3]

i 36
b
3 [ibI - c

3

where c
3

is given by the expression (3.3).

-o bj
(j-2) (j-B) (j-4 cj

(3.2)

(3.3)

Though j 3 is not a resonance these coefficients a3, b3, c
3
will be needed in our

later calculation. Similar calculations were performed for ai, bi, c i" i 1,2.

Though these equations give the coefficients a3, b
3
and c

3 explicitly yet the

appearance of the arbitrary function h(t) in each of them, introduces some arbitrary-

ness in them.

At the resonance j 4, we get the following matrix equation

-4 -b b
4 ib3f + ib

2
(3.4)

0 0 c -614
This gives

-4a4 aoC4 ia3 i&
2

-4b
4 boC4 ib3 + i2

and no equation for c4, along with

61 0 (3.5)

which has the consequence of fixing the function f(t). So we try to keep nonleading

terms in equation (3.4) which is modified to:

-4 -b b4 ib3 i (3.6)

0 0
2

c4 -6l + 12CLC3

from which we get

-4a
4 aoC4 ia3 i

2

-boC4 ib3 + i_
2

(3.7)

where c
4

is arbitrary along with 61 12CLC3.
The differential equation connecting h and f, which originated from the non-trivial

solution of c
4

is

0 361 f /
361 f + f2( + h’)f - 36-- - (3.8)
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At j 5, we get the following relation:

0 -b

a 6
o o

This yields

-aoC5 2ia4- i3

b
5 2ib4[ + i6

3
c c3 &2

-boC5 2ib4 + ib
3

boa5 + aob5 + 6c5 c3 &2

But equation two values of c
5

we get an equation

c
5 (2ia4- i3) (2ib4 + i3)

o o

when substituted from equations (3.7) this leads to another equation for the

functions f(t) and h(t), and hence coupled with (3.8) determine f and h. So

the arbitrariness in all the coefficients and the wave front are lost.

For the resonance at 6, we get

I 0-al I a61 13ias i4
6 -b b

6 3ib5! + i4J2b 2a 24 / c
6 2c4f a

3 /
That is

6a
6 -aoC6 3ia5- i

4

6b
6 -boC6 3ib5 + i

4

2boa6 + 2aob6 + 24c6 2c4- &3
Combining these equations we get another differential equation between h and f

and this leads to an inconsistency when compaired with the relation (3.8). So that

at the resonance positions the compatibility condition is not satisfied.

CONCLUSION: In the above discussions, we have argued that the system described by

equation (2.1) is not completely integrable in the sense of Ablowitz et al. [6], and

the system is not known to have inverse scattering transform. So one can arise a

serious question: If a system has N-soliton solution, does it have a Lax pair

always? Our present notion of n.p.d.e’s having soliton solution may be very limited

and may have to be extended in the future.
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