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BSTRAT. This paper is concerned with a variational formulation of a non-

axisymmetric water wave problem. The full set of equations of motion for the problem

in cylindrical polar coordinates is derived. This is followed by a review of the

current knowledge on analytical theories and numerical treatments of nonlinear

diffraction of water waves by offshore cylindrical structures. A brief discussion is

made on water waves incident on a circular harbor with a narrow gap. Special emphasis

is given to the resonance phenomenon associated with this problem. A new theoretical

analysis is also presented to estimate the wave forces on large conical structures.

Second-order (nonlinear) effects are included in the calculation of the wave forces on

the conical structures. A list of important references is also given.
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I. I’DCTIOH. Diffraction of water waves by offshore structures or by natural

boundaries is of considerable interest in ocean engineering. Due to the tremendous

need and growth of ocean exploration and extraction of wave energy from oceans, it is

becoming increasingly important to study the wave forces on the offshore structures or

natural boundaries. Current methods of caiculating wave forces on the offshore

structures and/or harbors are very useful for building such structures that are used

for exploration of oil and gas from the ocean floor.

In the theory of diffraction, it is important to distinguish between small and

large structures (of typical dimension b) in comparison with the characteristic

wavelength (2/k) and the wave amplitude a. Physically, when a/b is small and kb
-I

is large (the characteristic dimension b of the body is large compared with k k

is the wavenumber) the body becomes efficient as a generator of dipole wave radiation,

and the wave force on it becomes more resistive in nature. This means that flow

separation becomes insignificant while diffraction is dominant. In other words, the
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body radiates a very large amount of scattered (or reflected) wave energy. On the

other hand, for small kb (the characteristic dimension b of the body is small

compared with k-l) and a/b is large (a/b > 0(I)), the body radiates a very small

amount of scattered wave energy. This corresponds to a case of a rigid lld on the

ocean inhibiting wave scattering, that is, diffraction is insignificant.

Historically, Havelock [I] gave the l+/-nearlzed diffraction theory for small

amplitude water waves in a deep ocean. Based upon this work, MacCamy and Fuchs [2]

extended the theory for a fluid of finite depth. These authors successfully used the

llnearlzed theory for calculation of wave loading on a vertical circular cylinder

extending from a horizontal ocean floor to above the free surface of water.

Subsequently, several authors including Mogrldge and Jamleson [3], Mei [4], Hogben et.

al. [5], Garrison [6-7] obtained analytical solutions of the llnearlzed diffraction

problems for simple geometrical configurations. However, the llnearized theory has

limited applications since it is only applicable to water waves of small steepness.

In reality, ocean waves are inherently nonlinear and often irregular in nature.

Hence, water waves of large amplitude are of special interest in estimating wave

forces on offshore structure or harbors.

,In recent years, there has been considerable interest in the study of the hydro-

dynamic forces that ocean waves often exert on offshore structures, natural boundaries

and harbors of various geometrical shapes. Historically, the wave loading estimation

for offshore structures was based upon the classical work of Morlson et. al. [8] or on

the linear diffraction theory of water waves due to Havelock [I] and MacCamy and Fuchs

[2]. Morlson’s formula was generally used to calculate wave forces on solid structures

in oceans. According to Debnath and Rahman [9], Morlson’s equation expresses the

total drag D as a sum of the inertia force, C
M

V U associated with the irrota-

U2tlonal flow component, and the viscous drag force, p C
D
A related to the

vortex-flow component of the fluid flows under the assumption that the incident wave

field is not significantly affected by the presence of the structures.

Mathematically, the Morison equation is

D P C
M

V U + D C
D
A U2 (l.l)

M
awhere D is the fluid density, C

M
(I + ) is the Morison (or inertial)

coefficient, M is the added mass, V is the volumetric displacement of the body,
a

U is the fluctuating fluid velocity along the horizontal direction, A is the

projected frontal area of the wake vortex, and C
D

is the drag coefficient. For

cases of the flow past a cylinder or a sphere, these coefficients can be determined

relatively simply from the potential flow theory. It is also assumed that inertia and

viscous drag forces acting on the solid structure in an unsteady flow are independent

in the sense that there is no interaction between them.

There are several characteristic features of the Morison equation. One deals

with the nature of the inertia force which is linear in velocity U. The other

includes the nonlinear factor U2 in the viscous dra force term. It is generally

believed that all nonlinear effects in experimental data are associated with drag
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forces. However, for real ocean waves with solid structures, there is a significant

nonlinear force associated with the irrotational component of the fluid flow because

of the large amplitude of ocean waves. These waves are of special interest in the

wave loading estimation. It is important to include all significant nonlinear effects

associated with the nonlinear free surface boundaryconditions in the irrotational flow

component of the wave loading on the structures. However, the effect of large

amplitude waves on offshore structures of small mean diameter may be insignificant,

but it is no longer true as the diameter increases in relation to the wavelength of

the indident wave field. Consequently the Morison equation is no longer applicable,

and diffraction theory must be reformulated. It is necessary to distinguish between

the structures of small and large diameters, the diameter being compared to the

characteristic wavelength and amplitude of the wave.

Several studies have shown that the Morison formula is fairly satisfactory.

However, several difficulties in using it in the design and construction of offshore

structures have been reported in the literature. These are concerned with the drag

force which has relativly large scale effects. The shortage of reliable full-scale

drag data in ocean waves is another problem. There is another significant question

whether a linear theory of the Irrotational flow response is appropriate at all to

water wave motions with a free surface. Despite these difficulties and short-comings,

the use of the Morison equation had extensively been documented in the past literature

throughplentiful data for determining the coefficients C
M

and CD.
Several recent studies indicate that the second-order theories for the

diffraction of nonliner water waves by offshore structures provide an accurate

estimate of the linearized analysis together with corrections approximating to the

effect of finite wave amplitude.

This paper is concerned with a variational formulation of a non-axisymmetric

water wave problem. The full set of equations of motion for the problem in

cylindrical polar coordinates is derived. This is followed by a review of the current

knowledge on analytical theories and numerical treatments of nonlinear diffraction of

water waves by offshore cylindrical structures. A brief discussion is made on water

waves incident on a circular harbor with a narrow gap. Special emphasis is given to

the resonance phenomenon associated with the problem. A new theoretical analysis is

also presented to estimate the wave forces on large conical structures. Second-order

(nonlinear) effects are included in the calculation of the wave forces on the conical

structures.

2. VARITIONAL PRINCIPLE FOR NON-AXISYMMETRIC NONLINEAR WATER WAVES.

We consider an Inviscid irrotational non-axlsymmetrlc fluid flow of constant

density p subjected to a gravitational field g acting in the negative z-axis which

is directed vertically downward. The fluid with a free surface z n (r, , t) is

confined in a region 0 < r < =, 0 < z < n, < < 7. There exists a velocity

potential (r,,z) such that the fluid velocity is given by V
), and the potential is lying in between z 0 and z n (r,, t).(r’ 0’ z

Then the variational principle is

61 6 f f L dx dt 0 (2.1)
D
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where D is an arbitrary region in the (, t) space, and the Lagrangian L is

n(r,O,t)
)L - [*t + (vo + gz] dz, (2.2)

0

and 0(r,0,z,t), (r,0,t) are allowed to vary subject to the restrictions 60 0,

0 on the boundary D of D.

According to the standard procedure of the calculus of variations, result (2.1)

yields

o = {[ +(v + gZ]z.
D

+ (0
t
+ Or 60 r +- 00 600 + O z 60z dz} r drd0 dt

0

Integrating the z-integral by parts along with r and 0-integrals, it turns

out that

)20 61 f f I0 t + (vO + gZ]z.
D

+ fD f {[-
0
O dz- (rlt O)z__rll

+ [-r
B

0
Or O dz 0 (Orr + O r O dz (nrOr60)z=r

+ [
0 r
1_ 006O dz 0 r

1--d o00 60 dz (1--2-r 00060)z’rl]
+ [(Oz6O)zfrl- (Oz6O)z=0 Ozz6O dz]} dx dt

In view of the fact that the first z-integral in each of the square brackets

vanishes on the boundary D, we obtain

)z 6n + [(-n -nrO -- n0O0 61 f f {[0
t + (vO + gZ]z=n t r 0

D r
+ z

f [Orr + I Or + . O0 + Ozz] 6# dz [0z6]z=O} dx dt
0 r

We first choose 6n 0, [6O] z=0
[60] z=n 0; since 6O is arbitrary, we derive

err + Or + O00 + Ozz 0, 0 < z < n (r,0,t), (2.3)
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Then, since 6q, [6#] z--O
deduce

and 6
z=rl

can be given arbitrary independent values, we

)2#t + (V# + gz 0, z n (r,O,t) (2.4)

qt + qr#r +
r- q0#O #z 0, z (r,O,t) (2.5)

b z O, z 0 (2.6)

Evidently, the Laplace equation (2.3), two free-surface conditions (2.4)-(2.5)

and the bottom boundary conditon (2.6) constitute the non-axisymmetric water wave

equations in cylindrical polar coordinates. This set of equations has also been used

by several authors including Debnath [I0], Mohanti [II] and Mondal [12], for the

initial value investigation of linearized axisymmetric water wave problems. The

elegance of the variational formulation is that within its framework, the treatment of

both linear and nonlinear problems become identical

3. DIFFRACrlOM OF NONLINEAR WATER WAVES IN AN OCEAN BY CYLINDERS.

Several authors including Charkrabarti [13], Lighthill [14], Debnath and Rahman

[9], Rahman and his collaborators [15-18], Hunt and Baddour [19], Hunt and Williams

[20], Sabuncu and Goren [21]. Demirbilek and Gaston [22] have made an investigation of

the theory of nonlinear diffraction of water waves in a liquid of finite and infinite

depth by a circular cylinder. These authors obtained some interesting theoretical and

numerical results. We first discuss the basic formulation of the problem and indicate

how the problem can be solved by a perturbation method.

We formulate a nonlinear diffraction problem in an irrotational incompressible

fluid of finite depth h. We consider a large rigid vertical cylinder of radius b

which is acted on by a train of two-dimensional, periodic progressive waves of

amplitude a propagating in the positive x direction as shown in Figure I. In the

absence of the wave, the water depth is h and in the presence of the wave the free

surface elevation is above the mean surface level.

STILL WATER
LEVEL

DIRECTION OF
WAVE
PROPAGATION

y

OCEAN BOT OM

FIG. 1. Schematic diagram of a cylindrical structure in waves
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In cylindrical polar coordinates (r,0,z) with the z-axls vertically upwards

from the origin at the mean free surface, the governing equation, free surface and

boundary conditions at the rigid bottom and the body surface are given by

1 + 0, b<r <’, -<0<, -h<z<n, (3.1)V2(r,B,z,t) =- rr + r + 2OB zz
r

(r2 2) 0 zfn r > b, (3.2)t + gn + + 0z + z
r

nt + #rnr + / #8n0 #z 0, zffin, r> b, (3.3)

$ 0 on z -h (3.4)z

$ 0 on r b, -h<z<rt, (3.5)r

where # is the velocity potential and g is the acceleration due to gravity.

Finally, the radiation condlton is

llm (kr)I/2 [(r +/- Ik) #R 0
kr+

(3.6)

where k 2/ is the wavenumber of the reflected (or scattered) wave, $I + SR
is the total potential, #I and #R represent the incident and reflected potentials

respectively.

We apply the Stokes expansion of the unknown functions # and in the form

# E en #n’ n E en n
n=l n=l

(3.Tab)

where is a small parameter of the order of the wave steepness

For any given n the s of only the first n terms of the series (3.Tab) may

be considered as the nth-order approximation to the solutions of the problem governed

by (3.1)-(3.6). The nth-order approximation is the solution subject to the neglect of
m

terms when m > n.

We next carry out a Taylor-serles expansion of the nonlinear boundary conditions

(3.1)-(3.2) about z 0, substitute (3.7ab) into (3.(3.2) and equate powers of .
Equating the first powers of E leads to the following equations with the llnearlzed

boundary conditions on z 0, valid for all r,8 and t:

V251 (r,O,z,t) 0 (3.8)

#It + gnl 0, for z 0, r > b (3.9)

rtlt- @Iz 0, for z 0, r _> b (3.10)

#Iz O, for z -h (3.11)

$1r 0, for r b (3.12)
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llm (kr [(r +/- ik) #IR 0 (3.13)
kr+

where #I #II + #IR representing the total potential as the sum of the first order

incident potential, #II and the flrst-order reflected potential.

Similarly, equating the second powers of E leads to the following system of

equations that express the second-order terms #2 and 2 as functions of #I and

i:
V2# 2

0 (3.14)

2 + 02 2) O, z- 0 r > b, (3.15)gn2 + #2t + nl#Itz + (#Ir #I + #Iz

+ n # 0, z 0 r > b (3.16)n2t + #Irnlr + #IOnl8 (#2z Izz
r

#2z 0 for z -h, (3.17)

#2r 0 for r b, (3.18)

with the radiation condition

llm (k2r)I/2 (r +/- Ik2)(#2 #21
k
2

)] o (3.19)

where k
2

is the wavenumber corresponding to second-order wave theory, and #21
the second-order term of the incident potential

The function q can be eliminated from (3.9)-(3.10) to derive

O, for z O, r > b#lit + g#Iz (3.20)

Similarly, n
2

can be eliminated from equations (3.15) and (3.16) to obtain

-n [# + g##2tt + gO2z z ltt Iz
a 2 + )2 2
-{ [#Ir ( #18 + #z ]’ for z-o, r>_b (3.21)

The pressure p(r,8,z,t) can be determined from the Bernoulli equation

P+ gz + # + 2 + )2 2] 0
p t [#r (#8 + #z (3.22)

Substituting # as a power series in into (3.22), we can express p as

p -pgz P#lt
2 2 +

2 2]} + 0 (e 3) (3.23)e p {#2t + [#Ir ( #18 +
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The total horlzonatal force is

2 q

F / [p] (-b cos) dzd0
x r--b

0 -h
(3.24)

where q is given by the perturbation expansion (3.7b).

Substituting (3.23) into (3.24) and expressing the z-integral as the s of

0 q

f + f, we obtain
-h 0

F bO f [gz + eit + e 2 {2t + (Iz I@x
-h

qlg2q2 2 2 12+I 2+ [gz + It + {2t + (Iz I )]rffibdz cos d (3.25)
0

It is noted that condition (3.12) is used to derive (3.25). It is clear from (3.25)

tha’t the integral of gz, the hydrostatic term, up to z=0 contain no cos8 term and

hence may be neglected. Also, the upper limit of the z-integral of the second-order

terms may be taken at z=0 in place of z gql + 2q2 which would only introduce
3

hlgher-order terms e etc. Thus F may be written as

2
F + (3 26)
x Fxl Fx2

where the flrst-order contribution is

27 0

Fxl bo [ (it)r_b_ dz] cos d0 (3.27)
0 -h

and the second-order contribution is

2
E Fx2 bP [I {gz + E,it}r__b

0 0
dz

0
2 2 cose de (3 28)+ 2

-h
{*2t +7 (*Iz + *I 1} dZ]rffib

4. FIRST-ORDER WAVE POTENTIAL AND FREE SURFACE ELEVATION FUNCTION.

MacCamy and Fuchs [2] solved the system (3.8)-(3.13) and obtained the first-order

solution which can be expressed in the complex form

mcosh k(z+h) it
i
me- Z A (kr) cosme, (4.1)

k
2 m m

sinh kh m=0
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where

Z i
m+l

A (kr) costa0,
e

B1 k mm
m=0

6 [I, when m 0
m 2, when m * 0

J ’(kb) (I)A (kr) J (kr) m
H (kr),m m

H (I)(kb) m
m

and the frequency m and wavenumber k satisfy the dispersion relation

(4.2)

(I)
H
m

(4.3)

(4.4)

2
m gk tanh kh, (4.5)

is the ruth-order Hankel function of the first kind defined by

(i)
H (kr) J (kr) + i Y (kr) (4.6)
m m m

in which J (kr) and Y (kr) are the Bessel functions of the first and the second kind
m m

respectively, J (x) denotes the first derivative.
m

It is noted that result (4.2) represents the complex form of a plane wave of
-I

amplitude k propagating in the x-direction and represented by the terms whose

radial dependence is given by Jm(kr), together with a reflected component described

by the terms whose radial dependence is given by Hm(1)(kr). The first order solution

e includes the complex form of an incident plane wave of amplitude e.

5. SECOND-ORDER WAVE POTENTIAL AND FREE-SURFACE ELEVATION FUNCTION.

With known values for I and n given in (4.2) and (4.3), equation (3.2)

assumes the following form for z 0 and r > b:

-2 imtg
e Z B (kr) cos mD, (5.1)2tt + g2z 2k m

m=0

where

E B (kr) cos mO E g 5 5 i
m+n-I A [cos (re+n)0 + cos(m-n)e]

m m n mnm=0 m=O n=O

+ 2 coth kh E Z i
m+n-I

k2r2 m=0 n=0
m n

with

A A (mn) [cos (m-n) 0 cos (m+n) O]
m n

A (3 tanh kh coth kh) A A + 2 coth kh A A
mn m n m n

(5.2)

(5.3)
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and a prime in (5.3) denotes differentiation with respect to kr.

The form of (5.1) indicates that the general solution of (3.14) with (3.171-

(3.18) can be written as

2 we2k2 m=OE [0 Din(k2) Am (rk2) cosh k2(z+h) dk2] cos m0, (5.4)

where k
2

denotes the wavenumber of a second-order wave taking only continuous values

in (0, (R)).

We next substitute (5.4) into (5.1) to obtain a relation between D and B in
m m

the form- [k
2

sinh k2h- 4k tanh kh cosh k2h] Am(rk2) Dm(k2) dk
2 Bm(kr) (5.5)

where B (r) can be obtained by equating similar terms of the Fourier Series (5.2).
m

Equation (3.15) gives the second-order free surface elevation r
2

in the form

2 2 2
,32 21 ,1, ,1, ,;1,

r12 - [--- + nl + 7 {t’r + tr--) + t-z }1, z O, r >_ b, (5.6/

where ql’ I and 2 are determined earlier.

In order to compute the total horizontal force on the cylinder as given by (3.26)

combined with (3.27)-(3.28), it is necessary to solve (5.5) for the case of m-l.

A tedious, but straight forward, algebraic manipulation gives the value of the

complex quantity Bl(r) as

m+l 2 coth kh m(m+l) A
m Am+ (5.7)B l(r) 8 m=Or (-I) [Am,m+ +

k2r2

Since the first-order problem described by (3.8)-(3.131 is linear, its real

physical solution is given by (I + I where @I is the complex conjugate of

I" However, since (3.211 is nonlinear in I’ it is not possible to express the

solution of (3.20 as (2 + 2 )" We next discuss physical meaningful second-order

solution for 2"
We first write a real solution (I + I from (4.1) in the form

-i t
m_- cosh k(z+h) E i

m
e A (kr) cos m

-I
2k

2
sinh kh m

m m
(5.8)

where 6 is defined by (4.3) and is given by
m m

m
-0, m<0-

(5.9ab)

and the function A (kr) is defined by (4.3) for positive values of m, and by the
m

relation
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A (kr) A (kr) (5.L0)-m m

for negative values of m. The stnmation in (5.8) includes both m 0 + and m 0
-it i *in order to incorporate e A (kr) and e A (kr).

O O

isThe corresponding real solution for [ given by

-i t

im+ mr (r,0,t) =- E 6m Ym e Am(kr) cos m0 (5.11)

where

l, m> 0+]Ym
-1, m < 0

5. 2ab)

Equation (3.21) then takes the following form which is similar to (5.[):

322 2 gm
-2it

32
+ g [e Y. B (kr) cos m0 + c.c]

z 4k m=O m
(5.13)

where c.c. stands for the complex conjugate, and

-2 it 2 imt *e Z B (kr) cos m0 + e l B (kr) cos m0
m m

m=0 m=0

m+n+1 -i( + )t
l nI l Z 6 6 e A [cos (re+n)0 + cos(m-n)0]

4 m n mnm=.-o

AA
m n

[cos(m+n)O cos(m-n)O] (5.14)

where A is given by
mn

(m + tanh kh] A AA [ (tanh kh- coth kh) +
mn m m n m n

+ I__ (m + coth kh A A (5.15)"
m m n m n

It is noted that for m, n 0 this expression is identical with (5.3) and hence the

definition of A is consistent with the previous definition. Furthermore,, mn
A A It can be verified that the double series in (5.14) contains terms
-m,-n m,m
that are independent of time t and hence correspond to standing waves. However, it

can readily be checked that these terms add up to zero and hence there are no standing

waves in the solution.

Finally, the solution for 2 satisfying the required boundary conditions has

the form
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-2i t
0 e E [f Dm(k2) Am(rk2) cosh k

2
(z+h) dk2] cos m@

4k
2

m=O 0

+2 i0 t
e * *+ Z [/ D (k2) A (rk2) cosh k

2
(z+h) dk2] cos m0 (5.16)

4k
2

m=0 0
m m

This result is similar to that of (5.4), and Dm(k2) is the solution of (5.5) with

B (kr) given in (5.14) which is analogous to (5.2).
m

6. RESULTAST HORIZONTAL FORCES 08 THE LfLIN’DER.

For a diffracted wave whose first-order potential is of the form (5.8), the

hydrodynamic pressure evaluated at the cylinder r b depends on 4[, 2’ etc. The

flrst-order horizontal force on the cylinder is obtained from (3.27) in the form

4g tanh kh
cos (mt- a (6 l)Fxl

k
3 {HI( I>’ (kb{

where

J1’ (kb)
tan-| [Y (kb)

(6.2)

This result was obtained earlier by other researchers including MacCamy and Fuchs [2],

Lighthill [14] and Rahman [17]. In the limit kh =, (6.[) corresponds to the

result for deep water waves which are in agreement with Lighthill [14], and Hunt and

Baddour [19].

We next summarize below the second-order contribution to the total horizontal

force given by (].28). We first put values of I and [ from (5.8) and (5.11)

into (].28) and then evaluate the z-integral to obtain the coefficient of cos0 in

(].28), apart from the 2/t term, in the form

E E R R [{(3 2kkh)m n m n sinh
cos [-2mt + am + an+ (re+n)]

16k
2

m=0 n=0

-(I+ 2kh
sinh 2kh

cos (m n + (m-n))} cos (m+n)0 + cos (m-n)0]

mn 2kh

b2k2
(1 +

sinh 2kh
cos (-2t + m + n + (m+n))

+ cos (m n + (m-n))}{cos (re+n)0 cos (r-n)0}]

where the Wronskian property of Bessel functions yields

A (kb) 2i [kb HKl’(kb)" ]-I R e
m

m m m
(6.4)
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with
_

-I/2 _|
J’ (kb)

R [Jm2" (kb) + Y’2.kb.j(! tan [] (6.5ab)
m m m r t)

In view of the subsequent 0-integration describe([ in (3.28), we need only the

coefficient of cos0 in the double series (6.3) and hence obtain the following

2
2g e s (s+l).) (1 + 2kh

k
2 (-) l {(I

2k 2 sin kh E
s=O b

+ (-l)s [(3- 2kh + s(s+.l) (I + 2kh
sinh 2kh b2k2 si 2kh ][Cs

where

cos 2t0t-S sin2t] (6.6)
S

’Y’ Y’) (Y’J’ + Y’ J’l (Y’Y’ J’sJ’ )], (6.7abc)[Es, Cs’ Ss] --[(Js s+l Js+l s s s+l s+l s s s+[ s+l
S

with M IJ ’2 + Y’2)Ij’2 y,2
s s s s+1

+ s+l) (6.8)

and the argument of the Bessel functions involved in (6.6)-(6.7abc) is kb.

$2
The part of proportional to cos 0, given by (5.16), contributes to the

z-integral in (3.28) the term

g tanh kh -2imt
D (k2) sinh k h

e f 2

kb 0 k22 H(1)’(k2b)
dk

2
+ c.c. (6.9)

where Dl(k2) is related to Bl(kb) through (5.5).

Combining (6.3) and (6.9), integrating with respect to 0, the result can be

expressed as the sum of steady and oscillatory componeuts:

F
S

F
O (6.10)Fx2 x2

+
x2

where

and

(k
2

2kh
F
S E {[I- s (s+l)][ +
x2

k
2 s=O b2k2 sinh 2k Es}’ (6.11)

F
O [og tanh kh -2it Dl(k2) sinh k2h
x2 k

e f 2 (ii)0 k
2

H (kb
2

dk
2

+ c.c.]

2bO_g (k) Z (-I)
s [(3 2kh ")(I + 2kh

k
2 s--O sinh 2kh sinh 2kh

s (s+l)

cos 2rot- S sin 2mtJ, (6.12)
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F
S

and F
0

These expressions for
x2 x2

correspond to results (6.1), (6.2) and

(6.3) obtained by Hunt and Williams [20] for the diffraction of nonlinear progressive

waves in shallow water. The second-order contributions to the total horizontal force

F on the vertical cylinder each consist of two components, a steady component
x
together with an oscillatory term having twice the frequency of the first-order

term. Hunt and Williams calculated the maximum value of F for various values of

wave steepness, water depths and cylinder diameters. The maxim[ value of F is

found to be significantly higher than that predicted by the linear diffraction

theory. The second-order effects are found to be greatest in shallow water for

slender cylinders, but in deep water they are greatest for cylinders of larger

diameter. These predictions are supported by some existing experimental results

which, for finite wave steepness, shows an increase over the linear solution.

In order to establish the fact that (6.12) represents the oscillatory component

of the second-order solution, it is necessary to evaluate the complex form of D1(k2)
from the integral equation (5.5) for m=l and in conjunction with (5.7). Following

the analyses of Hunt and Baddour [19] and Hunt and Williams [20], we obtain from (5.5)

and (5.7) that

kk2 Al(k2r) Bl(r)dr
Dl(k2) k

2
sinh k2h 4k tanh kh cosh k2h’

(6.13)

which san be written as

Dl(k2) sinh k2h k Al(k2r) B l(r)dr
b
4k tanh kh (I)’k22 HI(1)ik2 b) k2(k2- a 2 H (k2b)

(6.14)

The nondimensional form of (6.14) is given by

Dl(bk2) sinh k2h f A1(bk2) B l(kr) d(kr)
kb

G(bk2) (1)ibk2) (bk2) [be2
4 bk tanh kh.(be2)2 Hl n 2h

H (bk2)
(6.15)

It is noted that the function G2(bk2) is analytic near and at k
2

0. However, it

is singular when k
2

is a root of the equation

k
2

tanh k2h 4 k tanh kh (6.16)

Clearly, k
2

4k for deep water case and k
2

2k for shallow water problem. The

root k
2

of (6.16) lles between 2k and 4k and hence may be regarded as correspond-

ing to an ocean of intermediate depth. An argument similar to that of Grlffith [23]

shows that the Integrand in the integral G(k2) dk
2

is singular at k
2

4k for
0

a particular deep water wave, and at k
2

2k for a particular shallow water wave.

The non-dimensional forms of the first-order and the second-order forces can be

expressed as
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tanh kh cos (rot IFI
3

][ (I)
(kb)pgD

3 2(kb) IHI
Fx2 tanh kh e

-2imt

8 (kb) / G(k2) de + c.c.]
pgD

3
0

2

E (-1) s 2kh
4 [(3 -) +

47 (kb) s=0 sinh 2kh

s(s+l)

2k2" (I + 2kh

sinh 2kh

cos 2mt- S sin 2tJs

s(s+t) 2khZ [(I- )(I +) E
47(kb) 4

s=O b2k2 sinh 2kh
s

(6.17)

(6.18)

where D is the diameter of the cylinder.

Thus the total horizontal force in nondimensional form is expressed as

where

F= F +F
2

F1 CM (i_8J(HIL tanh kh cos(t a[)D/L

/8}(H/LJ 2

F2 [{ D/LJ
2 it

tanh kh e- G(k2) dk2 + c.c.

(HIL)
2

2kh s(s+l)
E (-I)

s {(3- ’) /

b2k2
(I /

4 (D/L)(kb) 3 s=O s+/-nh 2kh

2kh

sin 2kh

x (C cos 2rot S sin 2mr)
s s

(H/L) 2 s(s+l) ](I + 2kh__)El [I
b2k2 s4(D/e)(kb) 3

s=0 sin 2kh

(6.19)

(6.20)

(6.21)

where H 2a is the total waveheight and L is the wavelength of the basic wave,

and C
M

is defined to be the Morison coefficient due to linearlzed theory and is

given by

CM 4/[(kb)21H(ll)’(kb)l (6.22)

In ocean engineering problems, wave forces on the structures depend essentially

on three dimensionless parameters H/L, D/L and h/L. However, Hunt and Williams

have pointed out that many experimental studies of wave forces have been published
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with such a variation of parameters that precise experimental verification is not
possible. Recent findings of Rahman and Heaps have been compared with experimental
data collected by Mogridge and Jamieson [3]. An agreement between theory and
experiment is quite satisfactory as shown in Figures 2 4. Another comparison s
made in Fig. 5 with the experimental data due to Raman and Venkatanarasaiah [24]. The
second-order results of Rahman and Heaps [17] seem to compare well with these
experimental data. In Fig. 6, both the first-order and the second-order solutions are
compared with force measurements of Chakrabarti [13] which are generally found to be
closer to the second-order theory.

Experiment *** Second-Order Theory

0.20

0.15

0.10

0.05

0

D/L=O.057

h/L--O.090

Linear Theory

/ H/L I,

0 0.01 0.02

FIG. 2. Comparison of linear and second-order wave forces with

experimental data of Mogridge and Jamieson l3].

0.40

0.30

x

u. 0.20

0.10

/
D/L=O.086 / f
h/L--0.136

,, .,<
/

0 0.02 0.04 0.06

FIG. 3. Comparison of linear and second-order wave forces with
experimental data of Mogrldge and Jarnieson [3].



NONLINEAR DIFFRACTION OF WATER WAVES BY OFFSHORE STRUCTURES 641

Experiment **, Second-Order Theory Linear Theory

0.40

DIL=O-080
h/L--O. 153

0.30

x= 0.20
E

0.10

0 .I
0 0.02 0.04 0.06

FIG.4 Comparison of linear and econd-order wave force with
experimental data of Mogridge and Jamleson [3].
4.5

Experiment* **
4.0

/
Linear Theory

D/L--O.0493 Second-Order
" h/L=0.123 Theory

3.0

- 2.0

1.0

0

0.01 0.02 0.03 0.04

FIG. 5.Comparion of linear and zecond-order wave forcee
with experimental data of Ram=zn and Venk=tan=r=z=d=h [24].

A flnal comment on the singular nature of G(k2) Is In order. For a cylindrical
structure, the wavenumber k

2 of the second-order wave theory must not coincide with
the root of the equation (6.16) unless the corresponding integral in (6.15) van-
ishes. Otherwise, the structure will experience a resonant response at the wavenumber
k2. This kind of resonance is predicted by the second-order diffraction theory but
not by the linear wave theory. In real situations involving ocean waves, such non-
linear resonant phenomenon is frequently observed. Hence the correct values of the
wave forces on the offshore structures cannot be predicted by the linear wave theory.

According to Rahman and Heaps’ analysis, the cylindrical structure will ex-
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perience a resonance when k
2

4k for the case of deep water waves, and when k
2

2k

for the case of shallow water waves. Obviously, there is a need for modification of

the existing theories in order to obtain a meaningful solution at the resonant wave-

number. A partial answer to the resonant behavior related to the shallow water case

has been given by Rahman [25].

Recently, Sabuncu and Goren [21]have studied the problem of nonlinear diffrac-

tion of a progressive wave in finite deep water, incident on a fixed circular dock.

This study shows that the second-order contribution to the horizontal force is also

highly significant. Their numerical results for the vertical and horizontal wave

forces on the dock are in excellent agreement with those of others. Demirbilek and

Gaston [22] have also reported some improvements on the existing results concerning

the nonlinear wave loading on a vertical circular cylinder. In spite of various ana-

lytical and numerical treatments of the problems, further study is desirable in order

to resolve certain discrepancies of the predicted results.

Finally, we close this section by citing a somewhat related problem of waves

incident on harbors. A recent study of Burrows [26] on linear waves incident on a

circular harbor with a narrow gap demonstrates that the wave amplitude inside the har-

boT is significantly affected by the frequency of the incident waves. At certain

4.0 .-- Linear Theory

3.5 "" Second-Order
Theory

3.0

2.0 2

E 1.5

1.0

0.5

0
0 0.5 1.0 1.5 2.0 2.5

FIG.6. Comparison of linear and second-orderwave
force with experimental date of Chakrabarti 3.

frequencies the harbor acts as a resonator and the wave amplitude becomes very

large. If the harbor is closed and the damping neglected, the free-wave motion is the

superposltlon of normal modes of standing waves with a discrete spectrum of char-

acteristic frequencies. With a circular harbor wlth a narrow opening, a resonance

occurs whenever the frequency of the Incident waves approaches to a characteristic

frequency of the closed harbor. A resonance of a different klnd is given by the so

called Helmholtz mode when the oscillatory motion inside the harbor is much slower
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than each of the normal modes. Burrows determined the steady-state response of the

harbor with a narrow gap of angular width 2 to an incident wave of a single

frequency under the assumption of small width compared to the wavelength. The re-

sponse is a function of frequency and has a large value (a resonance) at the fre-

quency of the Helmholtz mode and also near the characteristic frequencies of the

closed harbor. The actual nature of the response near these frequencies depends on

2 . It is shown that the peak value at each resonance increases as decreases, that

is the harbor paradox for a single incident wave frequency. However, the increase is

slow. The peak width also depends on , and decreases as decreases, but the

decrease for the Helmholtz mode is less than for the higher modes.

Some authors including Lee [27] gave a numerical treatment of the resonance

problem inside the harbor. In approximate calculations it is assumed that the total

flow through the gap will effectively determine the flow near the resonant

frequency. This is correct near the Helmholtz resonance, but incorrect near the

higher resonances where the through-flow is small. Most of the work on the subject of

Helmholtz resonance was based on the linear theory. The question remains whether or

not the circular harbor is a Helmholtz resonator for nonlinear water waves.

7. NONLI%RWAVE DIFFRACTION CAUSED BY LARGE CONICAL STECTRES.

We consider a rigid conical structure in waves as depicted in Figure 7. With

reference to this figure, the equation of the cone may be given by r (b-z) tan u

where b is the distance between the vertex of the cone and undisturbed water sur-

face, is the semi-vertical angle of the cone and r is the radial distance of the

cylindrical coordinates (r,0,z). The fluid occupies the space (b-z) tan < r < =,
< 0 < , h < z < (r,0,t), where h is the height of the undisturbed free

surface from the ocean-bed and (r,0,t) is the vertical elevation of the free surface.

The governing partial differential equation for the velocity potential

(r,0,z,t) is

V2 82q
+ + - +- 0

r2 r r 02 z2
(7.1)

within the region (b-z) tan u < r < , < 0 < n,

The free surface conditions are

-h< z<.

)) )) 2 )) 2 2

-f+ gn + [(-r + (’’) + 0 (7.2)

for z and (b-z) tan a < r;

an a an 8) an a
r

for z n and (b-z) tan a < r.

The boundary condition at the ocean-bed is-- 0 at z -hz

(7.3)

(7.4)
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DIRECTION OF
WAVE PROPAGATION

O
SWL

FIG.7. Schematic Diagram of a Conical Structure in wave.

The boundary condition on the body surface is

(7.5)
cos a +z sin a 0

n r

at r (b-z) tan a, -h z q where n is the distance normal to the body sur-

face. There is another boundary condition which is needed for the unique solution of

this boundary value problem. This condition is known as the Sommefeld radiation

condition which is discussed by Stoker [28]. This is briefly deduced as follows:

The velocity potential may be expressed as

$(r,O,z,t) Re[(r,,z) eimt] (7.6)

where Re stands for the real part and is the frequency. We assume
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(r,0,z) +
I S

-imt -ira tsuch that I Re[l e ]’ S-- Re[s e

645

Therefore, # I + #S (7.7)

where I and S are the incident wave and scattered wave potentials respectively.
Then the radiation condition is written as

lira #V (_Sv, i k #S 0 (7.8)

This condition may
1/_
be generally satisfied when )

S
takes an asymptotic form

proportional to (r) -v2exp(-ikr). Here k is a wave number.

The linear incident wave potential I may be obtained from the solution of the

Laplace’ s equation,

2I 2IV2I 0 + +
x
2 y2

subject to the linear boundary conditions (Sarpkaya and Isaacson [29])

(7.9)

where

l(x,y,z,t) Re[l(x,y,z e-imt]

cosh k(z+h)I C exp(i(kx cos y + ky sin Y)), (7 I0)cosh kh

2m )’ Y is the direction of propogation of the incident wave in the

x-y plane.

The famous dispersion relation for water waves is

2
m gk tanh kh

(7.11)

Using this relation, we find

exp (i(kx cos y + ky sin 7))

--exp (i(kr cos(0-y))

E B J (kr) cos m(8-y)
mffiO

m m

where 80 I, and -- exp (i /2), 50 I, m0; 6 2, m >m m m m

The incident wave expression (7.10) can be written as
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cosh k(z+h)
$I C l 13 J (kr) cos m(0-y) (7 12)cosh kh m m

m=0

We are now in a position to construct the scattered potential S which is given by

S C -cShcoshk(Z+h)kh r. 13m Bm Hm(1) (kr) cos m(0-y) (7.13)
m=0

where B is a constant.
m

It can be easily verified that (7.13) satisfies the radiation condition (7.8).

The surface boundary condition (7.5) gives that

n 3n at r (b-z) tan a (7.14)

I I I
3n r cos = + z sin a

kC
cosh kh

7. 13 [J’m(kr) cosh k(z+h) cos a
m

+ J (kr) sinh k(z+h) sin a] cos m(0-y)
m (7.15)

where y is the angle made by unit normal with the radial distance r. Similarly, we

get

3
S

3
S

3
S

cos a + in a3n Dr s

coshkCkh r. 13m Bm [am(1)’(kr) cosh k(z+h) cos a
m--O

+ H
(I) (kr) sinh k(z+h) sin ] cos m(0-y) (7.16)

m

Comparing the coefficients of 13 cos re(O-y), using the conditions (7.14), we obtain

J (kr) + J (kr) tanh k(z+h) tan
m m

(I) (kr) + H (1)(kr) tanh k(z+h) tan a] (7.17)B [H
mm m

at r (b-z) tan a, h < z < n.

It is to be noted from (7.17) that the constant B turns out to be a function of z
m

instead of a constant. In order to overcome this difficulty, we estimate the constant

B by taking the depth average value, which is obtained by integrating both sides of
m
(7.17) with respect to z from z -h to z O, such that

0- [Jm(k(b-z)tan a) + Jm(k(b-z)tan a)tanh k(z+h)tan a] dz

B
-h (7 18)

m

fv [Hm(1) (k(b-z)tan =) + H(1)(k(b-z)tanm =)tanh k(z+h)tan =] dz
-h

where m 0,I,2,
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Once the scattered potential S is determined, we can formulate the wave forces on the

structures. Therefore, the total complex potential may be written as

cosh k(z+h.# y. [Jm(kr) + B H%(x,y,z) C
cosh kh m m m

0
(1)(kr)] cos m(0-y) (7.19)

The formulation of the wave forces is given in the next section.

8. WAVE FORCES FORIILATION.

Lighthill [14] demonstrated that second order wave forces on arbitrary shaped

structures may be determined from the knowledge of linear velocity potential alone.

The exact calculation of second order forces on right circular cylinders has been

obtained by Debnath and Rahman [9] using the Lighthill’s technique. The total

potential has been obtained in the following form:

F F + F
d
+ F + F (8.1)

w q

where F is the linear force, F
d

is the second order dynamic force, Fw is the

second order waterline force, and F is the quadratic force. These force components
q

are all functions of the linear diffraction potential . They may be obtained using

the following formulas:

The linear force is

F f (-P --) n
x

S

which can be subsequently written as

dS (8.2)

-it fF Re [-Ipe
S

n
x

dS] (8.3)

where # I + #S"
The second order dynamic force is

F
d

p (V) nx dS (8.4)

-2it *
Making use of the identity s s

2
Re [ z z

2
e + z z 2]

-It -I t
where, s Re [z e ], s

2
Re [z

2
e and the asterick denotes the complex

conjugate, we can write

-21t [ 2
F
d 0 Re [e f (V) n

x
as] p IV#1 nx dS. (8.5)

S

The waterline force is

a 2
F
w f (Pl2g)(--)

z--0
dy (8.6)

which can be subsequently written as
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F m2 -2 it 2w--- (p /g) Re [ e () dy] + (p2/g) 19 12
z=O z=0

dy.

Making reference to Rahman [15] the quadratic force may be written as

-2imt aF Re [(-2pro2/go e (z) {(Vq
z=O z=0

(_2 dx dy]2- -- + g
az2

(8.7)

(8.8)

where o 42/g 4k tanh kh and is the complex time independent potential gener-

ated by the structure surging at a frequency of 2m.

The vertical particle velocity (z) on z 0 may be written in a series form

for finite water depth

2K (mir) sin
2

(re.h)
(-z) z {-

z=0 j=l Kl(mja) (m.h + sin m.h cos m.h)
3

2H2) (vr) sinh 2vh
+

2)’
cos 0 (8.9)

H (va)(vh + sinh h cosh vh)

where (4m2/g) mj tan m.h for j 2 ., and o v tanh uh 4k tanh kh.J
Expression (8.9) is valid only for right circular cylindrical structures. The wave
drift forces on the structures may be obtained from the equations (8.5) and (8.7) col-
lecting the steady state components of the forces F

d
and F Thus the drift forces

on the structure is
w

Fdrift 4
p n dS + (p2/g) f i@ 12x

z=0
dy. (8. O)

9. CALCULATION OF ifAV’g FORCES.
The total wave forces may be obtained from the formulas (8.3), (8.5), (8.7) and(8.8). The linear resultant force can be obtained from (8.3) and is given by

-imtF Re [-Ipm e @ n
x dS]

S

2 0
Re [-Ip( e-iuat f f

O=0 z=-h
{(b-z) tan a dz}(-cos O)dO]

Re [2__pC tan -it
cosh kh cos y e

0
f (b-z)eosh k(z+h)A (k(b-z)tan e)dz ]

where A (kr) J (kr) + B H(1)(kr) m 2 3m m m m
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Therefore, the horizontal and vertical forces can be obtained respectively as

FX F cos a, FZ F sin a

The resultant dynamic force can be calculated from (8.5) and is given by

P e-2i t 2 P f 2F
d Re f (V#) n dS]

S [V[ n dS
S

2 00 2 imt
4

Re [e- f f (V)2((b-z)tan )dz (-cos 0)d0]
0=0 z=-h

2 0

P-P-4 f f IV#12((b-z)tan =)dz (-cos 0) dO
0 -h

(9.2ab)

(9.3)

After extensive algebraic calculations, the dynamic force can be written as

cos _) e-2 it
0

Fd (P
4 Re E / (b-z)tan 4C2 csh2k(z+h(- (+I)

=0 -h cosh2kh (b_z) 2 tan2

+ k
2 2 -(2+I)---

sec a sinh
2

k(z+h))(e 2
AA%+I) dz}]

cos
0

+ (P
4 ) E / 2(b-z)tan ICI 2

=0-h cosh
2

kh

(cosh
2 k(z+h) (+I) + k

2 2 * -sec sinh2k(z+h) (e2 AA+I+ e AA+l)dZ* (9.4)
(b-z) 2 tan2

Therefore, the horizontal and vertical dynamic forces can be obtained respectively as

Fdx F
d

cos a, Fdz F
d

sin a

The resultant waterline force can be obtained from (8.7) and is given by

2 2

_
-2it

A gOm zfO I 2dyF Re [e (,)2dy] +
W

2 -(2+1) --(--) Re [e-2it(-4C2
cos )(b tan a) E A%A+ e

=0

12 2 2 *+ (4---)(-2, ,C cos T)(b tan ) E (e AAA+ + e A A+I)
=0

Therefore, the horizontal and vertical forces can be obtained respectively as

(9.5ab)

(9.6)

FwX Fw cos a, FwZ Fw sin (9.Tab)
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Thus the drift force as defined by (8.10) can be obtained as follows:

2 0

Fdrif t
0=0 z=-h

2 2
po

Oj- 0 i,I) 12+g
z=0

((b-z)tan a)dz (-cos 0)d0

b tan (-cos 0)d0

(0 cos Y
0 2

4
)l / 21CI (b-z)tan

=0 -h cosh
2
kh

( (%+i)
csh2k(z+h)

k
2+

(b_z)2t 2
an

2 inh2ksec s s (z+h))

* 2 *(e2 AA+ + e AA+1)dz

(0o
2 --2

4-)(2IcI 2
cos y)(b tan a) E (e AA+I* + e

=0

2 *A A+I) (9.8)

Th6refore, the horizontal and vertical drift forces may be respectively obtained as

(F
d

(F
t

cos a sin arift)X drif Fdrlft Z Fdrift (9.9ab)

The resultant quadratic force can be obtained from the formula (8.8) and is given by

F Re[-
2pro2

q go

After extensive algebraic calculations, the quadratic force can be written as

F Re[-
2pro2 -2it

q
e f (rdr)

r=b tan

2
(@_) 2 2I 8z z=0

[4C k cos(0-Y) z {((+I)
0=0 =0 k2r2. + tanh

2 kh)

-(2+I) --AA+ + A A+I} e + 2C2k2(tanh2kh-l) cos(0-y)x

-(2+I)
x 7. A A+ e ]d0]
=0

(9.11)

After simplifying, (9.11) reduces to

P -2 im t
2 8 ?

F Re[- e (rdr) f (zz) cos(0-Y)
q

r=b tan O=0 z=0

.(z+I)
-(2+1) -x 2C2k2 z [. k2r2 + 3 tanh

2 kh-l} AA+ + 2 AA+I] e dO}
=0
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Therefore, the horizontal and vertical quadratic forces may be respectively obtained

as

FqX Fq cos , FqZ Fq sin (9.12ab)

lO. CONCLUDING

Second order nonlinear effects are included in the derivation of the wave forces

on the large conical structures. The second order theory is consistent because it

satisfies all the necessary boundary conditions including the radiation condition.

Theoretical expressions for the wave forces have been obtained; the linear forces

could be improved by adding to it the second order contributions namely, dynamic,

waterline and quadratic forces. It would be of considerable value if the theoretical

results presented in this paper could be checked experimentally under laboratory condi-

tions. Plans are made in future research to check the accuracy of the predicted

results with the experimental measurements.
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