PSEUDO-SASAKIAN MANIFOLDS ENDOWED

 WITH A CONTACT CONFORMAL CONNECTION
VLADISLAV V. GOLDBERG and RADU ROSCA

> Department of Mathematics N.J. Institute of Technology Newark, N.J. 07102 U.S.A.
(Received January 30, 1985)

Abstract

ABSTRACI. Pseudo-Sasakian manifolds $\tilde{N}\left(U, F_{,}, \stackrel{\sim}{V}, \tilde{g}\right)$ endowed with a contact conformal connection are defined. It is proved that such manifolds are space forms $\tilde{M}(K), K<0$, and some remarkable propertics of the lie algebra of infinitesimal transformations of the principal vector field \tilde{U} on \tilde{M} are discussed. properties of the leaves of a co-isotropic foliation on \tilde{M} and properties of the tangent bundle manifold $T M$ having \tilde{M} as a basis are studied.

KEY WURDS AND PHRASES. Witt fiame, CI'R sulmmifold, relative contact infinitesimal trunsformation, U-contact concircular pairin:1, differential form of Godbillon-Vey, form of E. Cartan, Finslerian form, mechumical sustem, dynamical system, spray, CR product.
1980 SUBEECI' CLASSIFICATION CODES. 5.3C25, 5.iC40, 53B25

1. INTRODUCTIION.

In the last years many papers have been concerned with Sasakian manifold $\tilde{M}(\phi, \xi, \tilde{\eta}, \tilde{g})$ and related structures. Recently Rosca [1] has defined pseudo-Sasakian manifolds $\tilde{M}(U, \xi, \tilde{\eta}, \underset{g}{\sim})$ and Goldberg and Rosca [2] have studied CICR submanifolds (i.e. co-isotropic $C R$ submanifolds) of $\hat{\mu}(U, \zeta, \stackrel{\imath}{\eta}, \underset{g}{g})$.

In the present paper we study ($2 \mathrm{~m}+1$)-dimensional pseudo-Sasakian manifolds of index $m+1, m>4$, structured by a contist conformal (abr. c.c.) connection. It is proved that such manifolds are hyperbolic space forms $\tilde{M}(K), K<0$, and with the c.c. connection (which in fact is a natural seneralization of the connection defined by Rosca [3]) is associated (compare with Rosca [3]) a so denominated principal vector field \tilde{U}.

The paper is organized as follows. In Section 3 we develop some basic results induced by the $c . c$. connection and some remarkable properties of the Lie algebra of infinitesimal transformations defined by $\dot{\mathrm{U}}$. It is shown that
(i) \tilde{U} (resp. UÜ) is divergence juec (resp. defines an infinitesimal homothety) on \hat{M} and all connection forms on M are integral relations of invariance for UÜ (see Lichnerowicz [4]):
(ii) \tilde{U} and $U \tilde{U}$ define an U-contact convircular pairing (in the sense of Rosca [5]) and any contact extension of \tilde{U} is a relative contact
 canonical 1-form n_{n};
(iii) \tilde{U} and $U \tilde{U}$ define both inflnitesimal automorphisms of ($2 q+1$)-forms
 (1,1)-operator taken with respect to the 2 -form $\tilde{\Omega}=\mathrm{d}_{n} / 2$). Accordingly, if Σ_{β} is the exterior differential system defined by $\left\{\tilde{\beta}_{q}\right\}, \tilde{U}$ and $U \tilde{U}$ may be considered as isovectors of Σ_{β}.
Section 4 is concerned with a co-isotropic foliation F_{c} on \tilde{M}. The leaves M_{c} of F_{c} are CICR submanifolds of \tilde{N} and if $\operatorname{codim} M_{c}=\ell$, then the form of Godbillon-Vey on M_{c} (see Lichnerowicz[6]) is a $(2 \ell+1)$-form w_{G} which is a relative integral invariant of $U=\left.\tilde{U}\right|_{M_{c}}$.

Further the necessary and sufficient conditions for M_{c} to be foliate is that the isotropic component U^{\perp} of U vanishes. In this case M_{c} is a $C R$ product (see Yano and Kon [7] and Rosca [8]).

Finally using some notions introduced by Yano and Ishihara [9] and also by Klein [10], we consider in Section 5 certaill properties of the tangent bundle manifold TM having the manifold $\hat{N}(u, \xi, \stackrel{\sim}{n}, \stackrel{\sim}{c})$ as a basis.
. It is proved that the complete lijts $\tilde{i}^{(}$and \tilde{u}^{C} of $\tilde{\Omega}$ and \tilde{u} respectively are homogeneous of degree one and that the firm of E. Cartan $\tilde{\pi}$ on TM is a Finslerian form. Furthermore, we may associate with $\tilde{\pi}$ a regular mechanical system whose dynamical system is a spray on M.
2. PRELIMINARIES.

Let (\tilde{M}, \tilde{g}) be a $(2 m+1)$-dimensional connected pseudo-Riemannian manifold of signature $(\mathrm{m}+1, \mathrm{~m})$ and suppose that $\mathrm{m}>4$.

At each point $\tilde{P} \in \tilde{M}$ one has the standard decomposition (see Rosca [1]):

$$
\begin{equation*}
\underset{\mathbf{p}}{T}(\tilde{M})=\operatorname{Hz}_{\mathbf{p}} \omega \underset{\tilde{p}}{ } \tag{2.1}
\end{equation*}
$$

where $T \underset{p}{\sim}, H_{p}$, and T_{\sim}^{\sim} are the tangent space, a (2m)-dimensional neutral vector space, and a time-like line orthogonal to $\|_{p}$, respectively.

Let $\mathrm{S}_{\underset{\mathrm{p}}{\sim}}^{\sim}, \underset{\mathbf{p}}{*} \subset H_{\mathrm{p}}^{\sim}$ be two self-orthogoncrl (abbreviation s.o.) m-distributions which define an involutive automorphism U of square +1 (U is the para complex operator defined by Libermann [11]). Let $\tilde{\xi} \in T_{\tilde{p}}$ and $\tilde{\eta} \in \Lambda^{l}(\tilde{M})$ be the pairing which defines a contact structure σ_{c} on \hat{N}, and $\hat{\eta}$ be the covariant differentiation operator defined by the metric tensor \tilde{g}. Then if for any vector fields \tilde{Z}, \tilde{Z}^{\prime} on \tilde{M} the structure tensors $(U, \xi, \tilde{\eta}, \tilde{g})$ satisfy
the manifold $\hat{M}(U, \xi, \eta, \tilde{g})$ has been called a pseudo-Sasakian manifold (see Rosca [1]).
In order to study real co-isotropic and isotropic foliations on \mathcal{M} (that is improper immersions in \tilde{M}), we consider an adapted field of Witt fromes: $\hat{W}=$ $\left\{h_{\Lambda}: A, B, C=0,1, \ldots, 2 m\right\}$. The vectors h_{a} and $h_{a^{*}}\left(a=1, \ldots, m ; a^{*}=a+m\right)$ are null and $h_{0}=\xi$ is the anisotropic vector field of the W-basis $\left\{h_{A}\right\}$. We set

$$
\begin{equation*}
\tilde{S}_{\underset{p}{z}}=\left\{h_{a}\right\}, \quad \tilde{S}_{\stackrel{p}{*}}^{*}=\left\{h_{a} *\right\} \tag{2.3}
\end{equation*}
$$

and as is known, one has

$$
\begin{cases}\tilde{g}\left(h_{\mathbf{a}}, h_{\mathbf{b}} * ;=\delta\right. \tag{2.4}\\ \tilde{g}\left(\xi, h_{\mathbf{a}} *\right)= & \underset{g}{ }\left(\xi, h_{\mathbf{a}}\right)=0 \\ \underset{\sim}{\tilde{g}}=0, & \underset{\xi}{ }(\xi, \xi)=1\end{cases}
$$

and

$$
\begin{equation*}
U h_{a}=h_{a}, \quad U h_{a} *=-h_{a} *, \quad U \xi=0 \tag{2.5}
\end{equation*}
$$

If $\tilde{W}^{*}=\left\{\tilde{\omega}^{\Lambda}\right\}$ is the cobasis associated with \tilde{W}, we set $\tilde{\omega}^{0}=\tilde{\eta}$ and the line element $\underset{\mathrm{dp}}{\tilde{p}} \underset{\mathrm{dp}}{\tilde{p}}$ is a canonical vector 1 -form and is independent on any connection on ヘ̂) is given by

$$
\begin{equation*}
\dot{d p}=\tilde{\omega}^{w} \Delta \Delta h_{\Lambda} . \tag{2.6}
\end{equation*}
$$

It follows from (2.4) that the metric tensor $\underset{\mathrm{g}}{\mathrm{g}}$ is:

$$
\begin{equation*}
\tilde{\mathbf{g}}=2 \sum_{\mathbf{a}}{\underset{\omega}{\omega}}^{\sim} \otimes{\underset{\omega}{\omega}}^{a^{\star}}+\underset{n}{\sim} \otimes \tilde{n} . \tag{2.7}
\end{equation*}
$$

If $\left.\tilde{\theta}_{B}^{\sim}=\tilde{\gamma}_{B C}^{\Lambda} \underset{\omega}{\sim C} \tilde{\gamma}_{B C}^{\sim} \in C^{\infty}(\tilde{N})\right)$ and \bigoplus_{B}^{Λ} are the connection forms and the curvature 2 -forms on the bundle $\hat{W}(\hat{N})$ respectively, then the structure equations (E. Cartan) may be written in the indexless form as follows:

$$
\begin{align*}
& \tilde{V}_{1}=\hat{\theta} \geqslant \mathrm{H}, \tag{2.8}\\
& \mathrm{~d} \tilde{\omega}=-\tilde{\theta} \tilde{\Lambda}_{\mu}^{\prime} \omega \text {, } \tag{2.9}\\
& d \tilde{\theta}=-\tilde{\theta} \hat{A} \tilde{\theta}+\Theta^{\tilde{\theta}} . \tag{2.10}
\end{align*}
$$

Referring to (2.4) and (2.8), one has

$$
\left\{\begin{array}{l}
\tilde{\theta}_{b}^{a}+\tilde{\theta}_{a}^{b^{*}}=0, \tilde{\theta}_{b}^{a^{*}}=0, \quad \tilde{v}_{b}^{a}=0 \tag{2.11}\\
\tilde{\theta}_{a}^{o}+\tilde{\theta}_{0}^{a^{*}}=0, \tilde{\theta}_{0}^{:}+\gamma_{a}^{0}=0
\end{array}\right.
$$

and

$$
\begin{equation*}
\tilde{\theta}_{\mathbf{a}}^{0}={\underset{\omega}{w}}^{*}, \quad \tilde{0}_{\mathbf{a}^{0}}^{*}=-\omega_{0}^{\sim} \tag{2.12}
\end{equation*}
$$

By virtue of (2.8), (2.9), and (2.11) one lime

$$
\begin{equation*}
d \tilde{\eta}=2 \sum_{a}^{\sim} \tilde{\omega}^{\sim} \Lambda \omega_{0}^{n, a^{*}} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\nabla} \xi=\mathrm{Ud}_{\mathrm{p}} \Longrightarrow\left\langle\tilde{\nabla}_{\tilde{Z}} \xi, \tilde{Z^{\prime}}\right\rangle+\left\langle\tilde{V}_{\tilde{Z}}, \xi, \tilde{Z}\right\rangle=0 \tag{2.14}
\end{equation*}
$$

where \tilde{Z} and \tilde{Z}^{\prime}, are any vector fields on \hat{M}.
In the following we agree to call the 2 -form

$$
\begin{equation*}
\tilde{\Omega}=\sum_{a}{\underset{\omega}{a}}^{a} \wedge{\underset{\omega}{a}}^{\star} \tag{2.15}
\end{equation*}
$$

the juindamential $2-$ form on \tilde{M}
Since by (2.11) one has

$$
\begin{equation*}
\tilde{\theta}_{a}^{a}+\tilde{\theta}_{a}^{*} *=0, \quad \tilde{\omega}_{a}^{*} \frac{\omega_{a}}{\omega_{a}} a_{*}^{*}=0 \tag{2.16}
\end{equation*}
$$

we shall ca11

$$
\begin{equation*}
\tilde{\theta}_{R}=\sum \tilde{\theta}_{a}^{a} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\omega}_{\mathrm{R}}=\sum_{\mathrm{a}} \Theta_{a}^{a} \tag{2.18}
\end{equation*}
$$

the Ricci 1-form and the Ricci 2-form respectively (see Rosca [12]). As is known, the form Θ_{R} defines the first class of Chem of \tilde{M}.

Using (2.10) and referring to (2.12) and (2.15), one quickly obtains

$$
\begin{equation*}
d \tilde{\theta}_{R}=\tilde{\omega}_{R}-\tilde{\Omega} . \tag{2.19}
\end{equation*}
$$

The above equation proves that the 2-forms $\tilde{\Theta}_{\mathrm{R}}$ and $\tilde{\Omega}$ are homologous. Hence the two cocycles \mathcal{G}_{R} and $\tilde{\mathscr{R}}$ belong to the 2-cohomology class $H^{2}(\tilde{M})$ of \tilde{M}.

Let now F_{c} be a coisotropic foliation on \hat{M} and denote by M_{c} a maximal integral manifold (leave) of Γ_{c}. It has been shown by Goldberg and Rosca [2] that M_{c} is a contact $C R$ submanifold of N, thist is there exists a differentiable distribution $D: p \rightarrow D_{p} \subset T_{p}\left(M_{c}\right), p \in M_{c}$ (one denotes the induced elements on M_{c} by suppressing ~) satisfying:
(i) D is invariant i.e. $U D_{p} \subseteq D_{p}$, and
(ii) the complementary orthogonal distribution $D^{\perp}: p \rightarrow D_{p}^{\perp} \subset T_{p}\left(M_{c}\right)$ is antiinluriant i.c. $U D_{p}^{\perp} \subseteq \mathrm{T}_{\mathrm{p}}^{\perp}\left(\mathrm{M}_{\mathrm{c}}\right)$.
The distribution D (resp. D^{\perp}) is called the horizontal (resp. vertical) distribution. Such type of $C R$ submanifolds is called CICR submanifolds (see Goldberg and Rosca [2]).
3. pSEUDU-SASAKIAN MANIFOLDS ENDOWED WITII Λ CUNTACT CONFORMAL CONNECTION.

As a natural generalization of the definition given by Rosca [3], we assume that the structure equations (2.9) are written in the form
where $\tilde{s}=\mathrm{d}_{n} / 2, \tilde{t}_{a}, \tilde{t}_{a^{*}} \in C^{\infty}(\mathrm{N})$, and $u \in \Lambda^{1}(\tilde{N})$ is a closed 1-form. Note that \tilde{t}_{a} and \tilde{t}_{a}. are the components of a vector field

$$
\begin{equation*}
\tilde{U}=\sum_{a}\left(t_{i} h_{a}+t_{a} * h_{a}\right) \tag{3.2}
\end{equation*}
$$

of constant length.
We shall say (see Rosca [3]) that in this case the pseudo-Sasakian manifold \tilde{M} is endowed with a contact conformal (abr. c.c.) connection. We also agree to call $\tilde{\mathrm{U}}$ the principal vector field associated with this connection.

Since $\tilde{g}(\tilde{U}, \tilde{U})=$ const, we may write by (3.2) that

$$
\begin{equation*}
\sum_{a} \tilde{t}_{a^{*}} \tilde{t}_{a^{*}}=c, c=\text { const. } \tag{3.3}
\end{equation*}
$$

Taking exterior differentials of (3.1), we get

$$
\left\{\begin{array}{l}
d \tilde{t}_{a}=(\tilde{u}+\tilde{1}) \tilde{t}_{a}-2 \tilde{\omega}^{2} a^{\prime} \tag{3.4}\\
d \tilde{t}_{a^{*}}=\left(\tilde{u}-\tilde{n}^{2}\right) \tilde{t}_{a^{*}}-2 \tilde{\omega}^{*}
\end{array}\right.
$$

Denote by Σ the exterior differential system defined by equations (3.1) and (3.4) and by I the ideal corresponding to Σ. The exterior differentiation of (3.4) where $\tilde{\omega}^{\mathfrak{a}}$ and $\tilde{\omega}^{\tilde{a}^{*}}$ satisfy (3.1), $\tilde{\Omega}=\tilde{d}_{\tilde{n}} / 2, d_{\tilde{u}}=0$, leads to the identity. Because of this, $d I \subset I$, that is Σ is a closed system. It follows from this that the system Σ defining the pseudo-Sasakian manifold \tilde{M} endowed with a c.c. connection is completcly inte!rable and its solution depends on 2 m constants (the number of equations in (3.4)).

From (3.4) and (3.3) we also obtain

$$
\begin{equation*}
\dot{c u}=\sum_{a}\left(t_{a}{ }^{\chi \omega} \omega^{\mathfrak{a}}-t_{a} \omega^{a^{*}}\right) \tag{3.5}
\end{equation*}
$$

and $\tilde{u}(\tilde{\mathrm{U}})=0$ which shows that $\tilde{u}^{\mathbf{a}}$ is an integral relation of invariance for $\tilde{\mathbf{v}}$ (see Lichnerowicz [4]). In the following we agree to call \tilde{u} the principal Pfaffian associated with the c.c. connection.

Consider now the 1 -form

$$
\begin{equation*}
\tilde{v}=\sum_{a}\left(\tilde{t}_{a} \tilde{\omega}^{\sim}+\tilde{t}_{a} * \tilde{\omega}^{2}\right) . \tag{3.6}
\end{equation*}
$$

Taking the exterior differential of \tilde{v}, one finds with the help of (3.1) and (3.4) that $c=2$. In this case we deduce

$$
\begin{equation*}
d \tilde{v}=2 \tilde{u} \Lambda \tilde{v}, \tag{3.7}
\end{equation*}
$$

and this equation asserts that \tilde{v} is extrrior recurrent (see Datta [13] with $2 \tilde{u}$ as the recurrence 1 -form.

By (2.4) and (2.5) one easily finds

$$
\begin{equation*}
\tilde{u}(u \tilde{u})=\tilde{v}(\tilde{u})=\tilde{g}(\tilde{u}, \hat{u})=\tilde{k}(1 \hat{u}, u \hat{u})=2\left[\tilde{t}_{\mathbf{a}} \tilde{t}_{a} *\right. \text {. } \tag{3.8}
\end{equation*}
$$

Hence if $b: T(\tilde{M}) \rightarrow T^{*}(\tilde{M})$ is the musical iromorphism with respect to g (see Poor' [14]), we may write: $\tilde{u}=\boldsymbol{b}(U \tilde{v}), \tilde{v}=\boldsymbol{b}$ ($\hat{i})$. Since \tilde{u} is closed, it follows from (3.7) that the manifold \tilde{M} under concideration is foliated by 2-codimensional submanifolds orthogonal to \tilde{U} and UÛ.

Next if $\mu: \tilde{Z} \rightarrow i \tilde{Z} \tilde{\Omega}$, $T(\tilde{M}) \rightarrow T{ }^{*}(\tilde{M})$ is the bundle isomorphism defined by $\tilde{\Omega}=\mathrm{d} \tilde{n} / 2$, one readily finds

$$
\begin{equation*}
u(\tilde{U})=2_{i 1}^{2} . \tag{3.9}
\end{equation*}
$$

In the following we agree to call the presympletic form $\tilde{\Omega}(\mathrm{dim} \operatorname{ker}(\tilde{\Omega}) \neq 0)$ the fundomental 2-form on \hat{M}.

Let now $\tilde{U}_{f}=\tilde{U}+\tilde{f}_{\xi} \quad\left(\tilde{1} \in C^{\infty}(\tilde{M})\right)$ be a contact extension of \tilde{U} and $\mathscr{L} \tilde{U}_{f}$ the Lie derivative with respect to \tilde{U}_{f}. Then by (3.9) one quickly finds $d \chi_{\tilde{U}_{f}} \tilde{n}^{n}=0$. Therefore according to the definition given by Rosca [3], we may say that $\tilde{\mathrm{U}}_{\mathrm{f}}$ is a relative contact infinitesimal transformation of $\tilde{\eta}$.

Denote now by $\tilde{\sigma}_{S}$ (resp. $\tilde{\sigma}_{S}{ }^{*}$) the simple unit form which corresponds to \tilde{S}_{p} (resp. $\underset{\mathrm{s}}{\underset{\sim}{*}}$). One has

$$
\left\{\begin{array}{c}
\tilde{\sigma}_{S}=\tilde{\omega}^{2} \Lambda \ldots \Lambda \tilde{\omega}^{\gamma_{1 m}}, \tag{3.10}\\
\tilde{\sigma}_{S}^{*}=\tilde{\omega}^{1^{*}} \Lambda \ldots \Lambda \tilde{\omega}^{\sim_{m}^{*}},
\end{array}\right.
$$

and by (3.1) the exterior differentials of (3.10) are

$$
\left\{\begin{align*}
\operatorname{d\sigma }_{S} & =[m(\tilde{u}+\tilde{n})-\tilde{v}] \wedge \tilde{\sigma}_{S} \tag{3.11}\\
\operatorname{do}_{S} * & =\left[m\left(\tilde{u}^{\tilde{u}}-\tilde{n}\right)+\tilde{v}^{\tilde{v}}\right] \wedge \tilde{\sigma}_{S}^{*} .
\end{align*}\right.
$$

Since $\tilde{\sigma}_{S}$ and $\tilde{\sigma}_{S}{ }^{\star}$ are both exterior recurrent, it follows from a well-known property that both co-isotropic distributions $\tilde{S}+\{\xi\}$ and $\tilde{S}^{*}+\{\xi\}$ are involutive (orth. $(\tilde{S}+\{\xi\})=\tilde{S}$; orth. $\left.\left(\mathcal{S}^{\star}+\{\xi\}\right)=S^{*}\right)$. It is worth to emphasize that this property is true for any pseudo-Sasakian manifold.

Now with the help of (3.1), one finds that the connection forms are given by

By (3.12) and (3.6) one finds

$$
\begin{equation*}
\tilde{\theta}_{R}=(n+2) \tilde{v} / 2 \tag{3.13}
\end{equation*}
$$

and (3.7) shows that $\tilde{\theta}_{R}$ is exterior recurrent.
Coming back to relations (3.12), one readily finds

$$
\begin{equation*}
\hat{y}_{a}^{a}(v \hat{u})=0, \quad \tilde{v}_{b}^{a}(v \hat{i})=0 . \tag{3.14}
\end{equation*}
$$

Therefore we may say that all connection forms of the pseudo-Sasakian manifold \tilde{M} under consideration are integral relations of invariance for the vector field ữ.

Denote now by $\tilde{\tau}$ the volume element of \tilde{M}. One may take a local orientation such that

$$
\begin{equation*}
\tilde{\tau}^{\tilde{\tau}}=\tilde{\sigma}_{S} \Lambda \tilde{\sigma}_{S} * \Lambda \tilde{n} \tag{3.15}
\end{equation*}
$$

 usually, $X \hat{M}$ means the vector space of sections over $T \mathcal{M}$, then, as is known, for any vector field $\tilde{Z} \varepsilon \notin \tilde{M}$ one has

$$
\begin{equation*}
* \operatorname{div} \tilde{Z}=(\operatorname{div} \tilde{Z})^{\tilde{\tau}}=\operatorname{di} \tilde{Z}^{\tilde{\tau}}=\mathscr{\mathscr { L }} \tilde{Z}^{\tilde{\tau}} \tag{3.16}
\end{equation*}
$$

Making use of (3.4), (3.11), (3.16), and the fact that

$$
\begin{equation*}
\tilde{u}=\sum_{a}\left(\tilde{t}_{a} h_{a}+\tilde{t}_{a^{*}} h_{a^{*}}\right) \tag{3.17}
\end{equation*}
$$

one finds after some calculations:

$$
\begin{equation*}
\operatorname{div} \hat{u}=0, \quad \operatorname{div}(u \hat{u})=2 \sum_{\mathbf{a}} \tilde{\mathrm{t}}_{\mathbf{a}} \tilde{\mathrm{t}}_{\mathbf{a}}{ }^{*}=4 . \tag{3.18}
\end{equation*}
$$

Hence \tilde{U} is divergence free and $U \tilde{U}$ is an infinitesimal homothety on \tilde{M}.
Now if $\tilde{Z}=\tilde{z}^{\prime} h_{A}, \tilde{Z}^{\prime}=\left(\tilde{Z}^{\prime}\right)^{A_{h}} \Lambda^{\varepsilon} \tilde{M}$ are any vector fields, then, as is known (see Poor [14]), one has

$$
\tilde{\gamma}_{\tilde{z}}, \tilde{z}=\left(\mathscr{\sigma}_{\tilde{z}}, \tilde{z}^{A}\right) h_{A}+\tilde{z}^{A}\left(\tilde{\gamma_{\tilde{z}}}, h_{A}\right) .
$$

Therefore, by (2.3), (3.4), and (3.12) we get

$$
\left\{\begin{align*}
\tilde{\nabla} \tilde{z} \tilde{u}=(\tilde{n}(\tilde{z})+\tilde{v}(\tilde{z}))) \tilde{u}_{\tilde{u}}-2 \tilde{u}(\tilde{z}) \xi \tag{3.19}\\
\tilde{\nabla} \tilde{z} u \tilde{u}=(\tilde{n}(\tilde{z})+\hat{v}(\tilde{z})) \tilde{u}+\hat{v}(\tilde{z}) \xi
\end{align*}\right.
$$

We also note that since $b(U \tilde{U})=\tilde{u}$ is a closed form, we may say (see Poor [14]) that $\tilde{\forall} U \hat{U}$ is self-adjoint.

According to the definition given by Rosca [5] and Rosca and Verstraelen [15], the formulae (3.19) show that the vector field \tilde{U} defines a U-contact concircular pairing.

Denote by D_{U} the 3 -distribution defined by $\{\tilde{u}, u \tilde{u}, \xi\}$. By (2.2), (3.5), and (3.6) one readily finds from (3.19) that

$$
\begin{equation*}
[\tilde{u}, \xi]=0, \quad[u \tilde{u}, \xi]=0 \tag{3.20}
\end{equation*}
$$

Hence both vector flelds $\tilde{\mathrm{U}}$ and $\mathrm{U} \tilde{\mathrm{U}}$ commute with ξ and by (3.19) and (3.20) we see that D_{U} defines a 3 -foliation on \hat{M}.

It is worth now to make the following considerations.
Let $\tilde{Z} \varepsilon \notin \tilde{M}$ be any vector field on $\tilde{\mathrm{N}}$. Then one has the general Bochner formula (see Poor [14]) on \hat{M} :

$$
\begin{equation*}
2<\operatorname{tr} \tilde{\nabla}^{2} \tilde{z}, \tilde{z}>+2\|\tilde{v} \tilde{z}\|^{2}+\hat{n}\|\tilde{z}\|^{2}=0 \tag{3.21}
\end{equation*}
$$

where $\tilde{\Delta}=\mathrm{do} \mathrm{\delta}+\delta_{o d}$ is the Laplace-Roltrimi operater (or Laplacian) on $\Lambda T^{*} \tilde{M}$, and the trace (abr. tr) is calculated with respect to the metric tensor $\tilde{\boldsymbol{g}}$ of \tilde{M}.

Applying formula (3.21) to the principil vector field \tilde{U} and taking into account (2.7), one has

$$
\begin{equation*}
\operatorname{tr} \tilde{\nabla}^{2} \tilde{u}=\sum_{\mathbf{a}} \tilde{\nabla}_{h_{a}}\left(\tilde{\nabla}_{h_{a^{*}}} \tilde{u}\right)+\sum_{\mathbf{a}} \tilde{V}_{h_{a^{*}}}\left(\tilde{\nabla}_{h_{a}} \tilde{v}\right)+\tilde{\nabla}_{\xi}\left(\tilde{\nabla}_{\xi} \tilde{\tilde{u}}\right) \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\tilde{v}_{v i}\right\|^{2}=2 \sum_{a}\left\langle\tilde{v}_{h_{a}} \tilde{v}_{,} \tilde{v}_{h^{\star}} \tilde{u}^{2}\right\rangle+\left\langle\tilde{v}_{\xi} \tilde{u}_{,}, \tilde{v}_{\xi} \tilde{u}\right\rangle . \tag{3.23}
\end{equation*}
$$

Now by (2.14), (3.4), (3.5), (3.16), and (3.19) one finds

$$
\left\{\begin{array}{l}
\tilde{V}_{h_{a \star}} \tilde{\nabla}_{h_{a}} \hat{U}=\tilde{t}_{a} \tilde{t}_{a \star} \tilde{u}+\left(2-\tilde{t}_{a} \tilde{t}_{a \star} / 2\right) u \hat{u}+\left(3 \tilde{t}_{a}^{\sim} \tilde{t}_{a \star} / 2-2\right) \xi+\tilde{t}_{a \star}{ }_{a \star} \tag{3.24}\\
\tilde{\nabla}_{h_{a}} \tilde{\nabla}_{h_{a \star}} \hat{u}=\tilde{t}_{a} \tilde{t}_{a \star} \tilde{U}-\left(2-\tilde{t}_{a} \tilde{t}_{a \star} / 2\right) u \hat{i}+\left(3 \tilde{t}_{a} \tilde{t}_{a \star} / 2-2\right) \xi+\tilde{t}_{a}{ }_{a} \\
\tilde{\nabla}_{\xi} \tilde{\nabla}_{\xi} u=u .
\end{array}\right.
$$

Since we have found $\int_{a} \tilde{t}_{a} \tilde{t}_{a *}=2$, we dertve from (3.22), (3.23), (3.24), and (3.21) that \tilde{U} satisfies (3.21) and this equation is consistent with $\|\tilde{U}\|^{2}=4$.

Let L be the operator of type $(1,1)$ defined by the fundamental 2-form $\tilde{\Omega}$. Denote then by $\tilde{\beta}_{q}=L^{q} \tilde{u}=\tilde{u} \Lambda(\Lambda \tilde{\Omega})^{q} \in \Lambda^{2 q+1} \tilde{M}$. Since \tilde{u} and $\tilde{\Omega}$ are both closed, one finds by (3.9) and making use of the properties of the Lie derivative $\mathscr{L}=\mathrm{iod}+\mathrm{doi}$ that

$$
\begin{equation*}
\mathscr{L} \tilde{U}^{\tilde{B}}=0 \tag{3.25}
\end{equation*}
$$

Hence $\tilde{\mathrm{U}}$ is an infinitesimal automorphism of all $(2 \mathrm{q}+1)$-forms $\tilde{\mathrm{B}}_{\mathrm{q}}(\mathrm{q}<\mathrm{m})$.
On the other hand, since $\tilde{g}(\tilde{U}, \tilde{U})=$ const, we may say in similar manner as in the case of a Sasakian manifold that \tilde{U} defines with $U \tilde{U}$ an U-section.

Like usually denote by

$$
\begin{equation*}
R\left(\tilde{z}, \tilde{z}^{\prime}\right)=\left[\tilde{\nabla}_{\tilde{z}}, \tilde{\nabla}_{\tilde{z}},\right]-\tilde{\nabla_{[}}\left[\tilde{z}, \tilde{z}^{\prime}\right], \tilde{z}, \tilde{z}^{\prime} \in \not{X} \tilde{M} \tag{3.26}
\end{equation*}
$$

the curvature operator. Then, as is known, the sectional curvature $K(\tilde{U}, \hat{U})$ defined by \tilde{U} and $U \tilde{U}$ is given by

$$
\begin{equation*}
K(\hat{u}, \tilde{u})=\frac{k(\tilde{U}, \tilde{U} \tilde{U}, \tilde{U}, \underline{U} \tilde{U})}{\tilde{g}(\tilde{U}, \tilde{U}) \tilde{g}(\tilde{u}, \tilde{u})-(\tilde{g}(\tilde{U}, u \tilde{U}))^{2}} \tag{3.27}
\end{equation*}
$$

where

$$
\begin{equation*}
R(\tilde{U}, U \tilde{U}, \tilde{U}, U \tilde{U})=\tilde{g}(R(\tilde{U}, U \tilde{}) \cup U ̛ ̃, \tilde{U}) . \tag{3.28}
\end{equation*}
$$

Making use of (3.5), (3.6), and (3.19), one finds

$$
\begin{equation*}
[\tilde{U}, u \tilde{U}]=4(\hat{U}+2 \xi) \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
R(\tilde{U}, U \tilde{U}) \cup \tilde{U}=4(5 \tilde{U}+8 \xi) \tag{3.30}
\end{equation*}
$$

Hence by (3.27) and (3.28) one gets K (ií, Uíí) $=-\frac{1}{5}$. Now referring to (2.10) and (3.12) one finds after some calculations
where we have set

$$
\left\{\begin{array}{l}
\tilde{v}_{S}=\left[\tilde{\mathrm{t}}_{\mathrm{a}^{*}} \tilde{\omega}^{\sim} \varepsilon \Lambda^{1} \tilde{S}^{2}\right. \tag{3.32}\\
\tilde{v}_{\mathrm{S}^{\star}}=\sum \tilde{\mathrm{t}}_{\mathrm{a}} \tilde{\omega}^{*} \varepsilon \Lambda^{1} \tilde{\mathrm{~S}}^{*}
\end{array}\right.
$$

As is known (see Libermann [11]), the components of the Ricci tensor are given by $\hat{\Theta}_{a}^{a}=\tilde{R}_{b c}{ }^{\star^{\omega}}{ }^{b} \wedge \tilde{\omega}^{c^{*}}\left(\tilde{\mathcal{G}}_{a}^{a}+\tilde{\Theta}_{a}^{a *}=0\right)$. Because of this, we get from (3.31) that

$$
\left\{\begin{array}{l}
\tilde{R}_{b c} *=\tilde{t}_{b} * \tilde{t}_{c} \tag{3.33}\\
\tilde{R}_{a \mathrm{a}} *=2 \tilde{t}_{a} \tilde{t}_{a} *-1
\end{array}\right.
$$

It follows from (3.33) that the components of the Ricci tensor are disjoint (see Rosca [16]). In addition, since the scalar curvature \tilde{C}_{s} is the trace of the Ricci tensor with respect to \tilde{g}, one finds by (2.7) and (3.3) that $\tilde{\mathrm{C}}_{\mathrm{s}}=4-\mathrm{m} \quad(\mathrm{m}>4)$. Therefore we conclude that the pseudo-Sasakian manifold \tilde{M} under consideration is a space form $\tilde{\mathrm{N}}(4-\mathrm{m})$ of hyperbolic type.

THEOREM 1. Let $\tilde{M}(U, \xi, \tilde{\eta}, \tilde{g})$ be a pseudo-Sasakian manifold endowed with a c.c. connection and let \tilde{U} (resp. $\tilde{\Omega}=\mathrm{d}_{\tilde{n}} / 2$) be the principal vector field associated with this connection (resp. the fundamental 2-form on \tilde{M}). One has the following properties:
(i) \tilde{U} is divergence free, and Uừ defines an infinitesimal homothety on \tilde{M};
(ii) all the connection forms on \hat{M} are integral relations of invariance for Uứ;
(iii) \tilde{U} and $U \tilde{U}$ define an U-contact concircular pairing, and $\{\tilde{U}, U \tilde{U}, \xi\}$ defines a 3 -folfation on \tilde{M};
(iv) any contact extension $\tilde{\mathrm{U}}_{\mathrm{f}}=\hat{U}+\tilde{f} \xi$ of $\tilde{\mathrm{U}}$ is a relative contact infinitesimal transformation of $\tilde{\eta}$;
(v) \tilde{U} and $U \tilde{U}$ define both an infinitesimal automorphism of all ($2 q+1$)-forms $\tilde{B}_{q}=L q_{u}^{\tilde{u}}$ where \tilde{u} is the dual form of $U \tilde{u}(q<m)$;
(vi) the Ricci l-form of $\hat{\mathrm{M}}$ is exterior recurrent, and the Ricci tensor is disjoint;
(vii) \tilde{M} is a space-forn of hyperbolic type;
(viii) any such submanifold \tilde{M} is defined by a completely integrable system of differential equations whose solution depends on 2 m arbitrary constants.
4. CO-ISOTROPIC FOLIATION ON $\tilde{M}(U, \xi, \tilde{\eta}, \tilde{g})$.

We shall consider on M the following three distributions:
a) An invariant distribution $D^{\boldsymbol{T}}$ (i.e. $U D^{\boldsymbol{T}} \subseteq D^{\boldsymbol{T}}$) of dimension $2(m-\ell)+1$ defined by $D^{\boldsymbol{T}}=\left\{h_{i}, h_{i \star}, \xi ; i=1, \ldots, m-l ; i^{*}=1+m\right\}$.
b) An isotropic distribution D^{\perp} (i.e. $D^{\perp} \subseteq$ orth D^{\perp}) of dimension ℓ defined by $D^{\perp}=\left\{h_{r} ; r=m-\ell+1, \ldots, m\right\}$.
c) Λ transversal distribution $D_{t}=l_{S *}{ }^{*}\left(D^{\boldsymbol{T}} \oplus D^{\perp}\right)\left(1 S^{*}\right.$ of dimension ℓ defined by $D_{t}=\left\{h_{r^{\dot{*}}} ; r^{*}=2 m-\ell+1, \ldots, 2 m\right\}$.
These three distributions have no comunon direction and they define on \tilde{M} a f-structure of rank 2ℓ (see Sinha [17]).

Accordingly we shall split the principal vector field \tilde{U} as follows:

$$
\begin{equation*}
\tilde{u}=\tilde{u}^{\top} \oplus \hat{u}^{\perp} \oplus \tilde{u}_{t} \tag{4.1}
\end{equation*}
$$

where $\tilde{U}^{\top} \in D^{T}, \tilde{U}^{\perp} \in D^{\perp}, \tilde{U}_{t} \in D_{t}$.
Denote now by

$$
\begin{equation*}
\tilde{\psi}=\omega_{\omega}^{, 2 m-\ell+1} \Lambda \ldots \Lambda_{\omega}^{2 m} \tag{4.2}
\end{equation*}
$$

the simple unit form which corresponds to D_{t}. Because D_{t} is orientable, $\tilde{\psi}$ is a well-defined global form. Since $\tilde{\psi}$ annilitlates $D^{\boldsymbol{\top}} \oplus D^{\perp}$, the necessary and sufficient condition for $\mathrm{D}^{\boldsymbol{\top}} \oplus \mathrm{D}^{\boldsymbol{1}}$ to be a co-isotropic foliation F_{c} is that $\tilde{\psi}$ be exterior recurrent (see Lichnerowicz [18] and Yano and Kon [7]).

Hence one must write $d \tilde{\psi}=\tilde{\gamma} \Lambda \tilde{\psi}$ and if $H^{1}\left(F_{c}, R\right)$ represent the 1 -cohomology class of F_{c}, then the recurrence 1-form $\tilde{\gamma}$ defines an element of $H^{1}\left(F_{c}, R\right)$ (see Lichnerowicz [6]). In the case under discussion one finds (compare with Yano and Kon [7]) that the necessary and sufficient condition for \hat{M} to receive a co-isotropic follation $F_{c}=D^{\top} \oplus D^{\perp}$ is that the component \tilde{U}_{t} of \tilde{U} vanishes. In this case the recurrence 1 -form $\tilde{\gamma}$ of $\tilde{\psi}$ is given by

$$
\begin{equation*}
\tilde{\gamma}=\ell(\tilde{u}-\tilde{n}) . \tag{4.3}
\end{equation*}
$$

Denote by M_{c} a $(2 m-\ell+1)$-dimensional leaf of F_{c} and supress \sim for the induced elements on M_{c}.

According to the considerations of Section 1 , it follows that M_{c} is a CICR submanifold. By definition we have $d u=0$. Because of this and (3.1), the exterior differentiation of (4.3) gives

$$
\begin{equation*}
\mathrm{d} \gamma=-2 \ell \Omega . \tag{4.4}
\end{equation*}
$$

Equation (4.4) shows that the restriction $\Omega=\left.\tilde{\Omega}\right|_{M_{c}}$ is an exact form.
On the other hand, the form of Godbillon-Vey (see Lichnerowicz [6]) on M_{c} is the $(2 \ell+1)$-form $w_{G} \varepsilon \Lambda^{2 \ell+1}\left(M_{c}\right)$ given by

$$
\begin{equation*}
w_{G}=\gamma \Lambda(\Lambda d \gamma)^{\ell} . \tag{4.5}
\end{equation*}
$$

One knows (see Lichnerowicz [18]) that the class of cohomology of w_{G} which is an element of $H^{2 \ell+1}\left(M_{c} ; R\right)$ is an invariant of the follation. Using the same notation as in section 3 and applying (4.4), we may write

$$
\begin{equation*}
w_{G}=c\left(L^{\ell} u-L^{\ell} n\right)-c\left(B_{\ell}-L_{n}^{\ell}\right) \tag{4.6}
\end{equation*}
$$

where we have set $c=-2^{\ell} \ell^{\ell+1}$.
Thus it follows from (3.22) that

$$
\begin{equation*}
\mathscr{L}_{U} w_{G}=-c \mathscr{f}_{U}\left(L_{n}^{\ell}\right) \tag{4.7}
\end{equation*}
$$

By means of (2.13) and (3.9) one has

$$
\begin{equation*}
d\left(L^{\ell} n\right)=2(\Lambda \Omega)^{\ell+1} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{di}_{U}\left(\mathrm{~L}_{n}^{\ell}\right)=4 \ln (\Lambda \Omega)^{\ell} . \tag{4.9}
\end{equation*}
$$

Therefore we get

$$
\begin{equation*}
\mathscr{L}_{\mathrm{U}}\left(\mathrm{~L}^{\ell} n\right)=-11 \Lambda(A s 2)^{\ell}=-\beta_{\ell} \tag{4.10}
\end{equation*}
$$

and finally

$$
\begin{equation*}
\mathscr{L}_{U}^{w}{ }_{C:}=c \beta_{l} \tag{4.11}
\end{equation*}
$$

 that w_{G} is a relative integral invariant: of u.

Further since the submanifold M_{c} is co-isotropic, it follows from this that the normal bundle $T^{\perp} M_{c}$ of M_{c} coincides with D^{\perp}.

Since M_{c} is defined by $\omega^{r^{*}}=0, r^{*}=2 m-\ell+1, \ldots, 2 m$, we derive from (2.8) and (3.12) that the covariant derivatives V_{r} of the null normal sections h_{r} satisfy

$$
\begin{equation*}
\nabla h_{r}=\frac{v}{2} \otimes h_{r} . \tag{4.12}
\end{equation*}
$$

Since h_{r} are null vector fields, equation (4.12) shows that h_{r} are geodesic dirẹctions. Hence according to the definition of Rosca [19], one may say that D^{\perp} has the geodesic property.

Further if X and Y are any vector fields of D^{\perp}, one has $\nabla_{Y} X \in D^{\perp}$. Thus according to a known definition, the distribution $\mathrm{D}^{\boldsymbol{\perp}}$ is autoparallel.

Setting $\ell_{r}=-<d p, \nabla h_{r}>$ for the second fundomental quadratic forms associated with the improper immersion $x: M_{c} \rightarrow \hat{M}\left(_{l_{r}}\right.$ is a field of symmetric covariant tensors of order 2 on M_{c}), we derive by a simple argument that all ℓ_{r} vanish. Therefore according to a well-known definition, we agree to say that the improper immersion $x: M_{c} \rightarrow \hat{M}$ is improper totally arodesic.

It was proved by Goldberg and Rosca [2] that the distribution D^{\perp} is always involutive. If N^{\perp} are the leaves of I^{\perp}, then in a similar manner as for Mc_{c} one easily finds that the improper immersion $x: M^{\perp}+\tilde{M}$ is improper totally geodesic. Since $x: M^{\boldsymbol{\top}} \rightarrow \tilde{M}$ is a proper iumersion, it is totally geodesic.

Next as it was proved (Goldberg and Rosca [2]) the necessary and sufficient condition for the manifold M_{c} to be fuliate is that the simple unit form ψ which corresponds to D^{\perp} be exterior recurrent.

Since obviously one has $\phi=\omega^{m-\ell+1} \Lambda \ldots \Lambda \omega^{\mathrm{m}}$, then by (3.1) one finds that the property of exterior recurrency for ϕ is equivalent to the condition $\dot{U}^{\downarrow}=0$.

Since by definition in this case D^{\top} is involutive, let us denote by M^{\top} a $(2(m-\ell)+1)$-dimensional leaf of D^{\top}. Because M_{c} is a CICR submanifold, $M^{\boldsymbol{P}}$ is as is known an invariant subnanifold of \tilde{N}, and this implies (see Rosca [1]) that $\mathrm{M}^{\boldsymbol{\top}}$ is minimal.

Coming back to the case under discussion, using (2.8), (3.12) and the fact that on M one has $U_{t}=0, U^{\perp}=0$, we can show by means of a simple calculation that M^{\top} is also totally geodesic.

Hence M_{c} is follated by two families of orthogonal totally geodesic submanifolds N^{C} and M^{T}.

On the other hand, let $X \in X_{c}$ be any vector field on M_{c}. According to Rosca [1], one has $U X=P X+F X$ where $P X$ (resp. FX) is the tangential (resp. the normal) component of UX. By virtue of the total geodesicity of M^{\top}, one easily finds that $\nabla P X \quad \varepsilon M^{\boldsymbol{T}}$.

Therefore the tangential component PX of X is parallel. According to Yano and Kon [7], it follows from this that M_{c} is a $C R$ product i.e. $M_{c}=M^{\boldsymbol{L}} \times M^{\top}$.

Since M_{c} is connected, this property can be checked by de Rham decomposition theorem.

It is worth to note that this situation is quite similar to that of coisotropic $C R$ submanifolds of a para Kaehlerian manifold structured by a geodesic connection (Rosca [20]).

THEOREM 2. Let M be a pseudo-Sasakian manifold structured by a c.c. connection and let \tilde{U} be the principal vector field associated with this connection. Then the necessary and sufficient condition for \hat{M} to receive a co-isotropic follation r_{c} is that the transversal component \tilde{U}_{t} of \tilde{U} vanishes. In this case the leaves M_{c} of F_{c} are CICR submanifolds of M_{c}, and if codim $M_{c}=\ell$, the form of Godbillon-Vey on M_{c} is a $(2 \ell+1)$-form ${ }_{w_{G}}$ which is a relative integral invariant of $U=\left.\tilde{U}\right|_{M_{c}}$.

In addition, one has the following properties:
(i) the improper immersion $x: M_{c} \rightarrow \tilde{M}$ is improper totally geodesic;
(ii) M_{c} is foliated by anti-invariant subnanifolds M^{\perp} which are improper totally geodesic and have the geodesic property.
Further the necessary and sufficient condition for M_{c} to be foliate is that the vertical (or isotropic) component U^{\perp} of $U=\left.\tilde{U}\right|_{M_{c}}$ vanishes. In this case M_{c} is a $C R$ product.
5. TANGENT BUNDLE MANIFOLD TM̃.

Let $T \tilde{M}$ be the tangent bundle manifind having the pseudo-Sasakian manifold discussed in Section 3 as a basis.

Denote by $\tilde{V}_{L}\left(\tilde{v}^{A}\right)$ the canonical vector field (or the vector field of Liouville) on TMi. Accordingly we may consider the set $B^{*}=\left\{\tilde{\omega}^{\mathrm{A}}, \mathrm{dv}{ }^{\sim}\right\}$ as an adapted cobasis on TMi. Following Godbillon [21], we shall designate by d_{v} and i_{v} the vertical differentiation and the vertical derivation operators, respectively taken with respect to $B^{*}\left(d_{V}\right.$ is an antiderivation of degree 1 of $\Lambda T M$ and i_{v} is a derivative of degree 0 of $\left.\Lambda T \tilde{M}\right)$.

Let $T_{s}^{r} \tilde{M}$ be the set of all tensor fields of type (r, s) on \tilde{M}. In general the vertical and complete lifts are linear mappings of $\tau_{s}^{r} \tilde{M}$ into $T_{s}^{r} \boldsymbol{T} \tilde{M}$, and for complete lifts one has:

$$
\left(\mathrm{T}_{1} \otimes \mathrm{~T}_{2}\right)^{\mathrm{C}}=\mathrm{T}_{1}^{\mathrm{V}} \otimes \mathrm{~T}_{2}^{\mathrm{C}}+\mathrm{T}_{1}^{C} \otimes \mathrm{~T}_{2}^{\mathrm{V}} .
$$

With respect to B^{*} the complete lift of the fundamental form $\tilde{\Omega}=\mathrm{d}_{\tilde{\eta}} / 2$ is given by

$$
\begin{equation*}
\tilde{\Omega}^{C}=\sum_{a}\left(d v^{2 a} \Lambda \omega^{\sim} a^{*}+\omega^{a} \Lambda d v^{a^{\star}}\right) \tag{5.1}
\end{equation*}
$$

The exterior differentiation of (5.1) by means of (3.1) gives

$$
\begin{align*}
& d \tilde{\Omega}^{c}=\hat{u} \wedge \tilde{\Omega}^{c}+\sum_{a}\left(t_{d} d \tilde{v}^{a^{*}}-t_{a}^{*} d \tilde{v}^{a}\right) \wedge \tilde{\Omega} \tag{5.2}
\end{align*}
$$

Using (5.2), we find

$$
\begin{equation*}
\mathscr{L}_{\underset{v_{1}}{n} \tilde{n}_{1}^{c}:}=\hat{\Omega}_{1}^{c} . \tag{5.3}
\end{equation*}
$$

As is known (see Godbillon [21]), equation (5.3) shows that $\tilde{\Omega}^{C}$ is homogeneous of degree 1.

We will now take the complete lift \tilde{u}^{C} of the principal Pfaffian \tilde{u} associated with the c.c. connection with structures \hat{M}. For this purpose we shall denote by $\partial_{B}\left(\tilde{t}_{A}\right)=h_{B}\left(\tilde{t}_{A}^{*}\right)$ the Pfaffian derivatives of $\tilde{t}_{A}^{*} \quad(A=0,1, \ldots, 2 m)$ with respect to cobasis \tilde{W}^{*}. Then according to the general theory (Yano and Ishihara [7]) one has

$$
\begin{equation*}
\tilde{u}^{\sim}=\tilde{u}_{A} d v^{2} A \partial_{B}\left(\tilde{u}_{A}\right) \tilde{v}_{\omega}^{B \sim A} \tag{5.4}
\end{equation*}
$$

where we have set $\tilde{u}=\tilde{u}_{A}{ }_{\mathrm{w}}{ }^{\mathrm{A}}$. Referring to (3.4) and (3.5) (c=2), after some calculations one finds

$$
\begin{align*}
& \tilde{u}^{C}=\frac{1}{2} \sum_{a}\left(\tilde{t}_{a} * \tilde{v}^{a}-\tilde{t}_{a} d v^{n} a^{*}\right)+\frac{1}{2} \sum\left(\tilde{t}_{a^{*}} \tilde{v}^{a}-\tilde{t}_{a} \tilde{v}^{a^{*}}\right) \tilde{u} \tag{5.5}
\end{align*}
$$

The exterior differentiation of (5.5) by means of (3.1) gives

$$
\begin{align*}
& \left.+\sum_{a}^{a}\left(\tilde{t}_{a} d \tilde{v}^{\tilde{a}}+\tilde{t}_{a} d \tilde{v}^{2 *}\right)\right) \Lambda \stackrel{\sim}{n} . \tag{5.6}
\end{align*}
$$

Using (5.5) and (5.6), one finds $\mathscr{L}_{\tilde{V}_{L}} \tilde{u}^{C}=\tilde{u} C$. Hence u^{C} is also a homogeneous form of degree 1 .

Consider now the following scalar field on $T \tilde{M}$:
and apply the vertical differentiation of \widetilde{T}. According to Godbillon [21], one has

$$
\begin{equation*}
\tilde{v}=d_{v} \neq \sum_{a}\left(v_{v}^{v_{a}^{n}, a^{*}}+\tilde{v}^{*} a_{\omega}^{*} \tilde{\omega}^{a}\right)+\tilde{v}_{n}^{0} \tag{5.8}
\end{equation*}
$$

and by means of (3.1) one gets

$$
\begin{align*}
& +\tilde{\eta} \Lambda\left(\sum\left(\tilde{v}^{a^{*}} \tilde{\omega}^{a}-\sim_{v}^{a} \tilde{\omega}_{\omega}^{a}\right)-d \tilde{v}^{0}\right)+2 \tilde{v} \tilde{\Omega} \tag{5.9}
\end{align*}
$$

In (5.9) $t: \Lambda \tilde{N} \rightarrow C^{\infty} \tilde{M}$ is the operator of Yano and lshihara [7], that is with respect to B^{*} one has by (3.6)

$$
\begin{equation*}
\mathfrak{v}=\sum_{a}\left(\tilde{t}_{a} \star^{n}+t_{i 1} v^{*}\right) \tag{5.10}
\end{equation*}
$$

One quickly finds

$$
\begin{equation*}
i \tilde{v}_{\mathrm{L}} \tilde{j}=\tilde{v} \tag{5.11}
\end{equation*}
$$

and since π is closed, it follows from (5.11) that

$$
\begin{equation*}
\mathcal{L}_{\tilde{v}_{L}} \tilde{u}=\tilde{u} \tag{5.12}
\end{equation*}
$$

i.e. il is homogeneous of degree 1. Noroover, taking the vertical derivation of \tilde{I}, one has (see Godbillon [21]):

$$
\begin{equation*}
i_{V} \tilde{\mu}=0 . \tag{5.13}
\end{equation*}
$$

On the other hand, it is easy to see from (5.9) that ill is of maximal rank (see (iodbillon [21]) on TMN. Accordingly, as is kuowr, equations (5.11) and (5.13) prove that ill is a Finslopian form (Sen Yllin ind Voutier [22]). Since the vertical differentiation d_{v} is an anti-derivation of square zero, one eastly derives from (5.8) that

$$
\begin{equation*}
d_{r} \tilde{v}=0, \quad i_{V_{L}}, \ddot{v}=0 . \tag{5.14}
\end{equation*}
$$

Thus according to (iodbillon [21], \tilde{v} is a amibasic form.
In the following we shall call \hat{T}^{\prime} (resp. v̌) the Liouville function (resp. the Liourville 1-form) on TN (see Rosca [16]). Further one may call il the 2-firm of ciartan on TMM (see Rosca [19]).

Denote now by $B=\left\{h_{A}, \frac{\partial}{\partial v^{2}}\right\} \quad$ the vectorial basis dual to B^{*} on \tilde{M}. Then as is known (see Yano and Ishihara [9] or (:odbillon [21]) the vertical lift (\tilde{Z}) ${ }^{V}$ of $\hat{\mathrm{V}}$ is expressed by

$$
\begin{equation*}
(\tilde{Z})^{V}=\tilde{z}^{\Lambda} \frac{\partial}{\partial v^{n}} \tag{5.15}
\end{equation*}
$$

Coming back to the case under consideration and using that $U \tilde{U}=b^{-1}(\tilde{u})$ (see Section 3), we find by (5.15) that

$$
\begin{equation*}
(U \tilde{u})^{v}=\sum_{a}\left(\tilde{t}_{a} \frac{\partial}{\partial v^{i}}-\tilde{t}_{a *} \frac{\partial}{\partial v^{2} a^{* *}}\right) . \tag{5.16}
\end{equation*}
$$

Now, taking the dual $\mu\left(U U^{\prime}\right)^{V}$ of (UƯ) ${ }^{V}$ with respect to $\tilde{\mathrm{I}}$ and referring to (3.5) ($c=2$), we quickly find

$$
\begin{equation*}
\mu\left(U U^{\prime}\right)^{\prime}=2 \tilde{u} . \tag{5.17}
\end{equation*}
$$

Since \tilde{u} and $\tilde{\mathrm{I}}$ are both closed, it follows from this that $\mathscr{L} \tilde{U}^{\tilde{U})} v^{\tilde{i}} \boldsymbol{\tilde { i } = 0}$, i.e. $\left(U U \widetilde{)}{ }^{V}\right.$ is an infinitesimal automorphism of $\tilde{\mathrm{I}}$.

$$
\begin{equation*}
\tilde{n}=2 \psi_{u}^{u} \tag{5.18}
\end{equation*}
$$

are the kinetic energy and the field of forrees of $\partial \mathcal{V}^{2}$ (see Godbillon [21]).
Since \tilde{u} is closed, one has $d \tilde{\pi}=\frac{d^{2}}{T} \frac{T}{T} \tilde{n}$ and referring to (5.7), one quickly finds

$$
\begin{align*}
& \tilde{V}_{L_{\tilde{u}}}^{\tilde{u}}=2 \tilde{T}, \tag{5.19}\\
& \tilde{V}_{\mathrm{L}}^{\pi}=2 \ddot{\prime \prime}
\end{align*}
$$

Equations (5.19) show that $\tilde{\gamma}$ and $\underset{\pi}{\tilde{\pi}}$ are homognneous of degree 2. On the other hand, since $\underset{\pi}{\sim}$ is an exact 2 -form of maximal rank, it defines a potential sympletic stimoture on TMi. Hence, according to the definition given by Klein (see Godbillon [21]) the system \mathcal{J} is regular.

Denote now by \tilde{Z}_{d} the dymamical systom assoctated with $\mathrm{ON}^{\text {. As is known, } \tilde{z}_{\mathrm{d}}}$
is defined via formula

Then:
a) Since $\underset{T}{ }$ and $\tilde{\pi}$ are both homogencous and of the same degree, $\tilde{\mathcal{Z}}_{d}$ is a spray on \hat{H}, i.e. $\left[\hat{V}_{L_{1}}, \tilde{Z}_{d}\right]=\tilde{Z}_{\mathrm{d}}$.
b) Since \tilde{T} is of degree 2, the 2 -form $\tilde{H}-(d \tilde{T}-\tilde{\sim}) \quad \Lambda$ dt $\varepsilon \Lambda^{2}(T \hat{M} \times R)$ is an integral relation of invariance for $\tilde{Z}_{d}+\frac{\partial}{\partial t}$ (Lichnerowicz [5]).
THEOREM 3. Let TNi be the tangent bundle manifold having as a basis the manifold $\tilde{M}(U, \xi, \tilde{\eta}, \tilde{g})$ defined in Section 3 and let \tilde{U} (resp. $\tilde{\Omega}$) be the principal vector field (resp. the fundamental 2-form) on \tilde{N}. Then:
(i) the complete lifts $\tilde{\Omega}^{C}$ and $\tilde{u} C$ of $\tilde{\Omega}$ and $\tilde{u}=\boldsymbol{b}$ (UUU) are homogeneous of degree one;
(ii) the 2-form of Cartan $\tilde{\Pi}$ on $T \tilde{M}$ is a Finslerian form;
(iii) one may associate with if a regular mechanical system whose dynamical system is a spray on \tilde{M}.

RFIFERENCES

1: ROSCA, R. On Pseudo-Sasakian Manifolds, Rend. Mat. 1984 (to appear).
2. GOLDBERG, V.V. and ROSCA, R. Contact (o-isotropic CR Submanifolds of a PseudoSasakian Manifold, Intern. J. Math. Math. Sci. 7(1984), No. 2, 339-350.
3. ROSCA, R. Variétés Sasakienne à Connexion Conforme de Contact, C.R. Acad. Sci. Paris Sér. I Math. 294(1982), 43-46.
4. LICHNEROWICZ, A. Les Relations Integrales d'Invariance et Leurs Applications a 1a Dynamique, Bul1. Sci. Math. 70(1946), 82-95.
5. ROSCA, R. Variétés Lorentrienné ì Structure Sasakienne et Admettant un Champ Vectoricl lsotrope \downarrow-quasi Concirculaire, C.R. Acad. Sci. Paris Ser. A. 291 (1980), 45-47.
6. LICHNEROWICZ, A. Variétés de Poisson et Feuilletages, Ann. Fac. Sci. Toulouse Math (5) 4(1982), 195-262.
7. YANO, K. and KON, M. CR Submanifolds of Kaehlerian and Sasakian Manifolds, Birkhảuser, Boston-Basel-Stuttgart, 1983.
8. ROSCA, R. CR-sous-variétés Co-isotropes d'une Variété Parakăhlerienne, C.R. Acad. Sci Paris Sér. I Math. 298(1984), 149-151.
9. YANO, K. and ISHIHARA, S. Differential Geometry of Tangent and Cotangent Bundles, Marcel Dekker Inc., New York, 1973.
10. KLEIN, I. Espaces Variationels et Mècanique, Ann. Inst. Fourier (Grenoble) 12(1962), 1-124.
11. LIBERMANN, P. Sur le Problème d'Équivalence de Certaines Structures Infinitésimales, Ann. Mat. Pura Appl. 36(1951), 27-120.
12. ROSC Λ, R. Codimension 2 CR Submanifolds with Null Covariant Decomposable Vertical Distribution of a Neutral Manifold, Rend. Mat. (4) 2(1982), 787-796.
13. DATTA, D.K. Exterior Recurrent Forms on a Manifold, Tensor (N.S.) 36(1982), No. 1, 115-120.
14. POOR, W.A. Differential Geometric Structures, McGraw-Hill Book Comp., New York, 1981.
15. ROSCA, R. and VERSTRAELEN, L. On Submanifolds Admitting a Normal Section Which is Quasi-concircular w.r.t. a Corresponding Principal Tangent Section, Bull. Math. Soc. Math. R.S. Roumanie 20(68)(1976), No. 3-4, 399-402.
16. ROSCA, R. On Parallel Conformal Comertions, Kodai Math. J. 2(1979), No. 1, 1-10.
17. SINIIA, B.B. A Differentiable Manifold with Para f-Structure of Rank r, Ann. Fac. Sci. Univ. Nat. Zaire (Klinshasa) Sect. Math.-Phys. 6(1980), No. 1-2, 79-94.
18. LICHNEROWICZ, A. Feuilletages, Géométric Riemannicnne et Géométrie Symplectique, C.R. Acad. Sci. Paris Ser. 1 Math. 296(1983), 205-210.
19. RUSCA, R. Espace-temps Ayant la propriéí féodésique, C.R. Acad. Sci- Parls SEr. A 285(1977), 305-308.
20. ROSCA, R. Sous-variétés Anti-invariantes d'une Variété Parakuhlerienne Structurée par une Connexion (éodesique, C.R. Acad. Sci. Paris Sér. A 287(1978), 539-541.
21. GODBIIlON, C. Oéomérie Differcntic!l"ct Mécinique Analytique, Hermann, Paris, 1969.
22. KISEIN, $[$ and VOUTIER, A. Formes extérleures génératrices de sprays, Anin. Inst. Fourier (Grenoble) 18(1968), 241-268.

