PSEUDO-SASAKIAN MANIFOLDS ENDOWED WITH A CONTACT CONFORMAL CONNECTION

VLADISLAV V. GOLDBERG and RADU ROSCA

Department of Mathematics N.J. Institute of Technology Newark, N.J. 07102 U.S.A.

(Received January 30, 1985)

ABSTRACF. Pseudo-Sasakian manifolds $\breve{M}(U,\xi,\breve{\eta},\breve{g})$ endowed with a contact conformal connection are defined. It is proved that such manifolds are space forms $\breve{M}(K), K < 0$, and some remarkable properties of the Lie algebra of infinitesimal transformations of the principal vector field \breve{U} on \breve{M} are discussed. Properties of the leaves of a co-isotropic foliation on \breve{M} and properties of the tangent bundle manifold $\breve{T}\breve{M}$ having \breve{M} as a basis are studied.

KEY WORDS AND PHRASES. Witt frame, CLCR submanifold, relative contact infinitesimal transformation, U-contact concircular pairing, differential form of Godbillon-Vey, form of E. Cartan, Finslerian form, mechanical system, dynamical system, spray, CR product.

1980 SUBJECT CLASSIFICATION CODES. 53C25, 53C40, 53B25

1. INTRODUCTION.

In the last years many papers have been concerned with Sasakian manifold $\widetilde{M}(\phi,\xi,\widetilde{n},\widetilde{g})$ and related structures. Recently Rosca [1] has defined *pseudo-Sasakian* manifolds $\widetilde{M}(U,\xi,\widetilde{n},\widetilde{g})$ and Goldberg and Rosca [2] have studied *CICR submanifolds* (i.e. co-isotropic CR submanifolds) of $\widetilde{M}(U,\xi,\widetilde{n},\widetilde{g})$.

In the present paper we study (2m+1)-dimensional pseudo-Sasakian manifolds of index m+1, m > 4, structured by a *contract conformal* (abr. c.c.) connection. It is proved that such manifolds are hyperbolic space forms $\tilde{M}(K)$, K < 0, and with the c.c. connection (which in fact is a natural generalization of the connection defined by Rosca [3]) is associated (compare with Rosca [3]) a so denominated principal vector field \tilde{V} .

The paper is organized as follows. In Section 3 we develop some basic results induced by the c.c. connection and some remarkable properties of the Lie algebra of infinitesimal transformations defined by \tilde{U} . It is shown that

- (i) U (resp. UU) is divergence free (resp. defines an infinitesimal homothety)
 on M and all connection forms on M are integral relations of invariance
 for UU (see Lichnerowicz ' [4]);
- (ii) U and UU define an U-contact convircular pairing (in the sense of Rosca [5]) and any contact extension of U is a relative contact

infinitesimal transformation (in the sense of Rosca [3]) of the canonical 1-form η ;

(111) \tilde{U} and $U\tilde{U}$ define both infinitesimal automorphisms of (2q+1)-forms $\tilde{\beta}_q = L^{q}\tilde{u}$ (q<m) where \tilde{u} (resp. L) is the dual form of \tilde{U} (resp. the (1,1)-operator taken with respect to the 2-form $\tilde{\Omega} = d\tilde{\eta}/2$). Accordingly, if Σ_{β} is the exterior differential system defined by $\{\tilde{\beta}_q\}$, \tilde{U} and $U\tilde{U}$ may be considered as *isovectors* of Σ_{β} .

Section 4 is concerned with a co-isotropic foliation F_c on \tilde{M} . The leaves M_c of F_c are CICR submanifolds of \tilde{M} and if codim $M_c = l$, then the form of Godbillon-Vey on M_c (see Lichnerowicz[6]) is a (2l+1)-form w_G which is a relative integral invariant of $U = \tilde{U}|_M$.

Further the necessary and sufficient conditions for M_c to be *foliate* is that the isotropic component U^{\perp} of U vanishes. In this case N_c is a *CR product* (see Yano and Kon [7] and Rosca [8]).

Finally using some notions introduced by Yano and Ishihara [9] and also by Klein [10], we consider in Section 5 certain properties of the tangent bundle manifold $\widetilde{M}(U,\xi,\widetilde{\eta},\widetilde{\xi})$ as a basis.

, It is proved that the complete lifts $\tilde{\alpha}^{C}$ and \tilde{u}^{C} of $\tilde{\alpha}$ and \tilde{u} respectively are homogeneous of degree one and that the form of E. Cartan $\tilde{\Pi}$ on $T\tilde{M}$ is a Finslerian form. Furthermore, we may associate with $\tilde{\Pi}$ a regular mechanical system whose dynamical system is a spray on \tilde{M} . 2. PRELIMINARIES.

Let (\tilde{M}, \tilde{g}) be a (2m+1)-dimensional connected pseudo-Riemannian manifold of signature (m+1,m) and suppose that m > 4.

At each point $\vec{p} \in \tilde{M}$ one has the standard decomposition (see Rosca [1]):

$$T_{p}(\tilde{M}) = H_{p} \oplus I_{p}$$
(2.1)

where T_{ν} , H_{ν} , and T_{ν} are the tangent space, a (2m)-dimensional neutral vector space, and a time-like line orthogonal to H_{ν}^{ν} , respectively.

Let S_{p}^{\vee} , $S_{p}^{\vee} \subset H_{p}^{\vee}$ be two self-orthogonal (abbreviation s.o.) m-distributions which define an *involutive* automorphism U of square +1 (U is the para complex operator defined by Libermann [11]). Let $\xi \in T_{p}^{\vee}$ and $\tilde{\eta} \in \Lambda^{1}(\tilde{M})$ be the pairing which defines a contact structure σ_{c} on \tilde{M} , and $\tilde{\forall}$ be the covariant differentiation operator defined by the metric tensor \tilde{g} . Then if for any vector fields \tilde{Z} , \tilde{Z}' on \tilde{M} the structure tensors $(U, \xi, \tilde{\eta}, \tilde{g})$ satisfy

$$\begin{cases} \upsilon^{2}(\tilde{Z}) = \tilde{Z} - \tilde{n}(\tilde{Z})\xi, & \tilde{g}(\upsilon \tilde{Z}, \upsilon \tilde{Z}') = -\tilde{g}(\tilde{Z}, \tilde{Z}') + \tilde{n}(\tilde{Z})\tilde{n}(\tilde{Z}'), \\ \tilde{g}(\tilde{Z}, \xi) = \tilde{n}(\tilde{Z}), & \tilde{\nabla}_{\tilde{Z}}^{2}\xi = \upsilon \tilde{Z}, \\ d\tilde{n}(\tilde{Z}, \tilde{Z}') = -2\tilde{g}(\upsilon \tilde{Z}, \tilde{Z}'), & \tilde{n}(\xi) = 1, \end{cases}$$

$$(2.2)$$

the manifold $\tilde{N}(U,\xi,\tilde{n},\tilde{g})$ has been called a pseudo-Sasakian manifold (see Rosca [1]).

In order to study real *co-isotropic* and *isotropic foliations* on \tilde{M} (that is *improper* immersions in \tilde{M}), we consider an adapted field of *Witt frames:* $\tilde{W} = \{h_{\Lambda}: A, B, C = 0, 1, ..., 2m\}$. The vectors h_{a} and h_{a*} (a=1,...,m;a*=a+m) are null and $h_{0} = \xi$ is the *anisotropic* vector field of the W-basis $\{h_{\Lambda}\}$. We set

$$\hat{S}_{p}^{\nu} = \{h_{a}\}, \quad \hat{S}_{p}^{\nu} = \{h_{a}^{\nu}\}$$
(2.3)

and as is known, one has

$$\begin{cases} \tilde{g}(h_a, h_b^{\star}) = \delta_{ab}, & \tilde{g}(\xi, h_a) = 0, \\ \tilde{g}(\xi, h_a^{\star}) = 0, & \tilde{g}(\xi, \xi) = 1 \end{cases}$$
(2.4)

and

$$Uh_a = h_a, \quad Uh_a = -h_a , \quad U\xi = 0.$$
 (2.5)

If $\tilde{W}^* = {\tilde{\omega}}^{\Lambda}$ is the cobasis associated with \tilde{W} , we set $\tilde{\omega}^{()} = \tilde{\eta}$ and the line element $d\tilde{p}$ ($d\tilde{p}$ is a canonical vector 1-form and is independent on any connection on \tilde{N}) is given by

$$d\hat{p} = \hat{\omega}^{\Lambda} \otimes h_{\Lambda}^{\Lambda}.$$
 (2.6)

It follows from (2.4) that the metric tensor $\overset{\mathrm{v}}{\mathrm{g}}$ is:

$$\overset{\circ}{g} = 2 \sum_{a} \overset{\circ}{\omega}^{a} \otimes \overset{\circ}{\omega}^{a} + \overset{\circ}{\eta} \otimes \overset{\circ}{\eta} .$$
 (2.7)

If $\hat{\theta}_B^{\Lambda} = \hat{\gamma}_{BC}^{\Lambda} \hat{\nabla}_{C}^{C} (\hat{\gamma}_{BC}^{\Lambda} \in C^{\infty}(\hat{N}))$ and $\hat{\bigoplus}_{B}^{\Lambda}$ are the connection forms and the curvature 2-forms on the bundle $\hat{W}(\hat{N})$ respectively, then the structure equations (E. Cartan) may be written in the indexless form as follows:

$$\nabla h = 0 \Rightarrow h,$$
 (2.8)

$$d\tilde{\omega} = -\tilde{\theta} \Lambda^{\nu}_{\alpha}, \qquad (2.9)$$

$$\mathbf{d}\tilde{\boldsymbol{\theta}} = -\tilde{\boldsymbol{\theta}}\Lambda\tilde{\boldsymbol{\theta}} + \boldsymbol{\boldsymbol{\Theta}} \quad . \tag{2.10}$$

Referring to (2.4) and (2.8), one has

$$\begin{cases} \tilde{\vartheta}_{b}^{a} + \tilde{\vartheta}_{a}^{b^{\dagger}} = 0, \quad \tilde{\vartheta}_{b}^{a^{\dagger}} = 0, \quad \tilde{\vartheta}_{b}^{a} \star = 0, \\ \tilde{\vartheta}_{a}^{o} + \tilde{\vartheta}_{0}^{a} = 0, \quad \tilde{\vartheta}_{0}^{a} + \tilde{\vartheta}_{a}^{0} \star = 0 \end{cases}$$
(2.11)

and

$$\begin{aligned} \gamma_{\theta}^{0} &= \overset{\nu_{a}^{*}}{\omega}, \quad \overset{\nu_{0}}{\overset{\sigma}{}} \overset{\nu_{\cdot 1}}{\overset{\sigma}{}} &= \overset{\nu_{\cdot 1}}{\overset{\sigma}{}}. \end{aligned}$$
 (2.12)

By virtue of (2.8), (2.9), and (2.11) one has

$$d\eta = 2 \sum_{a} \omega_{a}^{a} \wedge \omega^{\alpha n}$$
 (2.13)

and

$$\tilde{\forall}\xi = Ud\tilde{p} \implies \langle \tilde{\forall}_{\hat{Z}}\xi, \hat{Z}'\rangle + \langle \tilde{\forall}_{\hat{Z}}, \xi, \hat{Z}\rangle = 0$$
(2.14)

where \tilde{Z} and \tilde{Z}' are any vector fields on \tilde{M} .

In the following we agree to call the 2-form

$$\hat{\Omega} = \sum_{\alpha} \hat{\omega}^{\alpha} \wedge \hat{\omega}^{\alpha}$$
(2.15)

the fundamental 2-form on \widetilde{M}

Since by (2.11) one has

$$\hat{\theta}_{a}^{a} + \hat{\theta}_{a}^{a^{*}} = 0, \quad (\hat{\theta}_{a}^{a} + (\hat{\theta}_{a}^{a^{*}})^{a^{*}} = 0, \quad (2.16)$$

we shall call

$$\hat{\vartheta}_{R} = \sum_{a} \hat{\vartheta}_{a}^{ia}$$
(2.17)

and

$$\overset{\sim}{\Theta}_{R} = \sum_{a} \overset{\sim}{\Theta} \overset{a}{a}$$
(2.18)

the Ricci 1-form and the Ricci 2-form respectively (see Rosca [12]). As is known, the form $\hat{\mathfrak{O}}_{p}$ defines the first class of Chern of \tilde{M} .

Using (2.10) and referring to (2.12) and (2.15), one quickly obtains

$$i\hat{\theta}_{R} = \hat{\Theta}_{R} - \hat{\Omega}_{R}$$
 (2.19)

The above equation proves that the 2-forms $\hat{\Theta}_R$ and $\hat{\Omega}$ are homologous. Hence the two cocycles $\hat{\Theta}_R$ and $\hat{\Omega}$ belong to the 2-cohomology class $H^2(\hat{M})$ of \hat{M} .

Let now F_c be a coisotropic foliation on \tilde{M} and denote by M_c a maximal integral manifold (leave) of Γ_c . It has been shown by Goldberg and Rosca [2] that M_c is a contact CR submanifold of \tilde{M} , that is there exists a differentiable distribution D: $p + D_p \subset T_p(M_c)$, $p \in M_c$ (one denotes the induced elements on M_c by suppressing \sim) satisfying:

- (i) D is invariant i.e. $UD_p \subseteq D_p$, and
- (ii) the complementary orthogonal distribution $D^{\perp}: p \to D_{p}^{\perp} \subseteq T_{p}(M_{c})$ is antiinvaviant i.e. $UD_{p}^{\perp} \subseteq T_{p}^{\perp}(M_{c})$.

The distribution D (resp. D^{\perp}) is called the *horizontal* (resp. vertical) distribution. Such type of CR submanifolds is called CICR submanifolds (see Goldberg and Rosca [2]).

3. PSEUDO-SASAKIAN MANIFOLDS ENDOWED WITH A CONTACT CONFORMAL CONNECTION.

As a natural generalization of the definition given by Rosca [3], we assume that the structure equations (2.9) are written in the form

$$\begin{cases} d\tilde{\omega}^{a} = (\tilde{u} + \tilde{\eta}) \wedge \tilde{\omega}^{a} + \tilde{t}_{a} \tilde{\Omega}, \\ d\tilde{\omega}^{a} = (\tilde{u} - \tilde{\eta}) \wedge \tilde{\omega}^{a} + \tilde{t}_{a} \tilde{\Omega} \end{cases}$$
(3.1)

where $\tilde{\Omega} = d\tilde{\eta}/2$, $\tilde{t}_a, \tilde{t}_a \star \in C^{\infty}(N)$, and $u \in \Lambda^1(\tilde{N})$ is a *closed* 1-form. Note that \tilde{t}_a and $\tilde{t}_a \star$ are the components of a vector field

$$\widetilde{U} = \sum_{a} \left(\widetilde{U}_{a} h_{a} + \widetilde{U}_{a} + \widetilde{h}_{a} + \widetilde{h}_{a} \right)$$
 (3.2)

of constant length.

We shall say (see Rosca [3]) that in this case the pseudo-Sasakian manifold \tilde{M} is endowed with a contact conformal (abr. c.c.) connection. We also agree to call \tilde{U} the principal vector field associated with this connection.

Since $\hat{g}(\hat{U},\hat{U}) = \text{const}$, we may write by (3.2) that

$$t_{a} t_{a} t_{a} t_{a} t_{a}$$
 = c, c = const. (3.3)

Taking exterior differentials of (3.1), we get

$$\begin{cases} d\hat{t}_{a}^{*} = (\hat{u} + \hat{\eta})\hat{t}_{a}^{*} - 2\hat{\omega}^{a}, \\ d\hat{t}_{a}^{*} = (\hat{u} - \hat{\eta})\hat{t}_{a}^{*} - 2\hat{\omega}^{a}^{*}. \end{cases}$$
(3.4)

Denote by Σ the exterior differential system defined by equations (3.1) and (3.4) and by I the *ideal* corresponding to Σ . The exterior differentiation of (3.4) where $\tilde{\omega}^a$ and $\tilde{\omega}^{a^*}$ satisfy (3.1), $\tilde{\Omega} = d\tilde{n}/2$, $d\tilde{u} = 0$, leads to the identity. Because of this, dI \subset I, that is Σ is a *closed* system. It follows from this that the system Σ defining the pseudo-Sasakian manifold \tilde{M} endowed with a c.c. connection is *completely integrable* and its solution depends on 2m constants (the number of equations in (3.4)).

From (3.4) and (3.3) we also obtain

$$c_{u}^{\tilde{u}} = \sum_{a} (t_{a} \star_{\omega}^{\tilde{u}a} - t_{a} \star_{a}^{\tilde{u}a})$$
(3.5)

and $\tilde{u}(\tilde{U}) = 0$ which shows that \tilde{u} is an *integral relation of invariance* for \tilde{U} (see Lichnerowicz [4]). In the following we agree to call \tilde{u} the *principal* Pfaffian associated with the c.c. connection.

Consider now the 1-form

$$\overset{\circ}{\mathbf{v}} = \sum_{\mathbf{a}} (\overset{\circ}{\mathbf{t}}_{\mathbf{a}} \overset{\circ}{\mathbf{w}}^{*} + \overset{\circ}{\mathbf{t}}_{\mathbf{a}} \overset{\circ}{\mathbf{w}}^{\mathbf{a}}).$$
 (3.6)

Taking the exterior differential of $\stackrel{\sim}{v}$, one finds with the help of (3.1) and (3.4) that c = 2. In this case we deduce

$$dv = 2u \wedge v, \qquad (3.7)$$

and this equation asserts that $\sqrt[5]{v}$ is *exterior recurrent* (see Datta [13] with $2\tilde{u}$ as the recurrence 1-form.

By (2.4) and (2.5) one easily finds

$$\tilde{u}(\tilde{U}) = \tilde{v}(\tilde{U}) = \tilde{g}(\tilde{U},\tilde{U}) = \tilde{g}(\tilde{U},\tilde{U}) = 2 \sum \tilde{t}_a \tilde{t}_a^*.$$
 (3.8)

Hence if $b : T(\check{M}) \rightarrow T^*(\check{M})$ is the musical isomorphism with respect to \hat{g}' (see Poor [14]), we may write: $\check{u} = b(U\check{U})$, $\check{v} = b(\check{U})$. Since \check{u} is closed, it follows from (3.7) that the manifold \check{M} under consideration is foliated by 2-codimensional submanifolds orthogonal to \check{U} and $U\check{U}$.

Next if $\mu: \hat{Z} \rightarrow i_{\hat{Z}}\hat{\Omega}, T(\hat{M}) \rightarrow T^{*}(\hat{M})$ is the bundle isomorphism defined by $\hat{\Omega} = d\hat{\eta}/2$, one readily finds

$$\mu(\vec{U}) = 2\vec{u}$$
 (3.9)

In the following we agree to call the presympletic form $\tilde{\Omega}(\dim \ker(\tilde{\Omega}) \neq 0)$ the fundamental 2-form on \tilde{N} .

Let now $\tilde{U}_f = \tilde{U} + \tilde{f}\xi$ ($\tilde{f} \in C^{\infty}(\tilde{M})$) be a contact extension of \tilde{U} and $\mathcal{L}_{\tilde{U}_f}$ the Lie derivative with respect to \tilde{U}_f . Then by (3.9) one quickly finds $d\mathcal{L}_{\tilde{U}_f} \tilde{\eta} = 0$. Therefore according to the definition given by Rosca [3], we may say that \tilde{U}_f is a relative contact infinitesimal transformation of $\tilde{\eta}$.

Denote now by $\hat{\sigma}_{s}$ (resp. $\hat{\sigma}_{s}^{*}$) the simple unit form which corresponds to \hat{s}_{p}^{*} (resp. \hat{s}_{p}^{*}). One has

$$\overset{\circ}{\sigma}_{S}^{s} = \overset{\circ}{\omega}^{1} \wedge \dots \wedge \overset{\circ}{\omega}^{m},$$

$$\overset{\circ}{\sigma}_{S}^{s}^{s} = \overset{\circ}{\omega}^{1} \overset{\circ}{\wedge} \dots \wedge \overset{\circ}{\omega}^{m},$$

$$(3.10)$$

and by (3.1) the exterior differentials of (3.10) are

$$\begin{cases} d\tilde{\sigma}_{S} = [m(\tilde{u}+\tilde{\eta})-\tilde{v}] \wedge \tilde{\sigma}_{S} , \\ d\tilde{\sigma}_{S}^{*} = [m(\tilde{u}-\tilde{\eta})+\tilde{v}] \wedge \tilde{\sigma}_{S}^{*} . \end{cases}$$
(3.11)

Since $\tilde{\sigma}_{S}$ and $\tilde{\sigma}_{S^{*}}$ are both exterior recurrent, it follows from a well-known property that both co-isotropic distributions $\tilde{S} + \{\xi\}$ and $\tilde{S}^{*} + \{\xi\}$ are *involutive* (orth. $(\tilde{S}^{+}\{\xi\}) = \tilde{S}$; orth. $(\tilde{S}^{*}+\{\xi\}) = S^{*}$). It is worth to emphasize that this property is true for any pseudo-Sasakian manifold.

Now with the help of (3.1), one finds that the connection forms are given by

$$\begin{cases} \gamma_a^a = t_a^{\gamma_a a^*} + t_{a^*}^{\gamma_a a} + \sqrt[\gamma]{2} \quad (\text{no summation}), \\ \gamma_a^a = t_b^{\gamma_a a^*} + t_a^{\gamma_a b^*} \\ \theta_b^a = t_b^{\gamma_a a^*} + t_a^{\gamma_a b^*}. \end{cases}$$
(3.12)

By (3.12) and (3.6) one finds

$$\tilde{\theta}_{\rm R} = (m+2)\tilde{v}/2$$
 (3.13)

and (3.7) shows that $\hat{\theta}_{R}$ is exterior recurrent.

Coming back to relations (3.12), one readily finds

$$\vartheta_a^a(\mathfrak{v}) = 0, \quad \vartheta_b^a(\mathfrak{v}) = 0.$$
 (3.14)

Therefore we may say that all connection forms of the pseudo-Sasakian manifold \check{M} under consideration are *integral relations of invariance* for the vector field UU.

Denote now by $\stackrel{\sim}{\tau}$ the volume element of $\stackrel{\sim}{N}$. One may take a local orientation such that

$$\hat{\tau} = \hat{\sigma}_{S} \wedge \hat{\sigma}_{S} * \wedge \hat{\eta}$$
(3.15)

and denote by $\star: \Lambda^q T^* \tilde{M} \to \Lambda^{2m+1-q} T^* \tilde{M}$ the star operator determined by $\tilde{\tau}$. If, like usually, $\tilde{\chi}\tilde{M}$ means the vector space of sections over $T\tilde{M}$, then, as is known, for any vector field $\tilde{Z} \in \tilde{\chi}\tilde{M}$ one has

$$*\operatorname{div} \tilde{Z} = (\operatorname{div} \tilde{Z})_{\tau} = \operatorname{di}_{\tilde{Z}} = \operatorname{di}_{\tilde{Z}} = \mathcal{X}_{\tilde{Z}}$$
(3.16)

Making use of (3.4), (3.11), (3.16), and the fact that

$$\tilde{\mathbf{U}} = \sum_{\mathbf{a}} \left(\tilde{\mathbf{t}}_{\mathbf{a}}^{\mathbf{h}} \mathbf{h}_{\mathbf{a}}^{\mathbf{+}} \tilde{\mathbf{t}}_{\mathbf{a}}^{\mathbf{+}} \mathbf{h}_{\mathbf{a}}^{\mathbf{*}} \right), \qquad (3.17)$$

one finds after some calculations:

div
$$\hat{U} = 0$$
, div $(U\hat{U}) = 2 \sum_{a} \hat{t}_{a} \hat{t}_{a}^{*} = 4$. (3.18)

Hence U is divergence free and UU is an infinitesimal homothety on N.

Now if $\tilde{Z} = \tilde{Z}^A h_A$, $\tilde{Z}' = (\tilde{Z}')^A h_A \varepsilon$ \tilde{M} are any vector fields, then, as is known

(see Poor [14]), one has

$$\tilde{\nabla}_{\tilde{Z}}, \tilde{Z} = (\tilde{d}_{\tilde{Z}}, \tilde{z}^{\tilde{A}})h_{\tilde{A}} + \tilde{z}^{\tilde{A}}(\tilde{\nabla}_{\tilde{Z}}, h_{\tilde{A}})$$

Therefore, by (2.3), (3.4), and (3.12) we get

$$\begin{cases} \tilde{\nabla}_{\hat{Z}} \tilde{U} = (\tilde{n}(\hat{Z}) + \tilde{v}(\hat{Z})) U \tilde{U} - 2 \tilde{u}(\hat{Z}) \xi , \\ \tilde{\nabla}_{\hat{Z}} U \tilde{U} = (\tilde{n}(\hat{Z}) + \tilde{v}(\hat{Z})) \tilde{U} + \tilde{v}(\hat{Z}) \xi . \end{cases}$$
(3.19)

We also note that since $\mathbf{b}(U\tilde{U}) = \tilde{u}$ is a closed form, we may say (see Poor [14]) that $\forall U\tilde{U}$ is *self-adjoint*.

According to the definition given by Rosca [5] and Rosca and Verstraelen [15], the formulae (3.19) show that the vector field \tilde{U} defines a *U-contact concircular* pairing.

Denote by D_U the 3-distribution defined by $\{\tilde{U}, U\tilde{U}, \xi\}$. By (2.2), (3.5), and (3.6) one readily finds from (3.19) that

$$[\ddot{U},\xi] = 0, \quad [U\ddot{U},\xi] = 0.$$
 (3.20)

Hence both vector fields \tilde{U} and $U\tilde{U}$ commute with ξ and by (3.19) and (3.20) we see that D_{II} defines a 3-*foliation* on \tilde{M} .

It is worth now to make the following considerations.

Let $\tilde{Z} \in \mathcal{X} \tilde{M}$ be any vector field on \tilde{M} . Then one has the general Bochner formula (see Poor [14]) on \tilde{M} :

$$2
(3.21)$$

where $\delta = d\circ\delta + \delta\circ d$ is the Laplace-Reltrini operator (or Laplacian) on AT*M, and the trace (abr. tr) is calculated with respect to the metric tensor \tilde{g} of \tilde{N} .

Applying formula (3.21) to the principal vector field $\stackrel{\circ}{U}$ and taking into account (2.7), one has

$$\operatorname{tr} \widetilde{\nabla}^{2} \widetilde{U} = \sum_{a} \widetilde{\nabla}_{h_{a}} (\widetilde{\nabla}_{h_{a}} \widetilde{U}) + \sum_{a} \widetilde{\nabla}_{h_{a}} (\widetilde{\nabla}_{h_{a}} \widetilde{U}) + \widetilde{\nabla}_{\xi} (\widetilde{\nabla}_{\xi} \widetilde{U})$$
(3.22)

and

$$\|\tilde{\nabla}\tilde{U}\|^{2} = 2 \sum_{a} \langle \tilde{\nabla}_{h} \overset{\circ}{}_{a} \overset{\circ}{}_{h} \overset{\circ}{}_{a} \overset{\circ}{}_{h} \overset{\circ}{}_{a} \overset{\circ}{}_{h} \overset{\circ}{}_{a} \overset{\circ}{}_{h} \overset{\circ}{}_{a} \overset{\circ}{}_{h} \overset{\circ}{}_{a} \overset{\circ}{}_{h} \overset{\circ}{}_{b} \overset{\circ}{}$$

Now by (2.14), (3.4), (3.5), (3.16), and (3.19) one finds

$$\begin{cases} \tilde{\mathcal{V}}_{h_{a}\star}\tilde{\mathcal{V}}_{h_{a}}\tilde{\mathcal{V}}_{h_{a}}=\tilde{t}_{a}\tilde{t}_{a}\star\tilde{\mathcal{V}}+(2-\tilde{t}_{a}\tilde{t}_{a}\star/2)\tilde{\mathcal{U}}+(3\tilde{t}_{a}\tilde{t}_{a}\star/2-2)\xi+\tilde{t}_{a}\star h_{a}\star,\\ \tilde{\mathcal{V}}_{h_{a}}\tilde{\mathcal{V}}_{h_{a}}\tilde{\mathcal{V}}_{h_{a}}=\tilde{t}_{a}\tilde{t}_{a}\star\tilde{\mathcal{V}}-(2-\tilde{t}_{a}\tilde{t}_{a}\star/2)\tilde{\mathcal{U}}+(3\tilde{t}_{a}\tilde{t}_{a}\star/2-2)\xi+\tilde{t}_{a}h_{a},\\ \tilde{\mathcal{V}}_{\xi}\tilde{\mathcal{V}}_{\xi}U=U. \end{cases}$$
(3.24)

Since we have found $\sum_{a} t_{a*} = 2$, we derive from (3.22), (3.23), (3.24), and (3.21) that \tilde{U} satisfies (3.21) and this equation is consistent with $\|\tilde{U}\|^2 = 4$.

Let L be the operator of type (1,1) defined by the fundamental 2-form $\tilde{\Omega}$. Denote then by $\tilde{\beta}_q = L^{q}\tilde{\omega} = \tilde{\omega} \wedge (\Lambda \tilde{\Omega})^q \in \Lambda^{2q+1}\tilde{N}$. Since $\tilde{\omega}$ and $\tilde{\Omega}$ are both closed, one finds by (3.9) and making use of the properties of the Lie derivative $\chi = i \circ d + d \circ i$ that

$$\chi_{\hat{U}}\hat{\beta}_{q} = 0 . \qquad (3.25)$$

Hence \tilde{U} is an infinitesimal automorphism of all (2q+1)-forms $\tilde{\beta}_q$ (q < m).

On the other hand, since $\hat{g}(\tilde{U},\tilde{U}) = \text{const}$, we may say in similar manner as in the case of a Sasakian manifold that \tilde{U} defines with $U\tilde{U}$ an *U*-section.

Like usually denote by

$$R(\hat{Z},\hat{Z}') = \begin{bmatrix} \hat{\forall}_{\hat{Z}}, \hat{\forall}_{\hat{Z}}, \end{bmatrix} - \hat{\forall}_{\begin{bmatrix} \hat{Z}, \hat{Z}' \end{bmatrix}}, \quad \hat{Z}, \hat{Z}' \in \mathcal{X} \stackrel{\text{\tiny black}}{\to}$$
(3.26)

the curvature operator. Then, as is known, the sectional curvature K(V,UV) defined by \tilde{V} and $U\tilde{V}$ is given by

$$\kappa(\vec{U}, \nu\vec{V}) = \frac{R(\vec{U}, \nu\vec{U}, \vec{U}, \nu\vec{U})}{\tilde{g}(\vec{V}, \vec{V})\tilde{g}(\nu\vec{U}, \nu\vec{U}) - (\tilde{g}(\vec{U}, \nu\vec{V}))^2}$$
(3.27)

where

Making use of (3.5), (3.6), and (3.19), one finds

$$[\vec{U}, U\vec{V}] = 4(\vec{U}+2\xi)$$
 (3.29)

and

$$R(\tilde{U}, U\tilde{U}) U\tilde{U} = 4(5\tilde{U}+8\xi)$$
 (3.30)

Hence by (3.27) and (3.28) one gets $K(\vec{u}, \vec{u}, \vec{v}) = -\frac{1}{5}$. Now referring to (2.10) and (3.12) one finds after some calculations

$$\overset{a}{\boldsymbol{\Theta}}_{a}^{a} = \overset{\circ}{\boldsymbol{v}}_{S} \wedge \overset{\circ}{\boldsymbol{v}}_{S}^{\star} + \overset{\circ}{\boldsymbol{v}}_{S} \wedge \overset{\circ}{\boldsymbol{t}}_{a^{\prime\omega}}^{a^{\prime}} - \overset{\circ}{\boldsymbol{v}}_{S}^{\star} \wedge \overset{\circ}{\boldsymbol{t}}_{a^{\star}}^{a^{\prime}}$$

$$+ \overset{\circ}{\boldsymbol{t}}_{a}^{\star} \overset{\circ}{\boldsymbol{t}}_{a^{\star}}^{a^{\star}} + \overset{\circ}{\boldsymbol{\omega}}^{a^{\star}} \wedge \overset{\circ}{\boldsymbol{\omega}}^{a^{\star}} \quad (\text{no summation})$$

$$(3.31)$$

where we have set

Rosca [16]

$$\begin{cases} \stackrel{v}{v}_{S} = \sum_{a} \stackrel{v}{t}_{a}^{*} \stackrel{v}{\omega} \epsilon \Lambda^{1} \stackrel{v}{S}, \\ \stackrel{v}{v}_{S}^{*} = \sum_{a} \stackrel{v}{t}_{a}^{*} \stackrel{v}{\omega} \epsilon \Lambda^{1} \stackrel{v}{S}^{*}. \end{cases}$$
(3.32)

As is known (see Libermann [11]), the components of the *Ricci tensor* are given by $\overset{\sim}{\Theta}_{a}^{a} = \tilde{R}_{bc} \star^{\omega} \wedge \overset{\sim}{\omega} \wedge \overset{\sim}{\omega}^{a*}$ ($\overset{\sim}{\Theta}_{a}^{a} + \overset{\sim}{\Theta}_{a}^{a*} = 0$). Because of this, we get from (3.31) that $\begin{cases} \tilde{R}_{bc} \star = \tilde{t}_{b} \star \tilde{t}_{c}, \\ \tilde{R}_{bc} \star = 2\tilde{t} \star \tilde{t}_{c}, \end{cases}$ (3.33)

It follows from (3.33) that the components of the Ricci tensor are disjoint (see
Rosca [16]). In addition, since the scalar curvature
$$\tilde{C}_s$$
 is the trace
of the Ricci tensor with respect to \tilde{g} , one finds by (2.7) and (3.3) that

of, the \tilde{c}_{z} = 4-m (m > 4). Therefore we conclude that the pseudo-Sasakian manifold \tilde{M} under consideration is a space form M(4-m) of hyperbolic type.

THEOREM 1. Let $M(U,\xi,\eta,g)$ be a pseudo-Sasakian manifold endowed with a c.c. connection and let \forall (resp. $\mathring{\Omega} = d\mathring{\eta}/2$) be the principal vector field associated with this connection (resp. the fundamental 2-form on $\widetilde{\mathtt{M}}$). One has the following properties:

- (i) \tilde{U} is divergence free, and $U\tilde{U}$ defines an infinitesimal homothety on \tilde{M} ;
- (ii) all the connection forms on \tilde{M} are integral relations of invariance for ບບີ:
- (iii) Ŭ and UŬ define an U-contact concircular pairing, and {ῢ,Uῢ,ξ} defines a 3-foliation on \widetilde{M} ;
- (iv) any contact extension $\hat{U}_{f} = \hat{U} + \hat{f}\xi$ of \hat{U} is a relative contact infinitesimal transformation of $\stackrel{\sim}{\eta}$;
- (v) \tilde{U} and $U\tilde{U}$ define both an infinitesimal automorphism of all (2q+1)-forms $\hat{\beta}_{a} = L^{q}\hat{u}$ where \hat{u} is the dual form of $U\hat{U}(q < m)$;
- (vi) the Ricci 1-form of \hat{M} is exterior recurrent, and the Ricci tensor is disjoint;
- (vii) \widetilde{M} is a space-form of hyperbolic type;
- (viii) any such submanifold $\stackrel{\sim}{ ext{M}}$ is defined by a completely integrable system of differential equations whose solution depends on 2m arbitrary constants.
- 4. CO-ISOTROPIC FOLIATION ON $M(U,\xi,\eta,\hat{g})$.

We shall consider on M the following three distributions:

- a) An invariant distribution D^{T} (i.e. $UD^{\mathsf{T}} \subseteq D^{\mathsf{T}}$) of dimension $2(\mathfrak{m}-\ell)+1$ defined by $D^{T} = \{h_{i}, h_{i*}, \xi; i=1, ..., m-\ell; i*=i+m\}.$
- An isotropic distribution D^{\perp} (i.e. $D^{\perp} \subseteq \text{orth } D^{\perp}$) of dimension ℓ b) defined by $D^{\perp} = \{h_r; r=m-l+1, \ldots, m\}.$

c) A transversal distribution $D_t = l_s \star (D^T \oplus D^1) \cap S^*$ of dimension ℓ defined by $D_t = \{h_{r*}; r^* = 2m - \ell + 1, \dots, 2m\}.$

These three distributions have no common direction and they define on M a *f-struc*ture of rank 22 (see Sinha [17]).

Accordingly we shall split the principal vector field \tilde{U} as follows:

$$\tilde{\mathbf{U}} = \tilde{\mathbf{U}}^{\mathsf{T}} \odot \tilde{\mathbf{U}}^{\mathsf{L}} \oplus \tilde{\mathbf{U}}_{\mathsf{L}}$$

$$(4.1)$$

where $\hat{U}^{T} \in D^{T}, \hat{U}^{L} \in D^{L}, \hat{U}_{L} \in D_{L}$.

Denote now by

$$\hat{\Psi} = \hat{\omega}^{2m-\ell+1} \wedge \dots \wedge \hat{\omega}^{2m}$$
(4.2)

the simple unit form which corresponds to D_t . Because D_t is orientable, $\tilde{\psi}$ is a well-defined global form. Since $\tilde{\psi}$ annihilates $D^{\mathsf{T}} \oplus D^{\mathsf{L}}$, the necessary and sufficient condition for $D^{\mathsf{T}} \oplus D^{\mathsf{L}}$ to be a *co-isotropic foliation* F_c is that $\tilde{\psi}$ be exterior recurrent (see Lichnerowicz [18] and Yano and Kon [7]).

Hence one must write $d\hat{\psi} = \hat{\Upsilon} \wedge \hat{\psi}$ and if $H^1(F_c, R)$ represent the 1-cohomology class of F_c , then the recurrence 1-form $\hat{\Upsilon}$ defines an element of $H^1(F_c, R)$ (see Lichnerowicz [6]). In the case under discussion one finds (compare with Yano and Kon [7]) that the necessary and sufficient condition for \hat{M} to receive a co-isotropic foliation $F_c = D^T \oplus D^1$ is that the component \hat{U}_t of \hat{U} vanishes. In this case the recurrence 1-form $\hat{\Upsilon}$ of $\hat{\psi}$ is given by

$$\hat{\gamma} = \ell \begin{pmatrix} 0 & 0 \\ u - \eta \end{pmatrix}. \tag{4.3}$$

Denote by M a (2m-l+1)-dimensional leaf of $F_{\rm c}$ and supress \sim for the induced elements on M_c.

According to the considerations of Section 1, it follows that M_c is a CICR submanifold. By definition we have du = 0. Because of this and (3.1), the exterior differentiation of (4.3) gives

$$d\gamma = -2l\Omega. \tag{4.4}$$

Equation (4.4) shows that the restriction $\Omega = \tilde{\Omega} \Big|_{M_{\Omega}}$ is an exact form.

On the other hand, the form of Godbillon-Vey (see Lichnerowicz [6]) on M_c is the (2*k*+1)-form $w_c \in \Lambda^{2k+1}(M_c)$ given by

$$w_{\rm G} = \gamma \Lambda (\Lambda d_{\rm Y})^{\rm L}. \tag{4.5}$$

One knows (see Lichnerowicz [18]) that the class of cohomology of $w_{\rm G}$ which is an element of ${\rm H}^{2\ell+1}({\rm M}_{\rm C};{\rm R})$ is an invariant of the foliation. Using the same notation as in section 3 and applying (4.4), we may write

$$v_{\mathbf{g}} = c(\mathbf{L}^{\ell}\mathbf{u} - \mathbf{L}^{\ell}\mathbf{n}) = c(\beta_{\ell} - \mathbf{L}^{\ell}\mathbf{n})$$
(4.6)

where we have set $c = -2^{\ell} \ell^{\ell+1}$.

Thus it follows from (3.22) that

$$\boldsymbol{\mathfrak{L}}_{\boldsymbol{\mathsf{U}}}^{\boldsymbol{\mathsf{W}}}_{\boldsymbol{\mathsf{G}}} = -c \boldsymbol{\mathfrak{L}}_{\boldsymbol{\mathsf{U}}}^{\boldsymbol{\mathsf{L}}}(\boldsymbol{\mathsf{L}}^{\boldsymbol{\mathsf{L}}}_{\boldsymbol{\mathsf{n}}}).$$

$$(4.7)$$

By means of (2.13) and (3.9) one has

$$d(L^{\ell}_{\eta}) = 2(\Lambda_{\Omega})^{\ell+1}$$
 (4.8)

and

$$di_{U}(L^{\ell}\eta) = 4\ell u(\Lambda\Omega)^{\ell} . \qquad (4.9)$$

Therefore we get

$$\mathcal{L}_{U}(L^{\ell}_{\eta}) = -u \wedge (\Lambda \Omega)^{\ell} = -\beta_{\ell}$$
(4.10)

and finally

$$\mathcal{L}_{U_{\mathcal{U}}}^{\mathsf{w}} = c\beta_{\ell} \quad . \tag{4.11}$$

Since β_{ℓ} is closed, the above equation gives $d\mathbf{X}_U \mathbf{w}_G = 0$ and allows us to say that \mathbf{w}_G is a relative integral invariant of U.

Further since the submanifold M_c is co-isotropic, it follows from this that the normal bundle $T^{\perp}M_c$ of M_c coincides with D^{\perp} . Since M_c is defined by $\omega^{r^*} = 0$, $r^* = 2m-\ell+1, \dots, 2m$, we derive from (2.8)

Since M_c is defined by $\omega^{L} = 0$, $r^{\times} = 2m-l+1,...,2m$, we derive from (2.8) and (3.12) that the covariant derivatives ∇h_r of the null normal sections h_r satisfy

$$\nabla h_r = \frac{v}{2} \otimes h_r$$
 (4.12)

Since h_r are null vector fields, equation (4.12) shows that h_r are geodesic directions. Hence according to the definition of Rosca [19], one may say that D^{\perp} has the geodesic property.

Further if X and Y are any vector fields of D^{\perp} , one has $\nabla_{Y} X \in D^{\perp}$. Thus according to a known definition, the distribution D^{\perp} is *autoparallel*.

Setting $l_r = -\langle dp, \nabla h_r \rangle$ for the second fundamental quadratic forms associated with the improper immersion $x: M_c \rightarrow \tilde{M}$ (l_r is a field of symmetric covariant tensors of order 2 on M_c), we derive by a simple argument that all l_r vanish. Therefore according to a well-known definition, we agree to say that the improper immersion $x: M_c \rightarrow \tilde{M}$ is improper totally prodesic.

It was proved by Goldberg and Rosca [2] that the distribution D^{\perp} is always involutive. If M^{\perp} are the leaves of D^{\perp} , then in a similar manner as for M_{c} one easily finds that the improper immersion $x: M^{\perp} \rightarrow \tilde{M}$ is improper totally geodesic. Since $x: M^{\top} \rightarrow \tilde{M}$ is a proper immersion, it is totally geodesic.

Next as it was proved (Goldberg and Rosca [2]) the necessary and sufficient condition for the manifold M_c to be *foliate* is that the simple unit form ψ which corresponds to D^{\perp} be exterior recurrent.

Since obviously one has $\phi = \omega^{m-\ell+1} \wedge \ldots \wedge \omega^m$, then by (3.1) one finds that the property of exterior recurrency for ϕ is equivalent to the condition $U^{\perp} = 0$.

Since by definition in this case D^{T} is involutive, let us denote by M^{T} a (2(m-l)+1)-dimensional leaf of D^{T} . Because M_{c} is a CICR submanifold, M^{T} is as is known an invariant submanifold of \tilde{M} , and this implies (see Rosca [1]) that M^{T} is minimal.

Coming back to the case under discussion, using (2.8), (3.12) and the fact that on M one has $U_t = 0$, $U^1 = 0$, we can show by means of a simple calculation that M^T is also totally geodesic.

Hence M_c is foliated by two families of orthogonal totally geodesic submanifolds M^T and M^T .

On the other hand, let $X \in \mathcal{X} \stackrel{M}{\longrightarrow}_{C}$ be any vector field on M_{C} . According to Rosca [1], one has UX = PX + FX where PX (resp. FX) is the tangential (resp. the normal) component of UX. By virtue of the total geodesicity of M^{T} , one easily finds that $\nabla PX \in M^{T}$.

Therefore the tangential component PX of X is *parallel*. According to Yano and Kon [7], it follows from this that M_c is a CR product i.e. $M_c = M^L \times M^T$.

Since M_c is connected, this property can be checked by de Rham decomposition theorem.

It is worth to note that this situation is quite similar to that of coisotropic CR submanifolds of a para Kaehlerian manifold structured by a geodesic connection (Rosca [20]).

THEOREM 2. Let M be a pseudo-Sasakian manifold structured by a c.c. connection and let \tilde{U} be the principal vector field associated with this connection. Then the necessary and sufficient condition for \tilde{M} to receive a co-isotropic foliation Γ_c is that the transversal component \tilde{U}_t of \tilde{U} vanishes. In this case the leaves M_c of F_c are CICR submanifolds of M_c , and if codim $M_c = \ell$, the form of Godbillon-Vey on M_c is a $(2\ell+1)$ -form w_c^* which is a relative integral invariant of $U = \tilde{U} \Big|_M$.

In addition, one has the following properties:

- (i) the improper immersion x: $M_c \rightarrow \tilde{M}$ is improper totally geodesic;
- (ii) N_c is foliated by anti-invariant submanifolds M^L which are improper totally geodesic and have the geodesic property.

Further the necessary and sufficient condition for M_c to be foliate is that the vertical (or isotropic) component U^{\perp} of $U = \tilde{U} \Big|_{M_c} W_c$ vanishes. In this case M_c is a CR product.

5. TANGENT BUNDLE MANIFOLD TM.

Let $T\dot{M}$ be the *tangent bundle manifold* having the pseudo-Sasakian manifold discussed in Section 3 as a basis.

Denote by $\tilde{V}_{L}(\tilde{v}^{\Lambda})$ the canonical vector field (or the vector field of Liouville) on TM. Accordingly we may consider the set $B^* = \{\tilde{\omega}^{\Lambda}, d\tilde{v}^{\Lambda}\}$ as an adapted cobasis on TM. Following Godbillon [21], we shall designate by \mathbf{d}_{v} and \mathbf{i}_{v} the vertical differentiation and the vertical derivation operators, respectively taken with respect to B^* (\mathbf{d}_{v} is an antiderivation of degree 1 of ΛTM and \mathbf{i}_{v} is a derivative of degree 0 of ΛTM).

Let T_s^{r} be the set of all tensor fields of type (r,s) on \tilde{M} . In general the *vertical* and *complete* lifts are linear mappings of $T_s^r \tilde{M}$ into $T_s^r \tilde{M}$, and for complete lifts one has:

$$(T_1 \Im T_2)^C = T_1^V \otimes T_2^C + T_1^C \otimes T_2^V$$

With respect to \mathcal{B}^* the complete lift of the fundamental form $\tilde{\Omega} = d\eta^2/2$ is given by

$$\hat{\Omega}^{C} = \sum_{a} \left(dv^{a} \wedge \omega^{a} + \omega^{a} \wedge dv^{a} \right) .$$
(5.1)

The exterior differentiation of (5.1) by means of (3.1) gives

V. V. GOLDBERG AND R. ROSCA

$$d\hat{\Omega}^{C} = \check{\mathbf{u}} \wedge \hat{\Omega}^{C} + \sum_{a} (\check{\mathbf{t}}_{a} d\hat{\mathbf{v}}^{a}^{*} - \check{\mathbf{t}}_{a}^{*} d\hat{\mathbf{v}}^{a}) \wedge \hat{\Omega}$$

+ $\check{\eta} \wedge (\check{\omega}^{a} \wedge d\hat{\omega}^{a}^{+} + \check{\omega}^{a}^{*} \wedge d\hat{\mathbf{v}}^{a}) .$ (5.2)

Using (5.2), we find

$$\mathcal{X} \sum_{\mathbf{V}} \hat{\boldsymbol{\Omega}}_{\mathbf{L}}^{\mathbf{C}} = \hat{\boldsymbol{\Omega}}^{\mathbf{C}} .$$
 (5.3)

As is known (see Godbillon [21]), equation (5.3) shows that \hat{X}^{C} is homogeneous of degree 1.

We will now take the complete lift \tilde{u}^{C} of the principal Pfaffian \tilde{u} associated with the c.c. connection with structures \tilde{M} . For this purpose we shall denote by $\partial_{B}(\tilde{t}_{A}) = h_{B}(\tilde{t}_{A}^{*})$ the Pfaffian derivatives of \tilde{t}_{A}^{*} (A=0,1,...,2m) with respect to cobasis \tilde{W}^{*} . Then according to the general theory (Yano and Ishihara [7]) one has

$$\overset{\circ}{u}^{C} = \overset{\circ}{u}_{A} d\overset{\circ}{v}^{A} + \partial_{B} (\overset{\circ}{u}_{A}) \overset{\circ}{v} \overset{\otimes}{\omega}^{A}$$
(5.4)

where we have set $\overset{v}{u} = \overset{v}{\overset{v}{u}} \overset{v}{\overset{\omega}{a}}_{A}$. Referring to (3.4) and (3.5) (c=2), after some calculations one finds

$$\begin{split} & \overset{\circ}{\mathbf{u}}^{\mathbf{C}} = \frac{1}{2} \sum_{a} \left[(\overset{\circ}{\mathbf{t}}_{a} * \overset{\circ}{\mathbf{v}}^{a} - \overset{\circ}{\mathbf{t}}_{a} \overset{\circ}{\mathbf{v}}^{a^{*}}) + \frac{1}{2} \sum_{a} \left[(\overset{\circ}{\mathbf{t}}_{a^{*}} \overset{\circ}{\mathbf{v}}^{a} - \overset{\circ}{\mathbf{t}}_{a} \overset{\circ}{\mathbf{v}}^{a^{*}}) \overset{\circ}{\mathbf{u}} \right] \\ & + \sum_{a} \left[(\overset{\circ}{\mathbf{v}}_{\omega}^{a} * \overset{\circ}{\mathbf{v}}_{\omega}^{a^{*}}) - \frac{1}{2} \overset{\circ}{\mathbf{v}} \overset{\circ}{\mathbf{v}} \overset{\circ}{\mathbf{v}} \right] . \end{split}$$
(5.5)

The exterior differentiation of (5.5) by means of (3.1) gives

$$d_{u}^{\infty c} = \frac{1}{2} \left(\sum_{a} \left(\widetilde{t}_{a}^{\nu} \widetilde{v}_{a}^{a} + \widetilde{t}_{a}^{\nu} \widetilde{v}_{a}^{\nu} \right)_{u}^{\nu} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{a} \right)_{\omega}^{\nu} \right) \right)_{u}^{\lambda} + \sum_{a} \left(\widetilde{t}_{a}^{\nu} d_{a}^{\nu} + \widetilde{t}_{a}^{\nu} d_{a}^{\nu} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{a} \right)_{\omega}^{\lambda} \right)_{u}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{\nu} \right)_{\omega}^{\lambda} \right)_{u}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{\nu} \right)_{\omega}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{\nu} \right)_{\omega}^{\lambda} \right)_{u}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{\nu} \right)_{\omega}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{\nu} \right)_{\omega}^{\lambda} \right)_{u}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{\nu} \right)_{\omega}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{\nu} \right)_{\omega}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{\nu} \right)_{\omega}^{\lambda} \right)_{u}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{\nu} \right)_{\omega}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(\left(v_{\omega}^{\nu a \nu a} - v_{\omega}^{\nu} \right)_{u}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a \nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a} + v_{\omega}^{\nu} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a} \right)_{u}^{\lambda} + \sum_{a} \left(v_{\omega}^{\nu a} + v_{\omega}^{\nu} \right)_{u}$$

Using (5.5) and (5.6), one finds $\mathcal{X} \underset{V}{\sim} \overset{\circ}{\mathbf{u}}^{C} = \overset{\circ}{\mathbf{u}}^{C}$. Hence \mathbf{u}^{C} is also a homogeneous form of degree 1.

Consider now the following scalar field on TM:

$$\tilde{T} = \sum_{v} \tilde{v}_{v}^{ava^{*}} + (\tilde{v}^{0})^{2}/2$$
(5.7)

and apply the vertical differentiation of \tilde{T} . According to Godbillon [21], one has

$$\hat{\mathbf{v}} = \mathbf{d}_{\mathbf{v}} \hat{\mathbf{T}} = \sum_{\mathbf{a}} \left(\hat{\mathbf{v}}_{\omega}^{\mathbf{a} \mathbf{a}, \mathbf{a}} + \hat{\mathbf{v}}_{\omega}^{\mathbf{a}, \mathbf{a}} \right) + \hat{\mathbf{v}}_{\eta}^{\mathbf{0} \mathbf{v}}$$
(5.8)

1

and by means of (3.1) one gets

$$\begin{split} \hat{\mathbf{M}} &= d\hat{\mathbf{v}} = \mathbf{v}\hat{\mathbf{v}}_{\Omega}^{\gamma, \gamma} + \hat{\mathbf{u}} \wedge \sum_{\mathbf{v}} \left(\mathbf{v}_{\omega}^{\mathbf{a}} \mathbf{v}_{\omega}^{\mathbf{a}} \mathbf{v}_{\omega}^{\mathbf{a}} \mathbf{v}_{\omega}^{\mathbf{a}} \right) \\ &+ \hat{\mathbf{\eta}} \wedge \left(\sum_{\mathbf{v}} \left(\mathbf{v}_{\omega}^{\mathbf{a}} \mathbf{v}_{\omega}^{\mathbf{a}} - \mathbf{v}_{\omega}^{\mathbf{a}} \mathbf{v}_{\omega}^{\mathbf{a}} \right) - d\hat{\mathbf{v}}^{0} \right) + 2\hat{\mathbf{v}}^{0}\hat{\mathbf{\lambda}} \end{split}$$

$$(5.9)$$

In (5.9) $\iota: \Lambda^{l_{N}} \rightarrow C^{\infty} \tilde{T} \tilde{N}$ is the operator of Yano and Ishihara [7], that is with respect to B^{*} one has by (3.6)

$$v_{v}^{v} = \sum_{a} \left(\hat{t}_{a}^{v,a} + \hat{t}_{a}^{v,a^{*}} \right).$$
 (5.10)

One quickly finds

$$i \gamma_L^{\hat{l}} = \tilde{v}$$
, (5.11)

and since $\hat{\mathbb{N}}$ is closed, it follows from (5.11) that

$$\mathbf{I}_{\mathbf{\hat{\gamma}}_{L}} \hat{\mathbf{\hat{n}}} = \hat{\mathbf{\hat{n}}}$$
 (5.12)

i.e. \hat{I} is homogeneous of degree 1. Moreover, taking the vertical derivation of \hat{I} , one has (see Godbillon [21]):

$$i_{y} \hat{l} = 0$$
. (5.13)

On the other hand, it is easy to see from (5.9) that $\tilde{\mathbb{H}}$ is of maximal rank (see Godbillon [21]) on TM. Accordingly, as is known, equations (5.11) and (5.13) prove that $\tilde{\mathbb{H}}$ is a *Finslerian form* (See Klein and Voutier [22]). Since the vertical differentiation d_{r} is an anti-derivation of square zero, one easily derives from (5.8) that

$$d_{v} \tilde{v} = 0, \quad i_{V} \tilde{v} = 0.$$
 (5.14)

Thus according to Godbillon [21], \checkmark is a semibasic form.

In the following we shall call \tilde{T} (resp. \tilde{v}) the *Liouville function* (resp. *the Liouville 1-form*) on \tilde{TN} (see Rosca [16]). Further one may call \tilde{M} the 2-form of Cartan on \tilde{TM} (see Rosca [19]).

Denote now by $\mathcal{B} = \{h_A, \frac{\partial}{\partial v^A}\}$ the vectorial basis dual to \mathcal{B}^* on \tilde{M} . Then as is known (see Yano and Ishihara [9] or Godbillon [21]) the vertical lift $(\tilde{Z})^V$ of \tilde{V} is expressed by

$$(\tilde{Z})^{V} = \tilde{z}^{V} \frac{\partial}{\partial \tilde{v}^{A}}$$
 (5.15)

Coming back to the case under consideration and using that $U\tilde{U} = b^{-1}(\tilde{u})$ (see Section 3), we find by (5.15) that

$$(\mathbf{u}\hat{\mathbf{u}})^{\mathbf{V}} = \sum_{\mathbf{a}} \left(\hat{\mathbf{t}}_{\mathbf{a}} \frac{\partial}{\partial \mathbf{v}^{\prime + 1}} - \hat{\mathbf{t}}_{\mathbf{a}^{\mathbf{x}}} \frac{\partial}{\partial \mathbf{v}^{\mathbf{a}^{\mathbf{x}}}} \right).$$
(5.16)

Now, taking the dual $\mu(U\hat{U})^V$ of $(U\hat{U})^V$ with respect to $\hat{1}$ and referring to (3.5) (c=2), we quickly find

$$\mu(U\dot{U})^{V} = 2\dot{u} . \qquad (5.17)$$

Since \hat{u} and \hat{l} are both closed, it follows from this that $\chi_{(U\hat{U})} \sqrt{\hat{l}} = 0$, i.e. $(U\hat{U})^V$ is an infinitesimal automorphism of \hat{l} .

Consider now on $T\tilde{M}$ the mechanical system $\mathfrak{M} = \{\tilde{M}, \tilde{T}, \tilde{\pi}\}$ where \tilde{T} and $\tilde{\pi} = 2\tilde{T}u$ (5.18)

are the kinetic energy and the field of forces of ${m M}$ (see Godbillon [21]).

Since \tilde{u} is closed, one has $d\tilde{\pi} = \frac{d\tilde{f}}{G} \Lambda_{\eta}^{\infty}$ and referring to (5.7), one quickly finds

$$\begin{split} \gamma_{L}^{T} &= 2_{T}^{\nu} , \\ \zeta_{L}^{\nu} &= 2_{T}^{\nu} . \end{split}$$

Equations (5.19) show that \tilde{T} and $\tilde{\pi}$ are homogeneous of degree 2. On the other hand, since $\tilde{\pi}$ is an exact 2-form of maximal rank, it defines a *potential sympletic* structure on TM. Hence, according to the definition given by Klein (see Godbillon [21]) the system \mathfrak{M} is regular.

Denote now by \widetilde{z}_{d} the dynamical system associated with \mathfrak{M} . As is known, \widetilde{z}_{d}

is defined via formula

$$i \tilde{Z}_{d}^{\hat{\Pi}} = d(\tilde{T} - \tilde{V}_{L}^{\hat{\Pi}}) + \tilde{\pi} .$$
(5.20)

Then:

- a) Since \tilde{T} and $\tilde{\pi}$ are both homogeneous and of the same degree, \tilde{Z}_{A} is a spray on $\tilde{\mathbb{M}}$, i.e. $[\tilde{\mathbb{V}}_{L}, \tilde{\mathbb{Z}}_{d}] = \tilde{\mathbb{Z}}_{d}$. b) Since $\tilde{\mathbb{T}}$ is of degree 2, the 2-form $\tilde{\mathbb{I}} - (d\tilde{\mathbb{T}} - \tilde{\pi}) \wedge dt \in \Lambda^{2}(\tilde{\mathbb{T}} \times \mathbb{R})$ is an
- integral relation of invariance for $\tilde{Z}_{d} + \frac{\partial}{\partial t}$ (Lichnerowicz [5]).

THEOREM 3. Let TM be the tangent bundle manifold having as a basis the manifold M(U,ξ,n,g) defined in Section 3 and let ປີ (resp. ມີ) be the principal vector field (resp. the fundamental 2-form) on \widetilde{N} . Then:

- (i) the complete lifts $\tilde{\Omega}^{C}$ and \tilde{u}^{C} of $\tilde{\Omega}$ and $\tilde{u} = \mathbf{b}(U\tilde{U})$ are homogeneous of degree one;
- (ii) the 2-form of Cartan I on TM is a Finslerian form;
- (iii) one may associate with $\hat{\mathbb{N}}$ a regular mechanical system whose dynamical system is a spray on M.

REFERENCES

- 1. ROSCA, R. On Pseudo-Sasakian Manifolds, Rend. Mat. 1984 (to appear).
- GOLDBERG, V.V. and ROSCA, R. Contact Co-isotropic CR Submanifolds of a Pseudo-2. Sasakian Manifold, Intern. J. Math. Math. Sci. 7(1984), No. 2, 339-350.
- 3. ROSCA, R. Variétés Sasakienne à Connexion Conforme de Contact, C.R. Acad. Sci. Paris Sér. I Math. 294(1982), 43-46.
- 4. LICHNEROWICZ, A. Les Relations Integrales d'Invariance et Leurs Applications à 1a Dynamique, Bull. Sci. Math. 70(1946), 82-95.
- ROSCA, R. Variétés Lorentziennes à Structure Sasakienne et Admettant un 5. Champ Vectoriel Isotrope &-quasi Concirculaire, C.R. Acad. Sci. Paris Sér. A. 291(1980), 45-47.
- LICHNEROWICZ, A. Variétés de Poisson et Feuilletages, Ann. Fac. Sci. Toulouse 6. Math (5) 4(1982), 195-262.
- YANO, K. and KON, M. CR Submanifolds of Kaehlerian and Sasakian Manifolds, 7. Birkhäuser, Boston-Basel-Stuttgart, 1983.
- 8. ROSCA, R. CR-sous-variétés Co-isotropes d'une Variété Parakählerienne, C.R. Acad. Sci Paris Sér. I Math. 298(1984), 149-151.
- 9. YANO, K. and ISHIHARA, S. Differential Geometry of Tangent and Cotangent Bundles, Marcel Dekker Inc., New York, 1973.
- 10. KLEIN, I. Espaces Variationels et Mècanique, Ann. Inst. Fourier (Grenoble) 12(1962), 1-124.
- LIBERMANN, P. Sur le Problème d'Équivalence de Certaines Structures 11. Infinitésimales, Ann. Mat. Pura Appl. 36(1951), 27-120.
- 12. ROSCA, R. Codimension 2 CR Submanifolds with Null Covariant Decomposable Vertical Distribution of a Neutral Manifold, Rend. Mat. (4) 2(1982), 787-796.
- 13. DAITA, D.K. Exterior Recurrent Forms on a Manifold, Tensor (N.S.) 36(1982), No. 1, 115-120.
- 14. POOR, W.A. Differential Geometric Structures, McGraw-Hill Book Comp., New York, 1981.
- 15. ROSCA, R. and VERSTRAELEN, L. On Submanifolds Admitting a Normal Section Which is Quasi-concircular w.r.t. a Corresponding Principal Tangent Section, Bull. Math. Soc. Math. R.S. Roumanie 20(68)(1976), No. 3-4, 399-402.

- ROSCA, R. On Parallel Conformal Connections, <u>Kodai Math. J.</u> 2(1979), No. 1, 1-10.
- SINHA, B.B. A Differentiable Manifold with Para f-Structure of Rank r, <u>Ann. Fac. Sci. Univ. Nat. Zaire (Klushasa) Sect. Math.-Phys. 6(1980)</u>, No. 1-2, 79-94.
- LICHNEROWICZ, A. Feuilletages, Géométric Riemannienne et Géométrie Symplectique, C.R. Acad. Sci. Paris Ser. 1 Math. 296(1983), 205-210.
- ROSCA, R. Espace-temps Ayant la Propriété Géodésique, C.R. Acad. Sci. Paris Sér. A 285(1977), 305-308.
- ROSCA, R. Sous-variétés Anti-invariantes d'une Variété Parakählerienne Structurée par une Connexion Géodesique, <u>C.R. Acad. Sci. Paris Sér. A</u> <u>287</u>(1978), 539-541.
- 21. GODBILLON, C. <u>Géométrie Différentielle et Mécanique Analytique</u>, Hermann, Paris, 1969.
- 22. KLEIN, I. and VOUTIER, A. Formes extérieures génératrices de sprays, <u>Ann. Inst.</u> Fourier (Grenoble) 18(1968), 241-268.