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ABSTRACT. Let E and F be Banach spaces. An operator T € L(E,F) is called
p-representable if there exists a finite measure u on the unit ball, B(E*), of E*

and a function g € Lq(u,F), % + % = 1 , such that

Tx = i <X x* > g(x*)dn (x*)
)B(E*)

for all x € E . The object of this paper is to investigate the class of all
p-representable operators. In particular, it is shown that p-representable operators
form a Banach ideal which is stable under injective tensor product. A characteriza-
tion via factorization through Lp-spaces is given.
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1. INTRODUCTION.

Let L(E,F) be the space of all bounded linear operators from E into F ,
and B(E*) the unit ball of E*, the dual of E . The completion of the injective
tensor product of E and F is denoted by E & F . Integral operators in L(E,F)
were first defined by Grothendieck, [2], as those operators which can be identified
with elements in (E 5 F)*. These operators turn to have a nice integral representa-
tion. We refer to Jarchow, [4], for statements and proofs of such representations.
Later on, Persson and Pietsch, [5] , defined p-integral operators in L(E,F) as

those operators T: E -~ F such that Tx = < X,x*>dC(x*), for all x € E*
B(E*)
where G is a vector measure on B(E*) with values in F and

1

il ¢ (x*)dG(x*) f

IJB(E*) JB(E*)
and all continuous functions ¢ on B(E*) . The representing vector measure for T

id(x*)[pdu\]/p for some finite measure u on B(E¥)

<

need not be of bounded variation. Further, if G 1is of bounded variation and F
doesn't have the Radon-Nikodym property, then T need not be a kernel integral operator.
The object of this paper is to study operators which are in some sense kernel
ingegral operators. Such operators is a sub-class of Pietsch p-integral operators.
Throughout this paper, if E is a Banach space, then E* is the dual of E and
B(E) the closed unit ball of E . If K is a set then ]K
function of K . If (g,u) is a measure space, then LP( o,u,E) is the space of

is the characteristic
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all p-Bochner integrable functions defined on © with values in E, for 1 - p - o« If
p == ,La(I,-,E) is the space of . esoeciaeliy bounded functions on ¢ with values
in E. The reai 1 <g - = always denote tne conjugate of p: 1 + LI 1. Most of

our terminology and notations are from Pietsch [6] and Diestel and Uh1 [1]. We refer
to these texts for any notion cited but not defined in this paper.

2. Rp(E,FL

DEFINITION 2.1. An operator T e L(E,F) is called p-representable operator if
there exists a finite measure . defined on the Borel sets of B(E*) and a function

g:B(E*) =~ F such that { i|g(x*)”q d. =, and Tx = « X, X* . g{x*)dp(x*)
Y iB(E¥)
for all x € E.

It follows from the definition that every p-representable operator is Pietsch-p-
integral operator, but not the converse. Let Rp(E,F) be the set of all p-repre-
sentable operators from E into F.

LEMMA 2.2. Rp(E,F) is a vector space.

PROOF. Let T],T2 € Rp(E,F) such that
T.(x) = I x,x* > gi(x*)d;i(x*).
B(E*)
Set w» = My MEPY Then LE TR Consequently, dpi = fid“ . Further, since

Li(K) < u(K) for all Borel sets K on B(E*), it follows that 0 < fi(x*) <1 ae.y,
i=1,2. Llet g(x*) = g](x*)f](x*) + gz(x*)fz(x*). Since 1 <p <=, and
0 < fi(x*) <1, wehave ge L9(B(E*),.,F). Further (T1+T2)(X)= [ < x,x*>g(x*)du,

J
for all x € E. This ends the proof. B(E*)
For Te Rp(E,F), we define
1T - ( qa. 1/q
1Tlygpy = inf £ [Hobe 1fautxe) ) V3
where the infimum is taken over all g and u for which T(x) = I < X, x*>g(x*)du(x*),
x € E. It is not difficult to show that | Hz(p)is a norm on Rp(E,F).

LEMMA 2.3. For T e Rp(E,F), Tl < liTﬁo(p)'
PROOF. Let Tx = f )< X,x*> g(x*)du(x*) for some 1+ and g as in the
B(E*

Definition 2.1. Choose g and + such that ( [ lig(x*)!%du(x*)) 1/q 5||TII(,(p)+c ,
for a given small ¢ > 0. Then, using Holder's inequality:

imxlt < (1 Rgtxs) 19 (e 110
'B(E*)

T +e .

o(p)
Hence [ITIl = iITHq(p) +c. Since ¢ is arbitrary, the result follows.

LEMMA 2.4. Every element T € Rp(E,F) is an approximable operator in L(E,F).
PROOF. Let Tx = J (£%) <x,x* g(x*)d.(x*), for some finite measure on B(E*) and
B(E*

some g e LYB(E*),u, F). Choose : and g such that
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- *y 1 a VL T T L
%{ng(x Y du(x*) ] < AiTligpy * e
Let 9 be a sequence of simple functions in Lq(B(E*),,, F) such that

Tg(e* !’QFX*) - gn(X*)Hq du(x*) ~0. Define T () =g pyyXox* > 9, (x*) dulx*). Then each

)
T, is a finite rank operator, and |!T - Tn”o(p) + 0. Then by definition of approxi-
mable operators, Pietsch [6] , T is approximable. This ends the proof.

THEQREM 2.5. Let H, E; F and G be Banach spaces, and T € Rp(E,F), A e L(F,G)
< JjA !
and B e L(H,E). Then ATB e R (H,G) and [[ATB[ (v < IIAl IIBILT L ()

PROOF. Let Tx = fB(E*) < X,x*> g(x*)du(x*) for all x € E and some finite
measure u on B(E*) and some g € LY(B(E*),u,F). Then
ATx = < X,x* > Ag(x*)du(x*)
JB(E*)

and JB(E*)I|Ag(x*)Hq du(x*) < |IA}! JB(E*)I|9(X*)”Q du(x*). Hence AT € Rp(E,G) and
WATH oy < NARITH ;-

To show TB € R_(H,F), let g, be a sequence of simple functions converging to g
sin L9(B(E*),u,F), and T, be the associated operators in Rp(E,F). So

Tx = [ <xx*> g, (x*)du(x*) .
B(E*)
With no loss of generality we assume ||B]! = 1. Define the vector measures G on B(H*)
into F via:
€ (K) = [ 1 (y*)dG(y*)
B(E*)
= f 1K(B*x*)Sn(x*)du(x*).

B(E*)
Clearly, Gn is a countably additive vector measure of bounded variation. Further, if
we define the measure + on B(H*) via
w(K) = f 1K(B*x*)du(x*L
B(E*)
then, using Holder's inequality:

S I *)lign(x*)}iq o) Sk VP

" BlE

Hence Gn << v. Since the range of Gn js finite dimensional, it has the Radon-Nikodym

s,

property, and consequently there exists Sr € L](B(H*), LF) such that dGn = Sndv.

Further, it is easy to check that Sn € Lq(B(H*),\,F).
An application of the Hahn-Banach theorem, we get:

T By =

n By, x* - g (x*)d.(x*)

B(E*)
B(H*)
Since the function Bv.x*- is pounded on B(E*), the sequence (. By,->gn) is Cauchy in
L9(B(E*)...F). Consequently the sequence(-y, - \Sn) is Cauchy in LO(B(H*) . F). Let
Cy.- S be the limit of (.y,--S ) in L9(B(H*),.,F). It is not difficult to see

that TnB converges in the operator norm to the cperator Jy = fooyL,y® S{y*)d {(y*).

B{H*)
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However T B - T8 1n the operator norm. Hence TBy =f ( <y,y*. S{y*)a.(y*), and
B(H*)

TB € RD(H,F). Further 78 < LT HB)' . Tnis enas the proof.
Theorem 2.5 states that (Rp, L ::~(p)) 1s & normed operator 1deal, [6] .
DEFINITION 2.6. tet (.,.) be a measure space and F a Banach space. An operator
T e L(LP(2,0),F) s called B-vector integral operator if tnere exists g € Lq(n,u,F)
such tnat

for all f e Lp(;,p).

If the function g 1is only Pettis g-integrable and the integral defining Tf is
the Pettis integral, then T is known to be called vector integral operator [1] .

Now using Theorem 2.5 we can prove:

THEOREM 2.7. Let E,F be Banach spaces and T € L(E,F). The following are
equivalent:
(i) Te Rp(E,F)

(ii) There exists operators T] € L(E,Lp(g,u)) and T2 € L(Lp(Q,u),F) for some

meaéure space (q,u) such that T2 is B-vector integral operator and T = TZTI’

PROOF. (i) » (ii). Let T € Rp(E,F) and
Tx = 7 <X,x*>g(x*)dp(x*)
B(E*)
for some finite measure . on B(E*) and g e Lq(B(E*),U,F). Define

T, E—> LP(B(E*))

(T]X)(X*) = < X,X* >,
and

T, LP(B(E*), ) —> F

To(f) = [ f(x*)g(x*)du .
B(E*)
Then T2 is a B-vector integral operator and T = T2T].

(ii) - (i). Let T = TZT]‘ T](E,Lp(n,u)) and T2 is a B-vector integral
operator in L(LP(2,u), F). Then T2 € Rp(Lp(Q,u), F). Using Theorem 2.6,
T2T1 € Rp(E,F). This ends the proof.

Let Ip(E,F) be the space of Pietsch p-integral operators from E into F, and
|F|'i(p) be the p-integral norm for T e Ip(E,F). Clearly Rp(E,F) < I (E,F) and
Inlli(p) < IITHG(p) for all Te Rp(E,F). This, together with the fact that Ip(E,F)
is complete, [5] , one can prove:

THEOREM 2. 8. (Rp(E,F), Il ”o(P)) is a Banach space.

If F has the Radon Nikodym property, then R](E,F) = I](E,F), and by using
Corollary 5 in [ 1], we see that R](C(Q),F) = I](E,F) = N](C(Q),F),4 where N](E,F)
is the class of nuclear operators from E into F.

Further if np(E,F) is the class of p-summing operators from E into F, then it
follows from the Grothendieck-Pietsch represenation theorem [6], that Rp(E,F)S; np(E,F)
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3. IDEAL PROPERTIES OF Rp-
We let Rp denote the operator ideal of ¢i’ p-representahble operators. The fol-
lowing notions are taken from Pietsch [5] and Holuo [3].

(i) An operator ideal J 1is called regular if for all Banach spaces E and F,
T e J(E,F) if and only if KFT e J(5,F**), where KF is the natural embedding of F
into F**,

(ii) J s called closed if the closure of J(E,F) in L(E,F) is J(E,F) for
all Banach spaces E and F.

(iii) J 1is called injective if whenever JFT € J(E,«"(B(F*))), then T e (E,F)
for all Banach spaces E and F. Here JF is the natural embedding of F into
27 (B(F*)).

(iv) J s called stable with respect to the injective tensor product if
T, € J(Ei’Fi)’ then T, 87T, € J(E] 8 Ess Fy % F2), for all Banach spaces Eq,E,,Fy,F,.

THEOREM 3.1. Rp is regular.

PROOF. Let E and F be any Banach spaces and let K.T e Rp(E,F*), for
T e L(E,F). Then KFTx = IB(E*) <X,x*>g(x*)du(x*) for some . and g as in
Definition 2.1.

Now g(x*) € KF(F) for all x* e B(E*). Since KF F — KF(F) is an isometric
onto operator, the function g(x*) = K;](g(x*)) i< well defined measurable and
ge Lq(B(E*),u, F). Further

Tx = [ <x,x*>3(x*)du(x*).
B(E*)
Hence T € Rp(E,F). This ends the proof.
In a similar way one can prove:
THEOREM 3.2. Rp is injective
THEOREM 3. 3. Rp is stable.
PROOF. Let Ti € Rp(Ei’Fi)’ i=1,2 and

T]x = ax,x*> g](x*)dp](x*)
B(E{)
o= Lo g, (x)diy (6,
B(Eg)
where 5 and 9; be the associated measures and functions as in Definition 2.1. If
E. & F, i = 1,2, 1is the completion of the injective tensor product of Ei with Fi’

i i’
(1], then T] 8 T2 € L(E] 8 Fp, E, 8 FZ)' Further:

(T, @ T)(x 8y) = [ <xx*>gy(x*)du (x*) ) B(éé‘) <Yay* > gy ly*)du,(y*).

B(E*)
1
Let K be the w*-closure of B(ET) ] B(Eg) = ix* 0 y*: x* e B(ET), y* € B(EE)} in
(E] %] Ez)*. Since the map 1 : ET 8 EE e ET 3] E5. the projective tensor product of

E] with EZ’ is continuous, [7], it follows that the map Y : B(E{) x BZ(EE) —_—
B(E{) 3] B(E§), Y(x*,y*) = x* 8 y* is continuous. This induces an isometric into
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operator ¢: C(K) —~ C(B(E{) . B(EE)) defined by u(f) = f o, . Consequentiy,
there exists a measure u on K such that

,e

‘:f(Z*)dU(Z*) = i fo ~(X*»Y*)d('-1 > —2)(X*sy*)~
K B(E{)'B(Eg)
Extend . to B(E] °) EZ)* by putting . = 0 on B(E] ] Ez)* K. Further define

g: B(E] ] Ez)* —— F, 8 F, via g(x* @ y*) = g](x*) e gz(y*) if x* e B(E?),

y* € B(E;), and g(z*) = 0 otherwise. Then it is not difficult to see that

[
B(E] 8 EZ)*
for all z e E] 8 EZ' Since g ¢ Lq(B(E] [’} EZ)*,u . F] 8 FZ)’ it follows that
T] e T2 € Rp(E] 2] E2. F] 8 Fz). This ends the proof.

(T, 8 T,)(2) = <z,2*>g(z*)du(z*)

A negative result for Rp is the following:

THEOREM 3.4. Rp is not closed.

PROOF: Assume Rp is closed. Since the ideal of finite rank operator is con-
tained in Rp, one has the ideal of approximable operators is contained in Rp. By
Lemma 2.4, one gets Rp = the ideal of approximabie operators. Theorem 2.8, together
with the open mapping theorem we get that || lic(p) and || I] are equivalent on Rp.
This is a contradiction. Hence Rp is not closed.

ACKNOWLEDGEMENT. The author would like to thank Professor Ramanujan and Dr. Defant
for stimulating discussions. This work was done while the author was a visiting
professor at the University of Michigan. The author would also like to thank the
Department of Mathematics at the University of Michigan for their warm hospitality.

REFERENCES
1.  DIESTEL, J. and UHL, J.J. Vector Measures. Mathematical Surveys, 15.
Providence, R.I. 1977.

2. GROTHENDIECK, A. Produits Tensoriels Topologiques et Espaces Nucleaires, Mem.
Amer. Math. Soc. No. 16, 1955.

HOLUB, J.R. Tensor Product Mappings, Math. Ann. 188 (1970) 1-12.
JARCHOW, H. Locally Convex Spaces. Teubner Stuttgart, 1981.

5.  PERSSON, A. and PIETSCH, A. P-Nucleare und p-Integrable Abbildungen in Banach-
r4umen, Studia Math. 33 (1969) 19-62.

6. PIETSCH, A. Operator Ideal. North Holland Pub. Comp. 1980.
SCHAEFER, H. Topological Vector Spaces. New York, Macmillan Co., 1966.




