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ABSTRACT. In this paper, asymptotic properties of solutions of

A3V + 0 (E+)
n Pn-iVn+l

are investigated via the quasi-adjoint equation

A3U 0 (E-)
n PnUn+2

A necessary and sufficient condition for the existence of oscillatory solutions of (E+)

is given. An example showing that it is possible for (E+) to have only nonoscillatory

solutions is also given.
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i. INTRODUCTION.

This study is concerned with the solutions of (E+), where A denotes the forward

differencing operation AVn Vn+l Vn The coefficient function is a real sequence

satisfying P > 0 for each n > By the graph of a solution V {V we mean
n-i n

the polygonal path connecting the points (n,V) n > I. A point of contact of the
n

graph of V with the real axis is a node. A solution V of (E+) is said to be oscil-

latory if it has arbitrarily large nodes; otherwise it is said to be nonoscillatory.

Hereafter the term "solution" shall mean "nontrivial solution".

The oscillation criterion established by Lazer [I, Theorem 1.2], for the differen-

tial equation y"’ + p(x)y’ + q(x)y 0, where p(x) ! O, q(x) > 0 is proved for the

difference equation (E+). We also include an example which demonstrates that is pos-

sible for (E+) to have only nonoscillatory solutions.

In studying (E+) we will make use of its quasi-adjoint equation (E-). For general

properties and definitions concerning (E+) and (E-) we refer to Fort’s book [2], and to

the paper by this author.

2. PRELIMINARY RESULTS.

Equation (E-) always has a nonoscillatory solution. In fact, (E-) has a solution

which satisfies
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U AU A2U # 0, U
n

> 0, AU > 0, A2U > 0,
n n n n n

for all n sufficiently large (see [3, Theorem 2.2]).

The posltivlty of the coefficient function p places severe restrictions on the

behavior of the nonoscillatory solutions of (E+).

We have the following results concerning (E+).

LEMMA 2. I. If. V is a solution of (E+) satisfying

Vm -> 0, AV
m

_< 0, A2Vm > 0

for some integer m > k _> I, then

> 0, AV
k

_< 0, A2V
k

> 0V
k

for each < k < m.

PROOF. We show the lemma true for k m-l. Note that A3Vm-I A(A2Vm-I)
-Pm_2Vm _< 0. Thus A2m--< A2Vm-I and we find d2V

m_l
> 0. Similarly, A2V

m_l
> 0

implies dVm_l < 0, which in turn implies Vm_ > 0. Therefore the result holds for

k m-l. Repeating this process for each _< k < m-I proves the lemma.

THEOREM 2.2. If V is a nonoscillatory solution of (E+) then either

Vn AVn A2Vn # 0, sgnV
n

sgnA2V
n # sgnAVn, (2.1)

for each n > I, of

V AV A2V # 0 sgnV
n

sgnAV
n

sgnA2V
n n n n

for all sufficiently large n.

PROOF. Assume that V is a nonoscillatory solution of (E+), where without loss of

generality Vn > 0 for each n _> N. Note that A3Vn A(A2Vn) -Pn-IVn+l < 0 for al.!

n > N hence A2V is decreasing and is eventually one sign. It follows that M
n

exists, M > N for which AV and A2V are sign definite, for all n > M. Hence
n n

V AV A2V # 0, for every n > M. The following cases must be considered:n n n

Vn > O, AV
n

< 0, A2Vn > 0, n _> M (a)

Vn > 0, AV
n

> 0, d2Vn > 0, n _> M (b)

Vn > 0, AV
n

< 0, d2Vn < 0, n _> M (c)

V > 0, AV
n

> 0, 2V < 0, n > M. (d)n n

The cases (c) and (d) are clearly impossible since JV AJ+Iv > 0 for all n
n n

sufficiently large implies that sgnAJ-lv sgnAJV eventually. To complete the proofn n

apply Lemma 2.1 to the case (a).

The exlstnece of a solution V of (E+), satisfying the conditions (2.1) is estab-

lished in [3].

Denote by (S-) the solution space of (E-) and (S+) the solution space of (E+).

For (U,V) e (S-) x (S+) define

F
n F[Un,Vn] Un+IA2Vn+I -AUnAVn+ + Vn+IA2Un. (2.3)
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It is easy to verify. The function defined by (2.3) is a constant determined by the

initial values of U and V, hence, F represents the discrete LaGrange billnear
n

concomitant for solutions of (E-) and (E+). Using (2.3), proofs of the following

two results can be modeled after the analogous results appearing in [3].

THEOREM 2.3. Suppose that U is a nonoscillatory solution of (E-). If (E+)

has an oscillatory solution, then there are two independent oscillatory solutions of

(E+) that satisfy

AV A2U
A() + (U

n-i
Vn+l 0. (2.4)

n n Un+l
COROLLARY 2.4. If (E+) has an oscillatory solution, there exists a basis for the

solution space (S+) consisting of k nonoscillatory solutions and 3-k oscillatory

solutions for k=0, i.

REMARK. Since the nodes of linearly independent solutions of (2.4) separate each

other, and those of linearly dependent solutions coincide, it follows that solutions of

(2.4) are oscillatory. See for example, Fort [3, p.221].

We conclude this section with the following easily verifiable result.

LEMMA 2.5. The graph of a sequence X {X is defined by
n

G(r, X (AX) (r n) + X n < r < n+l, n > I.
n n n

Let Y be a sequence. Then,

(1) G(r, (a Xn + b Yn)) a G(r, Xn) + b G(r, Yn
n r n+l, n I, where a and b are constants.

(ll) If AX > 0 for some integral m, then
m

Xm < G(r, Xm) < Xm+ (X
m

G(r, Xm) > Xm+l).
(ill) If Xn > 0 < 0) for each n, then G(r, Xn) > 0 < 0) for each r.

3. MAIN RESULT.

In case (E+) has oscillatory solutions, our main result shows that more strin-

gent requirements are imposed on the nonoscillatory solutions of (E+), than those

posed by Theorem 2.2. We will show that solutions satisfying relations (2.2) cannot be

’ntroduced" into the solution space (S+) without "forcing" out all the oscillatory

solutions.

THEOREM. A necessary and sufficient condition for (E+) to have oscillatory solu-

tions is that for any nonoscillatory solution V the relations (2.1) are satisfied.

PROOF. The sufficiency is clear. If every nonoscillatory solution V satisfies

the relations (2.1) by Lemma 2 5 G(r, V for such a solution is of one sign for
n

each n I. It follows that any solution with a node is oscillatory; thus we see that

initial values can be used to construct oscillatory solutions of (E+). To prove the

necessity, suppose that (E+) has an oscillatory solution, and that (E+) has a solution

Z satisfying the relations (2.2). By Corollary 2.3 and the above remark, there exists

a basis for (S+) consisting of one nonoscillatory solution R satisfying conditions

(2.1) and two oscillatory solutions S and T with every linear combination of S

and T oscillatory. Now Zn CIRn + C2Sn + C3Tn where CI C
2

C
3

are scalars,
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C + C + C # 0. Conditions (2.2) imply lira IZnl Let {ri} be an increasing
n+

of nodes of {C2Sn + C3Tn} Then at eachsequence r
i

G(ri,Zn) CIG(ri,R . (2.5)

The left member of (2.5) is bounded as i This contradiction completes the proof

of the theorem.

In conclusion we present an example showing that it is possible for every solution

of (E+) to be nonoscillatory. The relations (2.2) are satisfied by the funciton V

-n+l
dfined by V n + 2 It is easily seen that V is a solution of

n

A3v + 0
n 4[ (n+l) 2n+l) vn+l

Consequently every solution of (E) is nonoscillatory.
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