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ABSTRACT. A powerful number is a positive integer n satisfying the property that p

divides n whenever the prime p divides n; i.e., in the canonical prime decomposition

of n, no prime appears with exponent I. In [I], S.W. Golomb introduced and studied

such numbers. In particular, he asked whether (25, 27) is the only pair of

consecutive odd powerful numbers. This question was settled in [2] by W.A. Sentance

who gave necessary and sufficient conditions for the existence of such pairs. The

first result of this paper is to provide a generalization of Sentance’s result by

giving necessary and sufficient conditions for the existence of pairs of powerful

numbers spaced evenly apart. This result leads us naturally to consider integers

which are representable as a proper difference of two powerful numbers, i.e. n Pl

P2 where Pl and P2 are powerful numbers with g.c.d. (PI’ P2 I. Golomb (op.cit.)

conjectured that 6 is not a proper difference of two powerful numbers, and that there

are infinitely many numbers which cannot be represented as a proper difference of two

powerful numbers. The antithesis of this conjecture was proved by W.L. McDaniel [3]

who verified that every non-zero integer is in fact a proper difference of two

powerful numbers in infinitely many ways. McDaniel’s proof is essentially an

existence proof. The second result of this paper is a simpler proof of McDaniel’s

result as well as an effective algorithm (in the proof) for explicitly determining

infinitely many such representations. However, in both our proof and McDaniel’s

proof one of the powerful numbers is almost always a perfect square (namely one is

always a perfect square when n } 2(mod 4)). We provide in 12 a proof that all even

integers are representable in infinitely many ways as a proper nqnquare difference;

i.e., proper difference of two powerful numbers neither of which is a perfect square.

This, in conjunction with the odd case in [4], shows that every integer is

representable in infinitely many ways as a proper nonsquare difference. Moreover, in

12 we present some miscellaneous results and conclude with a discussion of some open

questions.
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|i. PROPER DIFFERENCES OF PORFUL NIERS

The first result is a natural generalization of Sentence [2, Theorem, p. 272].

Lemma I.i.

(I) Suppose that x and n are relatively prime integers with different parity.
2 2 2Then x n and + n are powerful numbers if and only if x n my has an integer

solution y 0(mod m).

(II) Suppose that x and n are relatively prime odd integers. Then ( n)/2
2 2 2and ( + n)/2 are powerful numbers if and only if n my has an integer

solution y 0 (mod 2m).
2 2 2PROOF. (I) If x + n and n are powerful then x n my where m +/- plP2

2
Pk with Pi for i 1, 2 k being all of the (distinct) primes dividing x

2
n which appear to an odd exponent in its prime decomposition.

2 2 2Conversely, if x n my with y 0(mod m) then it suffices to show that g

g.c.d.(x n, + n) 1. If g > 1 then 2n 0(mod p) for some prime p dividing g.

However, if p 2 then x and n have the same parity contradicting the hypothesis; and

if p divides n then x and n are not relatively prime, again contradicting the

hypothesis. This secures (I).

(II) If (-n)/2 and (x + n)/2 are powerful then (x2 n2)/4 mz
2 with z

2 2 20(mod m) as in (I). Thus x n my where y 2z 0(mod 2m).
2 2 2Conversely, if x n my where y 0(mod 2m) then it suffices to show that g

g.c.d.(( n)/2,( + n)/2) 1. If g > 1 then n is divisible by some prime p

dividing g. This forces g.c.d. (x, n) > 1 contradicting the hypothesis, and thereby

establishing the lemma. (Q.E.D.)

Lemma 1.1 effectively gives us a criterion for exhibiting even positive integers

as a proper difference of two powerful numbers. There is a natural method of so

doing by using fundamental units of quadratic fields.

The following example not only illustrates the process but also is a

counterexample to Golomb’s conjecture [i] that 6 is not a proper difference of two

powerful numbers. Note that this example also appears in [3].

EXAMPLE I.i. Since 9 42 7 and the fundamental unit of ((7I/2

3(7) 1/2 then we get that the nora of (8 + 3(7)1/2)4(4 + 71/2 is (214372) 2

(81025)2(7) 9. Thus the x of Lepta 1.1 (I) is 214372. Hence 214372 +/- 3 are

powerful. This yields the representation 6 214375 214369 5473 4632
The following is a simple proof of [3, Theorem 3, p. 87] containing an effective

algorithm.

THEOEEM 1.1. Every non-zero integer is a proper difference of two powerful

numbers in infinitely many ways.

PROOF. Note that n is a proper difference of two powerful numbers if and only

if-n is such a difference. Thus given n, it suffices to prove the result for either

n o_xr-n. We require the following notation. Let:

-n if n 3(mod 4)
m n 2 if n 0 or l(mod 4)

(n/2) if n 2(mod 4)

A l((m =)12)
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where:

2
B ((m- v)/2) +

(-3, 0,-I, 2) if n i, 2 or 5
(a, /, v, 6) (0, I, 0, I) if n 0(mod 4)

I (i, 0, 3, -2) in all other cases

(Note that B cannot be a perfect square). Thus A2 B +/- m and g.c.d.(A, B) 1

since g.c.d. (A, m) i. Now let:

2 + (3) I/2 if n 1 or 2
112 if n 5

T + U(B) 112
i0 + 3(11) 112(n/2) + (B) 2 in al other cases[((m 3)/2) I] + [((m 3)/2[(B) I/2 if n 0(mod 4)

Note that g.c.d.(B, U) I, and T2 U2B +/- I. Furthermore, it is worth noting that

if B is square-free then quadratic fields of type O(BI/2) are said to be of

"Richaud-Degert type", and (by [5] and [6]) T + U(B) I/2 is the fundamental unit of

0(BI/2). Investigation of such fields was the inspiration for the idea of this

proof.

Now let (T + U(B)I/2) i T
i

+ Ui(B)I/2 for i > i. Consider

(Ti
+ Ui(B)I/2)(A + BI/2) A. + C.(B)I/2

where

and

A. T.A + U.B and C. AU. + T.. We now claim that
I 1 i I 1

If a prime p divides g then

and

g g.c.d.(Ai, Ci) 1

C. 0(mod B).

A. ps where s e Z
1

C. pt where t Z.

Multiplying (1.3) by U
i (1.4) by T and subtracting we get:

i

+/- 1 T. 2 U.2B p(T.t U.s)
1 1 1 1

(1.1)

(1.2)

(1.3)

(1.4)

is even. The latter follows from the fact that A is even and U. is also even
1

provided we choose the even i’s in the above congruence class modulo B. ((.E.D.)

g.c.d.(A
i

n12) i. Thus by Lemma 1 1 (I) A
i

+/- (n12) are powerful provided that A
i

g.c.d.(AU, B) i. Note that infinitely many such exist.
2Observe that if n 2(mod 4) then we have proved the theorem since we have A.

C’2BI +/- n with C.I 0(mod B) and g.c.d. (Ai, C i) i.

If n 2(mod 4) then we have A. 2 C.2B (n/2) 2 with C. O(mod B) and

0(mod B). Thus, to secure (1.2) it suffices to show that T + AiU -= 0(mod B). To do

this we choose i -= -T(Au)-l(mod B) which is allowed since we have verified that

a contradiction which establishes (I. I).

Since T. -= Ti(mod B) and U. --- iTi-Iu(mod B) then (1.2) becomes Ti + AiTi-Iu
1 1
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The following table illustrates the algorithm given in the above proof The

last column of the table provides the congruence class of modulo B as indicated in

the proof for achieving infinitely many representations of a given n as a proper

difference of two powerful numbers.

Table 1.1
n Pl P2 A B T U i

1 22 132 33 52
2 33 52
3 22 73 372
4 53 112
5 732 22 113
6 54 73 4632
7

8 54.192.312.892 72.173.26712
9 24 535932 54.73-4632
10

2 3 2 1 2(mod 3)

2 3 2 1 2(mod 3)

2 7 8 3 l(mod 7)

3 5 2 1 l(mod 5)

4 11 10 3 l(mod 11)

4 7 8 3 4(mod 7)
4 23 24 5 22(mod 23)

5 17 4 1 6(mod 17)

4 7 8 3 4(mod 7)
12 119 120 11 64(mod 119)

As a necessary result of the general nature of the algorithm given in the proof

of Theorem I.I the representations given in Table i.I are not necessarily minimal.

For example, if n 7, then the power i of T + U(B) I/2 given in table I.I is too

large to explicitly state therein. However, we may choose A 3, B 2 and T U

I. Then (T + U(B)I/2) i (A + B I/2) -7 for any i m l(mod 2). In particular for i

1 we have 7 25 52. Similarly for a specific n it is often possible to choose a

smaller B than our more general algorithm allows.

12. MISCELLANEOUS RESULTS AND OPEN QUESTIONS

In [I] Golomb mentions that no example of three consecutive powerful numbers is

known, and that if they exist they must be of the form (4k I, 4k, 4k + i).

Moreover, he notes that no case of 4k i and 4k + 1 both being powerful is known.

Although the former remains open and appears to be quite difficult, we have obtained

infinitely many examples of the latter.

Consider:

EXAMPLE 2.1. Let K 32644082 then 4K + i 130576329 32 132 2932 and 4K

1 130576327 73 6172 However 4K 130576328 23 29 197 2857

We obtained the above result by considering: (3 + 71/2)(8 + 3(7)1/2) 3 11427

4319(7) 1/2. This gives us a method of generating infinitely many such K’s. We

merely choose (3 + 71/2)(8 + 3(7)1/2) i where i is chosen as in the proof of Theorem

1.1 to give us i 3(mod 7).

Now suppose that u and v are powerful numbers such that v u + 4k where k is

odd then (u + 2k) 2
uv 4k2. Consider"

EXAMPLE 2.2. 12 4 3 472 133. Hence (133 + 2 3) 2 472 133 4 32
36. Thus 36 22032 472 133

Note that from Table 1.1 we see that 1 is properly representable in infinitely

many ways as a proper difference of two powerful numbers. This advances a question

of Golomb [i] where he states that among the powerful numbers which are not perfect

squares, the smallest difference known to occur infinitely often is 4. He also
states that the only known instances where the difference between nonsquare powerful
numbers s less than 4 are: 3 27 53 and 1 23 32 132 233" However,
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consider the following representations for 2 which ..cannot be achieved via Theorem
i.i.

EXAMPLE 2.3. If we let i 0(mod 15), i positive, then (4 + (15)I/2) provides

infinitely many representations of 2 as a proper difference of two powerful numbers
neither of which is a perfect square. In particular, if i 15 then (4 + 151/2)i

+ 3572846569215(15) 1/2. Thus, by Lemma 1.1 (II) 13837575261124 +/- 113837575261124

must be powerful since 15 divides 357284659215. In fact, we find that’ 2
13837575261125- 13837575261123 53 72 112 1292 1492 35 712 33612"

Example 2.3 is no accident as the following result shows.
THEOREM 2.1. Every even integer is representable in infinitely many ways as a

proper difference of two powerful numbers neither of which is a perfect square.

PROOF. As in Theorem I.I, it suffices to prove the result for n > 0. Let m > n

be an odd integer relatively prime to n such that

B m(m- n) is not a perfect square (2.3)

m m 5(mod 8) if n -= 2(mod 4) (2.4)

and

m --- 3(mod 8) if n -= 0(mod 4). (2.5)

Let (T, U) be the minimal positive integer solution of T2 U2B i. By [7, Theorem,

P. 57] there is at least one such B with g.c.d. (U, B) I.

Now let A m (n/2) then A2 B (n/2) 2
with g.c.d.(A, B) i. Let Ti, Ui,

A. and C. be as in the proof of Theorem i.I, then as in that proof A.2 C.2B
1 1 i 1

(n/P-) 2 with g.c.d.(Ai, Ci) 1 and by choosing i --- -T(Au)-l(mod B) we guarantee that

C. -= 0(mod B). If we choose i to be even then the hypothesis of Lemma 1 1 is
I

satisfied and so A. +/- (n/2) are powerful. By (2.3) there are infinitely many such
i

A.. It remains to show that neither A + (n/2) nor A (n/2) are perfect squares
i i i

2Suppose A. +/- (n/2) D. then A. -= 1 +/- (n/2)(mod 8). By further choosing i 0(mod

4) (if necessary; i.e.)if either T m 2(mod 4) or U -= 2(mod 4)) we get U. =- 0(mod 8)

and T. m l(mod 8). Thus A. -= A(mod 8). Now if n -= 2(mod 4) then by (2 4) 1 +/- (n/2)
1 1

-= A -= 5 (n/2)(mod 8) which implies that 4 0 or n(mod 8) a contradiction. If--- An 0(mod 4) then by (2.5) 1 +/- (n/2) A. --- A 3 (n/2) (mod 8), which implies that
1

2 -= 0 or n(mod 8) another contradiction which secures the theorem. (O.E.D.)
To illustrate Theorem 2.1, we provide the following table containing the first 6

values of even n. Of course some of the powerful numbers are too astronomical to

explicitly state therein.
n Pl P2 A B T U i m

2 53.72.112.1292.1492 35.712.33612 4 15 4 1 14(mod 15)
4 9 77 351 40 128(mod 154)
6 10 91 1574 165 188(mod 364)

8 113 33 72 7 33 23 4 -2(mod 33)

lO 133 37 8 39 25 4 -2(mod 39)

12 173.2412.182452732 53.10692.257874312 ll 85 378 41 -8(mod 85)

Table 2.1
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Now we turn to the question of the existence of r-tuples of powerful numbers

spaced s units apart where r and s are positive integers.

The following result provides necessary and sufficient conditions for the

existence of triples of odd powerful numbers spaced an even distance apart.

PROPOSITION 2.1. Let x and r be positive integers with x r. Then x r, x +

r and x + 3r are powerful numbers provided"
2 2 2 nz2 r2 where mly and(i) If x is even then x my r and (x + 2rj

2

2 2 nz2 4r2 where m[y and n[z.(2) If x is odd then x my 4r and (x + 2r) 2

The proposition is imediate from Lemma I.I. Consider the following

application:

EXAMPLE 2.4. For x 169 we have that 72 49, 132 169, and 172 289 are

powerfuI numbers spaced 120 apart. It is easy to show that the conditions of

Proposition 2.1 (2) are satisfied.

It should be noted, however, that the authors have been unable to find a triple

of powerful numbers spaced 2 apart. As noted earlier, it is a difficult problem to

find a triple of powerfuls spaced an odd distance apart.

The next illustration shows how to build infinitely many powerful pairs which

are 4 apart given a single such pair.

EXAMPLE 2.5. If u and v are odd powerful numbers such that v u + 4 then u’
2 u2 + 4u + 4 are odd powerfuls spaced 4u v u(u + 4) u + 4u and v’ (u + 2j

2

apart. For example if (u, v) (121, 125) then (121 125, 1232), (121 125

1232), (121 125 + 2) 2 etc. are powerful pairs spaced 4 apart.

Finally we conclude the paper with a generalization of the concept of powerful

numbers and new questions pertaining thereto. Define a positive integer n to be

r-powerful, where r is a positive integer, provided pr divides n whenever the prime p

divides n. Hence, all positive integers are 1-powerful. The content of this paper

has dealt with 2-powerful numbers. Do there exist consecutive pairs, triples, etc.

of r-powerful numbers for r > 2? If so, are there infinitely many? In fact, many of

the questions raised and/or settled for 2 powerful numbers in this paper may be

applied to r-powerful numbers for r > 2.
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