ON A GENERALIZATION OF THE CORONA PROBLEM

GRAZIANO GENTILI and DANIELE C. STRUPPA

Scuola Normale Superiore Piazza dei Cavalieri, 7 56100 Pisa, Italy

(Received May 7, 1985)

ABSTRACT. Let g, $f_1, \ldots, f_m \in H^{\infty}(\Delta)$. We provide conditions on f_1, \ldots, f_m in order that $|g(z)| \le |f_1(z)| + \ldots + |f_m(z)|$, for all z in Δ , imply that g, or g^2 , belong to the ideal generated by f_1, \ldots, f_m in H^{∞} .

KEY WORDS AND PHRASES. Corona problem, congenial functions. 1980 AMS SUBJECT CLASSIFICATION CODE. 30D55, 30D50.

1. INTRODUCTION.

Let $H(\Delta)=H$ be the space of all holomorphic functions on $\Delta=\{z\in\mathbb{C}:|z|<1\}$, and let $H^{\infty}(\Delta)=H^{\infty}$ be the subspace of all bounded functions of $H(\Delta)$. Let f_1,\ldots,f_m be functions in H^{∞} and let $g\in H^{\infty}$ satisfy the following condition:

$$|g(z)| \le |f_1(z)| + \ldots + |f_m(z)|$$
 (any $z \in \Delta$). (1.1)

As a generalization of the corona problem (which was first solved by Carleson [1]) it is natural to ask if (1.1) implies that g belongs to the ideal $I_{H^{\infty}}(f_1, \ldots, f_m)$ generated in H^{∞} by f_1, \ldots, f_m , i.e. if (1.1) implies the existence of g_1, \ldots, g_m in H^{∞} such that, on Δ ,

$$g = f_1 g_1 + ... + f_m g_m.$$
 (1.2)

Rao, [2], has shown that the answer to this question is negative in general. On the other hand Wolff (see [3], th. 2.3) has proved that (1.1) implies that g^3 belongs to $I_{H^{\infty}}(f_1,\ldots,f_m)$. The question whether (1.1) implies the existence of $g_1,\ldots g_m$ in H^{∞} such that

$$g^2 = f_1 g_1 + ... + f_m g_m$$
 (1.3)

is still open, as Garnett has pointed out ([4], problem 8.20).

In this work we obtain some results on this generalized corona problem, making use of techniques which appear in the theory of ${\tt A}_p$ spaces, the spaces of entire functions with growth conditions introduced by Hōrmander [5].

With the same aim of Berenstein and Taylor [6] in A_p , we introduce in H^∞ the notion of jointly invertible functions (definition 3) and prove that if f_1,\ldots,f_m are jointly invertible, condition (1.1) implies that g belongs to $I_{H^\infty}(f_1,\ldots f_m)$ (proposition 5). We also prove that if the ideal $I_{H^\infty}(f_1,\ldots f_m)$ contains a weakly invertible

function having simple interpolating zeroes (see [3]), then again (1.1) implies that g belongs to $I_{H^{\infty}}(f_1, \ldots, f_m)$ (theorem 6).

Finally, in the same spirit of Kelleher and Taylor [7] we introduce the notion of congeniality for m-tuples of functions in H, and give a partial answer to the problem posed by Garnett ([4]): we prove that if $(f_1, \ldots, f_m) \in (H^{\infty})^m$ is congenial, then (1.1) implies $g^2 \in I_{H^{\infty}}(f_1, \ldots, f_m)$ (theorem 8).

WEAK INVERTIBILITY.

We first study some conditions under which (1.1) implies that $g(I_H^{\infty}(f_1,\ldots,f_m))$. DEFINITION 1. A function f in $H^{\infty}(\Delta)$ is called weakly invertible if there exists a Blaschke product B such that $f(z)=B(z)\tilde{f}(z)$ (z in Δ) with \tilde{f} invertible in H^{∞} .

The reason for this definition is the following simple criterion of divisibility for functions in $\operatorname{H}^{\infty}$.

PROPOSITION 2. Let $f \in \mathbb{H}^{\infty}$. Then f is weakly invertible if, and only if, for all $g \in \mathbb{H}^{\infty}$ the fact that $g/f \in \mathbb{H}$ implies $g/f \in \mathbb{H}^{\infty}$.

PROOF. Suppose f is weakly invertible: then there exists a Blaschke product B such that $f(z)=B(z)\tilde{f}(z)$, with \tilde{f} invertible in H^{∞} . Since g/f is holomorphic and since B contains exactly the zeroes of f, it follows that $g/B \in H$; however, since B is a Blaschke product, $g/B \in H$ implies, [8], that $g/B \in H^{\infty}$. Since $1/\tilde{f} \in H^{\infty}$ one has $g/f = (g/B)(1/\tilde{f})$, i.e. $g/f \in H^{\infty}$. Conversely, suppose that for all $g \in H^{\infty}$ such that $g/f \in H$, it follows $g/f \in H^{\infty}$. Write $f(z)=B(z)\tilde{f}(z)$, where B is the Blaschke product of all the zeroes of f (see [8]). Then B/f is holomorphic on Δ and therefore $1/\tilde{f}$ must belong to H^{∞} .

An extension of the notion of weak invertibility to m-tuples of functions in $\operatorname{H}^{\infty}$ is given by the following definition, analogous to the one given by Berenstein and Taylor for the spaces A_{D} in [6].

DEFINITION 3. The functions $f_1, \ldots, f_m \in H^{\infty}$ are called jointly invertible if the ideal generated by f_1, \ldots, f_m in H^{∞} coincides with $I_{\text{loc}}(f_1, \ldots, f_m) = \{g \in H^{\infty}(\Delta) : \text{ for any } z \in \Delta, \text{ there exists a neighborhood } U \text{ of } z \text{ and } \lambda_1, \ldots, \lambda_m \text{ in } H(U) \text{ such that } g = \lambda_1 f_1 + \ldots + \lambda_m f_m \text{ on } U \}.$

In view of Cartan's theorem B, it follows immediately that f_1,\ldots,f_m are jointly invertible if, and only if, $I_{H^\infty}(f_1,\ldots,f_m)=I_H(f_1,\ldots,f_m)$, the latter being the ideal generated by f_1,\ldots,f_m in $H(\Delta)$. As a consequence of the corona theorem, all m-tuples f_1,\ldots,f_m in H^∞ for which there exists $\delta>0$ such that $|f_1(z)|+\ldots+|f_m(z)|\geqslant \delta$ for all z in Δ , are jointly invertible $(I_H=I_H^\infty=H^\infty)$. More generally one has:

PROPOSITION 4. Let be How be weakly invertible, and let $f_1(z) = b(z) \tilde{f}_1(z), \ldots, f_m(z) = b(z) \tilde{f}_m(z)$, for $\tilde{f}_1, \ldots, \tilde{f}_m$ in H^∞ such that $|\tilde{f}_1(z)| + \ldots + |\tilde{f}_m(z)| \ge \delta > 0$ for some δ and all z in Δ . Then f_1, \ldots, f_m are jointly invertible.

PROOF. Let $g \in H^{\infty}$ belong to $I_H(f_1, \dots, f_m)$. There exist $\lambda_1, \dots, \lambda_m$ in $H(\Delta)$ such that $g(z) = \lambda_1(z) f_1(z) + \dots + \lambda_m(z) f_m(z) \qquad \text{(all } z \in \Delta) \qquad (2.1)$

i.e., for all z in Δ ,

$$g(z) = b(z) \left[\lambda_1(z) \tilde{f}_1(z) + \ldots + \lambda_m(z) \tilde{f}_m(z) \right]. \qquad (2.2)$$

Since b is invertible, and g/bEH, it follows that $\tilde{g}=g/b=\lambda_1\tilde{f}_1+\ldots+\lambda_m\tilde{f}_m\in H^\infty$. By the corona theorem, then, it follows that there are h_1,\ldots,h_m in H^∞ such that

$$\tilde{g}(z) = h_1(z) \tilde{f}_1(z) + ... + h_m(z) \tilde{f}_m(z),$$
 (2.3)

therefore

$$g(z) = \tilde{g}(z)b(z) = h_1(z)f_1(z)+...+h_m(z)f_m(z)$$
 (2.4)

and the assertion is proved.

Let now $f_1, \ldots, f_m, g \in H^{\infty}(\Delta)$, and suppose that (1.1) holds. It is well known, [2], that in general (1.1) does not imply that $g \in I_{H^{\infty}}(f_1, \ldots, f_m)$. However, (1.1) certainly implies that $g \in I_{loc}(f_1, ..., f_m)$ and hence

PROPOSITION 5. Let f_1, \dots, f_m be jointly invertible. Then if g satisfies condition (1.1), it follows that $g \in I_{H^{\infty}}(f_1, \dots, f_m)$.

A different situation in which (1.1) implies that $g \in I_{H^{\infty}}(f_1, \ldots, f_m)$ occurs when at least one of the f_1 's, say f_1 , is weakly invertible and has simple zeroes which form an interpolating sequence ([3]); this happens, for example, when f_1 is an interpolating Blaschke product with simple zeroes ([3]). Indeed, following an analogous result proved in [7] for the space of entire functions of exponential type, one has:

THEOREM 6. Let $f_1, \ldots, f_m \in H^{\infty}$, and suppose f_1 is weakly invertible with simple, interpolating zeroes. Then if $g \in H^{\infty}$ satisfies condition (1.1) it follows that g belongs to $I_{H^{\infty}}(f_1,\ldots,f_m)$.

PROOF. Choose $a_{ij} \in \mathbb{C}$, i=2,...m, $j \ge 1$, such that for $\{z_j\} = \{z \in \Delta: f_1(z) = 0\}$ it is $|a_{ij}| = 1$ and $a_{ij}f_i(z_j)\geqslant 0$. Define now $b_{ij}\in C$ (i,j as before) by

$$b_{ij} = \begin{cases} 0 & \text{if } f_2(z_j) = \dots = f_m(z_j) = 0 \\ \\ a_{ij}g(z_j) / (|f_2(z_j)| + \dots + |f_m(z_j)|) & \text{otherwise.} \end{cases}$$

By (1.1) it follows $|\mathbf{b}_{ij}| \le 1$ (all i,j), and since $\{\mathbf{z}_j\}$ is interpolating, one finds \mathbf{h}_2 , ..., h_m in H^{∞} such that $h_i(z_i) = b_{ij}$. Therefore the function $h = g - (h_2 f_2 + ... + h_m f_m)$ belongs to H^{∞} and vanishes at each z_{i} . The simplicity of the zeroes of f_{i} shows that $f/f_{i} \in H$, and the invertibility of f_1 implies $h/f_1 = h_1 \in H^{\infty}$. The thesis now follows, since $g = f_1 h_1 + h_2 = h_1 + h_2 = h_2 + h_3 = h_3 + h_4 = h_3 + h_4 = h_4 + h_4 + h_4 = h_4 + h_4 = h_4 + h_4 + h_4 = h_4 + h_4 + h_4 + h_4 + h_4 = h_4 + h_4 +$ +...+f_mh_m.

It is worthwhile noticing that the hypotheses of Proposition 5 and Theorem 6 are not comparable. Consider, indeed, the following conditions on $f_1, \ldots, f_m \in H^{\infty}$: (C_1) f_1, \dots, f_m are jointly invertible.

 (C_2) there exists j $(1 \le j \le m)$ such that f_j is invertible, with an interpolating sequence of zeroes, all of which are simple.

Then (C_1) does not imply (C_2) : take m=1 and f_1 weakly invertible with non-simple zeroes. On the other hand, also (C_2) does not imply (C_1) : consider f_1 invertible with simple interpolating zeroes $\{z_n\}$; let $f_2 \in \mathbb{H}^{\infty}$ be a function such that $f_2(z_n) = 1/n$ (such a function) tion certainly exists since $\{z_n^{}\}$ is an interpolating sequence); now $f_1^{}$ and $f_2^{}$ have no common zeroes, and hence $1 \in I_{loc}(f_1, f_2)$; however $1 \notin I_{H^{\infty}}(f_1, f_2)$ since if $1 = \lambda_1 f_1 + \lambda_2 f_2$, then it is $\lambda_2(\mathbf{z}_n)=n$, i.e. $\lambda_2\notin H^\infty$. Therefore the pair $(\mathbf{f}_1,\mathbf{f}_2)$ satisfies (\mathbf{C}_2) but not (\mathbf{C}_1) . CONGENIALITY.

In this section we describe a class of m-tuples of functions in $H^{\infty}(\Delta)$, for which condition (1.1) implies that $g^2 \in I_{H^{\infty}}(f_1, ..., f_m)$.

DEFINITION 7. An m-tuple (f_1, \ldots, f_m) of functions in H^{∞} is called congenial if, for all i,j=1,...,m,

Notice that the class of congenial m-tuples is not empty. Indeed, one might consider pairs f_1 , f_2 in H^∞ which, at their common zeroes, satisfy some simple conditions on their vanishing order easily deducible from Definition 7. For example, one can ask that $f_1(z_0) = f_2(z_0) = 0$, $f_2(z_0) \neq 0$, $f_1(z_0) = 0$. As a partial answer to problem 8.20 in [4], we prove the following

THEOREM 8. Let $f_1, \ldots, f_m, g \in H^\infty(\Delta)$, and suppose (f_1, \ldots, f_m) be congenial. If g satisfies (1.1), then $g^2 \in I_{H^\infty}(f_1, \ldots, f_m)$, i.e. there are g_1, \ldots, g_m in H^∞ such that (on Δ)

$$g^{2}(z) = f_{1}(z)g_{1}(z)+...+f_{m}(z)g_{m}(z)$$
 (3.1)

PROOF. We mainly follow the proof due to Wolff, [3], of the fact that (1.1) implies that $g^3 \in I_{H^\infty}$. We can assume $\|f_j\|_{\infty} \le 1$, $\|g\|_{\infty} \le 1$, and $f_j, g \in H(\overline{\Delta})$ $(j=1,\ldots,m)$. Put $\psi_j = g\overline{f_j}/\|f\|^2$ $(\psi_j$ is bounded and C^∞ on $\overline{\Delta}$) and consider the differential equation

$$\partial b_{j,k} / \partial \overline{z} = \psi_j \partial \psi_k / \partial \overline{z} = g^2 G_{j,k} \qquad (1 \le j,k \le m)$$
 (3.2)

for

$$G_{j,k} = \overline{f}_{j} \sum_{\ell} f_{\ell} (\overline{f_{\ell} f_{k}' - f_{k} f_{\ell}'}) / |f|^{6}.$$

If solutions $b_{j,k} \in L^{\infty}$ exist, then clearly $g_j = g\psi_j + \frac{\Sigma}{k} (b_{j,k} - b_{k,j}) f_k \in H^{\infty}$ and (3.1) holds (indeed $g_j = 0$ and g_j is bounded on Δ). In order to prove that (3.2) admits a solution in L^{∞} it is enough to show that $|g^2G_{j,k}|^2 \log(1/|z|) dxdy$ and $\partial (g^2G_{j,k})/\partial z$ are Carleson measures for $1 \le j,k \le m$.

As far as $|g^2G_{j,k}|^2\log(1/|z|)dxdy$ is concerned, notice that, by the congeniality of $(f_1,...,f_m)$, it is

$$\left|\mathsf{g}^2\mathsf{g}_{\mathsf{j},k}\right|^2 \leqslant \left|\mathsf{g}\right|^4 \left|\overline{\mathsf{f}}_{\mathsf{j}}\right|^2 \left|\sum_{\ell} \mathsf{f}_{\ell} (\overline{\mathsf{f}_{\ell}^{\mathsf{f}_{\mathsf{k}}^{\mathsf{f}}} - \mathsf{f}_{\mathsf{k}}^{\mathsf{f}_{\ell}^{\mathsf{f}}}}) \left|^2 / \left|\mathsf{f}\right|^{12} \leqslant c |\mathsf{f}^{\mathsf{f}}|^2.$$

On the other hand,

$$\partial (g^2G_{j,k})/\partial z = 2gg'G_{j,k} + g^2\partial G_{j,k}/\partial z;$$

again by the congeniality of (f_1, \ldots, f_m) , one has

$$\begin{aligned} &|\mathsf{g}\mathsf{g}'\mathsf{G}_{\mathsf{j},\mathsf{k}}| \leq |\mathsf{g}||\mathsf{g}'||\overline{\mathsf{f}}_{\mathsf{j}}||\sum_{\ell} \mathsf{f}_{\ell}(\overline{\mathsf{f}_{\ell}\mathsf{f}_{\mathsf{k}}'}-\mathsf{f}_{\mathsf{k}}\mathsf{f}_{\ell}')|/|\mathsf{f}|^{6} \leq \mathsf{C}(|\mathsf{g}'|^{2}+||\mathsf{f}'|^{2})/|\mathsf{f}| \leq \\ &\leq \mathsf{C}(|\mathsf{g}'|^{2}/|\mathsf{g}|+||\mathsf{f}'|^{2}/|\mathsf{f}|), \end{aligned}$$

and

$$\begin{split} & \left| g^2 \partial G_{j,k} / \partial z \right| = \left| g \right|^2 \cdot \left| f_j \right| \left| \sum_{\ell} \overline{f_\ell} f_\ell^* \right| \cdot \left| \sum_{\ell} f_\ell (\overline{f_\ell} f_k^* - f_k f_\ell^*) / \left| f \right|^8 + \\ & + \left| g \right|^2 \left| \overline{f_j} \right| / \left| f \right|^2 \cdot (\left| \sum_{\ell} f_\ell^* (\overline{f_\ell} f_k^* - f_k f_\ell^*) / \left| f \right|^4 + 2 \left| \sum_{\ell} f_\ell^* \overline{f_\ell} \right| \left| \sum_{\ell} f_\ell (\overline{f_\ell} f_k^* - f_k f_\ell^*) \right| / \left| f \right|^6) \leq \\ & \leq c \left| \sum_{\ell} \left| f_\ell^* \right|^2 / \left| f_\ell \right|. \end{split}$$

This concludes the proof.

ACKNOWLEDGMENT. Theauthors wish to thank Professor Carlos A. Berenstein for reading a preliminary version of this paper. They also gladlyacknowledge the Ministero P.I. of the Italian Government and the University of Maryland for their financial support.

REFERENCES

- CARLESON, L. Interpolation by Bounded Analytic Functions and the Corona Problem, Ann. of Math. (2)76 (1963), 547-559.
- 2. RAO, K.V.R. On a Generalized Corona Problem, J. Anal. Math. 18(1967), 277-278.
- 3. GARNETT, J.B. Bounded Analytic Functions, Academic Press, New York, 1981.
- 4. BARTH, K.F., BRANNAN, D.A. AND HAYMAN, W.K. Research Problems in Complex Analysis, Bull. London Math. Soc. 16 (1984), 490-517.
- 5. HORMANDER, L. Generators for Some Rings of Analytic Functions, <u>Bull. Amer. Math.</u> Soc. 73 (1967), 943-949.
- 6. BERENSTEIN, C.A. and TAYLOR, B.A. Interpolation Problems in $\boldsymbol{\ell}^n$ with Applications to Harmonic Analysis, J. Anal. Math. 38 (1980), 188-254.
- 7. KELLEHER, J.J. and TAYLOR, B.A. Finitely Generated Ideals in Rings of Analytic Functions, Math. Ann. 193 (1971), 225-237.
- 8. HOFFMAN, K. <u>Banach Spaces of Analytic Functions</u>, Prentice Hall Inc., Englewood Cliffs, 1962.