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Investigated is the quantum relativistic periodic Toda chain, to each site of
which the ultra-local Weyl algebra is associated. Weyl’s q we are considering
here is restricted to be inside the unit circle. Quantum Lax operators of the
model are intertwined by six-vertex R-matrix. Both independent Baxter’s Q-
operators are constructed explicitly as seria over local Weyl generators. The
operator-valued Wronskian of Qs is also calculated.

1. Introduction

Long ago, Baxter in his famous papers [1, 2, 3, 4, 5] has introduced the
object which is known now as Q-operator. This operator does satisfy the
so-called Baxter (or T −Q) equation and besides has many interesting prop-
erties. Recently Q-operator was intensively discussed in the series of papers
[7, 8] in connection with continuous quantum field theory. In [14, 21] it
was pointed out the relation of Q-operator with quantum Bäklund trans-
formations. In [17], was discovered the relation of Q-operator with Block
solutions of quantum linear problem.

Q-operator was used initially for the solution of the eigenvalue prob-
lem of XYZ-spin chain, where usual Bethe ansatz fails. The reason is that
T −Q equation, together with an appropriate boundary conditions, provides
a one-dimensional multiparameter spectral problem which allows one to de-
termine the spectra of both the auxiliary transfer matrix T and the operator
Q. In the case of the quantum mechanical integrable chains (e.g., the peri-
odic Toda chain) the appropriate solution of the Baxter equation plays the
prominent role in the functional Bethe ansatz and the quantum separation
of variables.
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Thus the reader should distinguish two approaches to Q-operator: the
first one is Baxter’s functional equation as the spectral problem, while the
second one is the investigation of Q, obeying Baxter’s equation, as the op-
erator defined in terms of quantum observables. This paper is devoted to the
investigation of Q as an operator.

In quite recent papers explicit constructions of Q-operators were obtained
for several models, like the isotropic Heisenberg spin chain, [18], and the pe-
riodic Toda chain and other models with the rational R-matrix, [17]. In these
papers Q-operator was obtained as the trace of monodromies of the appro-
priate local operators. It is well known that with free boundary conditions
for Q, T −Q equation provides a one-parametric family of solutions, so that
one may extract two independent solutions with nonzero discrete Wronskian
(see [7, 8, 19]). In [17, 18] both independent Q operators were obtained for
the models considered.

In this paper, we investigate the exactly integrable model known as “quan-
tum relativistic Toda chain,” [13, 15, 20]. Local L operator for the model is
constructed with the help of the Weyl algebra generators, commuting on
q, and we deal with the case |q| < 1. Here, we do not consider the Jacoby
partners to the Weyl algebra, dealing thus with the compact q-dilogarithms
(investigation of the modular formulation of the quantum relativistic Toda
chain is the subject of the forthcoming paper, [12]). Quantum space of our
model is a formal module of an enveloping of the tensor product of several
copies of Weyl algebras. The only thing we suggest for the Weyl generators is
their invertibility and a q-equidistant spectrum for one of them. Both inde-
pendent operators Q+ and Q− and their Wronskian are calculated locally as
the operators acting in the ultra-local Weyl algebra. Actually all our results
are to be understood as the well-defined series expansions for functions
from the enveloping mentioned.

2. The model and the results

This section consists of two parts. We formulate the model first, actually just
defining the transfer matrix, and then we give the final formulae for Q±
operators and their q-Wronskian. All the sections beyond the introduction
are the QUISM-type derivation of these results.

2.1. Problem

First of all, we define the relativistic Toda chain L-operator, associated with
fth site of a chain, as

Lf(x) =

(
xuf −(xuf)

−1 vf

q−1/2λv−1
f 0

)
, (2.1)
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where x ∈ C is the spectral parameter, λ ∈ C is an extra parameter, common
for all sites (i.e., λ is a module), the set of elements uf, vf form the “half-
integer” ultra-local Weyl algebra:

uf ·vf = q1/2vf ·uf, (2.2)

and elements with different fs commute. As usual, the whole quantum space
is the tensor product of some copies of Weyl modules, and f marks the “num-
ber” of given Weyl algebra in this tensor product. Recall, we will always imply
|q| < 1.

The correspondence between the relativistic Toda chain and usual Toda
chain may be established, for example, in the following parameterization:

q = e−iε, λ = −ε2, x = eεθ/2,

uf = e−εpf/2, vf = εeqf ,
(2.3)

where

[p,q] = i, (2.4)

in the limit

lim
ε→0

1

ε
Lf(x) =

(
θ−pf eqf

−e−qf 0

)
. (2.5)

The right-hand side of this relation is known as the L-operator for the quan-
tum Toda chain.

In the L-operator as well as in all other objects the spectral parameter x

will always couple with uf. So we introduce the useful notation

x2u2
f

def
= qsf , (2.6)

so that for any formal function g(sf),

g
(
sf

) ·vn
f = vn

f ·g(
sf +n

) ∀n. (2.7)

We define the transfer matrix for the chain with F sites, f = 1, . . . ,F, as

T
(
x2

)
=

(
(−x)F

∏
f

uf

)
·tr(L1(x) ·L2(x) · · ·LF(x)

)
. (2.8)

The matrix T(x2) becomes a polynomial of x2 with operator-valued coeffi-
cients:

T
(
x2

)
=

F∑
j=0

(
−x2

)F−j
tj. (2.9)
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Here it is implied that tF = 1 and

t0 =
∏

f

u2
f . (2.10)

Later we will argue that {tj} is the commutative set. Equivalently, this means
that

T
(
x2

)
T
(
y2

)
= T

(
y2

)
T
(
x2

) ∀x,y. (2.11)

Note that apart from the trivial tF = 1 all other F coefficients are indepen-
dent. For a given set {tj} one can define another set {tj} by

tj = t−1
0 tF−j. (2.12)

This means simply that

T
(
x2

)
=

(
−x2

)F
t0T

(
x−2

)
. (2.13)

Baxter’s operator Q(x2), by the definition, is an operator commuting with
the set of tj,

Q
(
x2

)
T
(
y2

)
= T

(
y2

)
Q

(
x2

) ∀x,y, (2.14)

and obeying the Baxter T −Q relation

T
(
x2

)
Q

(
x2

)
=

((
−λx2

)F
t0

)
Q

(
qx2

)
+Q

(
q−1x2

)
, (2.15)

where t0 is given by (2.10). The model-dependent coefficients of Q(qx2)

and Q(q−1x2) in the right-hand side of (2.15) are the subject of separate
calculations, and this particular form will be argued later in this paper.

In what follows, we will see that with this normalization of the coeffi-
cients in (2.15) the Baxter equation has a solution entire on x2. We will call
this solution

Q+

(
x2

)
= J

(
x2,λ, {t}

)
. (2.16)

Proposition 2.1. The entire on x2 solution of (2.15) as a series on λF is

J
(
x2,λ, {t}

)
=

( ∞∏
k=1

T
(
qkx2

)) ·
( ∞∑

k=0

(
−λF

)k
ck

(
x2

))
, (2.17)

where c−1 ≡ 0, c0 ≡ 1, and recursively

ck

(
x2

)
=

∞∑
j=1

(
qjx2

)F
ck−1

(
q1+jx2

)
T
(
qjx2

)
T
(
q1+jx2

) . (2.18)
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Note that J(x2,λ, {t}) is the entire function on all its arguments. The proof
of this proposition is a rather simple exercise.

The other solution Q−(x2) must contain a cut with respect to the variable
x, and up to this cut we guess Q−(x2) to be entire on x−2. More exactly,
with the sf-notation introduced by (2.6), one may check that

Q−

(
x2

)
= λ−

∑
f sf ·J(x−2,λ, {t}

)
(2.19)

also solves (2.15). Obviously, Q+ and Q− may be considered as two inde-
pendent solutions of (2.15). The last definition we need is the q-Wronskian
of these two solutions

W
(
x2

) def
= Q+

(
q−1x2

)
Q−

(
x2

)
−Q+

(
x2

)
Q−

(
q−1x2

)
. (2.20)

2.2. Solution

In this paper, we give explicit expressions for both functions Q±. The natural
question arises: we have got yet the form (2.17) and (2.18), what one may
otherwise do. The aim of this paper is to investigate the relativistic Toda
chain by QUISM method, to construct local operators Mf(x

2) such that a
trace of their monodromy gives Q±(x2), to prove the commutativity of the
transfer matrices and Q± and to calculate the Wronskian. Note that in QUISM
approach we construct Q±(x2) not as functions of {t}, but as functions of
local uf, vf. This is in some sense a factorization, the simplest analogue of
this is the well-known q-exponential formula

(x+y;q)∞ = (x;q)∞ ·(y;q)∞ ; xy = qyx, (2.21)

where conventionally

(x;q)n
def
=

n−1∏
k=0

(
1−qkx

)
, (x;q)∞

def
=

∞∏
n=0

(
1−qkx

)
, (2.22)

and as the series expansions

(x;q)∞ =

∞∑
n=0

qn(n−1)/2 (−x)n

(q;q)n
, (x;q)−1∞ =

∞∑
n=0

xn

(q;q)n
. (2.23)

The right-hand side of (2.21) we call the local form of its “global” left-hand
side.

Now we describe the local form of all solutions. First of all, we introduce
a universal function

gα,β(n,m)
def
= qnmαnβm

(
q1+n;q

)
∞

(
q1+m;q

)
∞

(q;q)∞
, (2.24)

where α and β are complex numbers, and elements qn and qm commute.
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Proposition 2.2. The operator Q+(x2), defined by (2.16), (2.17), and
(2.18), in the local form is

Q+

(
x2

)
=

∑
{nf≥0}

(∏
f

g1,λ

(
nf +sf,nf

)) ·
(∏

f

(uv)
nf+1−nf

f

)
, (2.25)

and the operator Q−(x2), defined by (2.17), (2.18), and (2.19), in the
local form is

Q−

(
x2

)
=

∑
{nf≥0}

(∏
f

g1,λ

(
nf,nf −sf

)) ·
(∏

f

(uv)
nf−nf−1

f

)
. (2.26)

Their Wronskian, defined by (2.20), is

W
(
x2

)
=

(∏
f

(
qsf ;q

)
∞

(
q1−sf ;q

)
∞λ−sf

)
·
(∏

f

(
λ(uv)f

(uv)f+1
;q

)
∞

)
.

(2.27)

Note that the operators Q+, Q−, and W ((2.25), (2.26), and (2.27)) are
the series with respect to uf up to the simple common multiplier λ−

∑
f sf .

Thus (2.6) is indeed just the useful notation, and actually we do not need
the notion of the logarithm of the operator uf.

3. Intertwiners

3.1. Integrability

First of all, the integrability of the relativistic Toda chain follows from the
commutativity of the transfer matrices (2.8). The origin of it is the famous
six-vertex R-matrix. The following relation holds:

R1,2

(
x

y

)
·L1,f(x) ·L2,f(y) = L2,f(y) ·L1,f(x) ·R1,2

(
x

y

)
, (3.1)

where L1,f(x) = Lf(x)⊗1, L2,f(y) = 1⊗Lf(y), and so forth, the cross product
implies the tensor product of the 2×2 matrices, and the six-vertex R-matrix
has the form

R(x) =


1−x−2q 0 0 0

0 q1/2
(
1−x−2

)
x−1(1−q) 0

0 x−1(1−q) q1/2
(
1−x−2

)
0

0 0 0 1−x−2q

 . (3.2)

The Yang-Baxter relation (3.1) provides the commutativity of the traces of
the monodromies for L1,f(x) and L2,y(x), and as the extra multiplier in our
definition of the transfer matrix (2.8) is the total shift operator, our modified
transfer matrices (2.8) also form the commutative family, (2.11).
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3.2. Origin of Baxter’s equation

The appearance of the six-vertex R-matrix is the criterion of the existence
of Baxter’s “TQ = Q′ +Q′′” relation for our transfer matrix. Here we give a
brief description of the method of obtaining Baxter’s equation.

So, for a given quantum Lax operator, obeying (3.1) with six-vertex R-
matrix, let there exists another auxiliary relation

L̃h

(
x

y

)
∗Lf(x) ·Mh,f(y) = Mh,f(y) ·Lf(x)∗ L̃h

(
x

y

)
, (3.3)

where “∗” means the 2× 2 matrix multiplication, 2× 2 matrix L̃h(z) with
entries acting in some space h is an auxiliary L-operator, and a scalar with
respect to the matrix structure of Lf and L̃h operator Mh,f acts in the tensor
product of the spaces f and h. In the case of the usual quantum Toda chain,

L̃ is a Sklyanin’s Dimer self-trapping L-operator. As usual, the monodromies
of L and M

t̂(x) = L1(x)L2(x) · · ·LF(x), (3.4)

Q̂h(y) = Mh,1(y)Mh,2(y) · · ·Mh,F(y), (3.5)

obey the same relation (3.3), this provides the commutativity of

t
(
x2

)
= tr t̂(x), Q

(
y2

)
= trh Q̂h(y). (3.6)

Suppose next that the matrix L̃h(z) has the degeneration point, without loss
of generality,

L̃h(1) = ψhψh, (3.7)

where ψh and ψh are column and row two components vectors with operator-
valued entries. These vectors are known as Baxter’s vacuum vectors [6]. Anal-
ogously, the inverse matrix L̃−1(z), being normalized appropriately, has the
orthogonal decomposition,

L̃h(1)−1 = φhφh. (3.8)

Obviously,

ψhφh = φhψh = 0. (3.9)

It is easy to obtain, the following elements are two orthogonal projectors,

P′ = ψh

(
ψhψh

)−1
ψh, P′′ = φh

(
φhφh

)−1
φh, (3.10)

and because L-operators have the matrix dimension 2, P′+P′′ = 1.
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Consider (3.3) and its inverse partner in the degeneration point. The pro-
jector structure of L̃h(1)±1 means that there exist two scalar (with respect
to the 2×2 structure of L-operators and ψ and φ-vectors) operators M′ and
M′′, defined by the following relations:

ψhLf(x)Mh,f(x) = M′
h,f(h)ψh,

Lf(x)Mh,f(x)φh = φhM′′
h,f(h).

(3.11)

Equation (3.3) for the monodromies may be written as

t
(
x2

)
Q

(
y2

)
= trh

(
ψht̂(x)Q̂(x)ψh

(
ψhψh

)−1
)

+trh
(
φht̂(x)Q̂(x)φh

(
φhφh

)−1
)
.

(3.12)

Due to (3.11), in the right-hand side there appear the traces of M′
h,f and

M′′
h,f, so if

Q′ = trh
(
M′

h,1M′
h,2, . . . ,M′

h,F

)
,

Q′′ = trh
(
M′′

h,1M′′
h,2, . . . ,M′′

h,F

)
,

(3.13)

then the fusion relation appears

t
(
x2

)
Q

(
x2

)
= Q′(x2

)
+Q′′(x2

)
. (3.14)

In most particular cases, when h is an infinite-dimensional space, in (3.14)
it appears that Q′(x2) ∼ Q(qx2) and Q′′(x2) ∼ Q(q−1x2). All these are the
subject of detailed investigation.

4. Operator Mh,f

4.1. Triangle relations for the quantum relativistic Toda chain

Now we try to guess a form of (3.7) and (3.8) and try to solve (3.11).
Taking (3.9) into account, let

L̃h(1) =

(
−a+

1

)
k1(−a,1), L̃−1

h (1) =

(
1

a

)
k2

(
1,a+

)
, (4.1)

where a and a+ are two essential elements for h-algebra. Writing this de-
composition, we do not impose no conditions on a, a+ and the unknown
factors k1 and k2. The experience of usual Toda chain [17] says that when
q �→ 1, a and a+ become usual bosonic annihilation and creation operators,
this inspires our notations. In the next derivations we will suggest the in-
vertibility of a and a+, so that the decompositions (4.1) are written without
loss of generality. To get something applicable, we introduce an element N,

such that a sort of q-oscillator relations hold: first, for any function g let

a ·g(N) = g(N+1) ·a, (4.2)
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and second let there exists a function [N],

a+ ·a = [N], a ·a+ = [N+1]. (4.3)

The element N is introduced, without loss of generality, as a pair to a. Op-
erators L̃ must form an integrable chain, this provides relations (4.3), and
therefore k1 = k1(N) and k2 = k2(N) in (4.1). Thus, the parameterization
(4.1) is the general one. The degenerate matrices L̃±(1) become the orthog-
onal projectors if one substitutes k1 = 1/(1+[N+1]) and k2 = 1/(1+[N]).

Now we write the explicit form of the triangle relations

(−a,1)L(x)M(x) = M′(x)(−a,1),

L(x)M(x)

(
1

a

)
=

(
1

a

)
M′′(x),

(4.4)

M(x)L(x)

(
−a+

1

)
=

(
−a+

1

)
M′(x),(

1,a+
)
M(x)L(x) = M′′(x)

(
1,a+

)
.

(4.5)

The pair of equations (4.4) is exactly (3.11), while the pair (4.5) is the
dual one. Traces of the monodromies of M′ and M′′ and of M′ and M′′ must
coincide, they should lead to the same equation (3.14)

T
(
x2

)
Q

(
x2

)
=

(
(−x)F

∏
f

uf

)(
Q′(x2

)
+Q′′(x2

))
, (4.6)

where extra multiplier appears due to our normalization of the transfer ma-
trix (see (2.8)). But locally M# and M# may be slightly different.

The spectral parameter x in the L-operator (2.1) always stays in the com-
bination xu, therefore the shift of the spectral parameter thus may appear
as

g
(
q1/2xuf

) ≡ v−1
f g

(
xuf

)
vf. (4.7)

Due to this property we can put x = 1 for the shortness and omit the spec-
tral parameter in our formulae, the x may be restored subsequently in all
equations by the shift uf �→ xuf.

The triangle equations (4.4) and (4.5) are equivalent to two systems

M′ = −avM, M′′ = q−1/2λ(av)−1M,

Ma = v−1
(
u−1 −u+q−1/2λa−1v−1

)
M,

M′ = −Mq−1/2λv−1a+, M′′ = Mv
(
a+

)−1
,

−q−1/2λa+M = M
(
u−u−1 −

(
a+

)−1
v
)
v.

(4.8)
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In Baxter’s equation it is implied that Q′(x2) ∼ Q(q−1x2) and Q′′(x2) ∼

Q(qx2) up to some operator-valued multipliers. These multipliers are to be
integrals of motion in a form of pure product over f. There is only one such
integral of motion, it is t0, and hence there must exist a monomial function
φ(u) ∼ uc such that

M′ = vMφ(u)v−1, M′ = vφ(u)Mv−1, (4.9)

and therefore

M′′ = −q−1/2λv−1Mvφ−1(u), M′′ = −q−1/2λφ−1(u)v−1Mv.

(4.10)
The same φ(u) is used for M and M because Q must be the same. It is
important that in (4.9) the multiplier φ(u) stands from the right of M for
M′ and from the left of M for M′. The order of multipliers is governed by
Yang-Baxter equation (3.3).

In general, one may put φ(u) to the other sides, this would give an-
other system for M with another solution. We will not investigate such case
separately, because there exists an involutive automorphism τ, defined as

vτ = v, uτ = u−1, qτ = q, (4.11)

such that the L-operator is invariant with respect to τ-involution

L(1)τ = −σ3L(1)σ3. (4.12)

Also it is important that τ does not change q. Therefore Tτ(x2) = (−)F T(x2),

and the other case of positions of φ just corresponds to the consideration
of Mτ.

With expressions (4.9) for M′ and M′′, system (4.8) is equivalent to

−aM = Mφ(u)v−1, (4.13a)

−q−1/2λMa+ = vφ(u)M, (4.13b)

Ma = v−1
(
u−1 −u+q−1/2λa−1v−1

)
M, (4.13c)

−q−1/2λa+M = M
(
u−u−1 −

(
a+

)−1
v
)
v. (4.13d)

It is useful to complement system (4.13) by equations with k1, k2 following
from (3.3):

Mφ−1(u)k1(N) = φ−1(u)k1(N)M, (4.13e)

Mφ−1
(
q−1/2u

)
k2(N) = φ−1

(
q−1/2u

)
k2(N)M. (4.13f)

This is the final set of equations that we are going to solve. We will give its
solution in two forms. The first one is a formal series solution that admits an
interpretation of a and a+ as q-oscillator (spectrum of N is the nonnegative
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integers, and there exists the vacuum vector for a). Another form implies the
Weyl algebra parameterization of a, a+, when the permutation between h

and f spaces plays the significant role. Actually these two forms differ by the
notion of the trace in h-space, and q-oscillator trace will give Q− while the
Weyl trace will give Q+.

4.2. Series solution

First, we test system (4.13) for the formal operator arguments of M. Just
considering the expressions MxM−1x−1 for several x, one may conclude

M = M(av,u,N). (4.14)

Hence

M ·qNu2 = u2qN ·M, (4.15)

this trivializes two equivalent relations (4.13e) and (4.13f) of system (4.13).
For further analysis of (4.13) we start from permutation-like (4.13a). Re-

lations like

x ·M = M ·y (4.16)

are to be solved as

M =
∑
n∈Z

xn ·G ·y−n, (4.17)

and in the case of (4.13a) this gives

M =
∑
n∈Z

an ·G(
N,u2

) ·(−vφ−1(u)
)n

. (4.18)

Note that G does not depend on av, because any such dependence may be
extracted to an. Now all other relations from (4.13) must give recursion
relations for G. Equation (4.13c) is equivalent to(

u−u−1
)
G

(
N,u2

)
= −q−1/2λφ−1(u)G

(
N,qu2

)
+φ

(
q−1/2u

)
G

(
N−1,q−1u2

)
.

(4.19)

Equation (4.13b) gives another permutation-like structure, but with the for-
mal correspondence a+ = [N]a−1 it gives

G
(
N−1,u2

)
G

(
N,qu2

) = q1/2λ
[N]

φ2(u)
. (4.20)

Due to (4.20), M may be rewritten in the form of the other permutation-like
structure

M =
∑
n∈Z

(
−q1/2λ−1vφ(u)

)n ·G(
N,u2

) ·(a+
)−n

. (4.21)
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Moreover, this allows one to write M without negative powers of a or a+

M = G
(
N,u2

)
+

∞∑
n=1

an ·G(
N,u2

) ·(−vφ−1(u)
)n

+

∞∑
n=1

(
−q1/2λ−1vφ(u)

)−n ·G(
N,u2

) ·(a+
)n

.

(4.22)

Apparently, this form is good for q-oscillator representation.
Equation (4.13d) coincides with (4.19) if one uses the series (4.21). But

it is important to note that in general (4.19) and (4.20) are not compatible.
Their compatibility condition is the following functional relation for φ(u)

and [N]:

q−1/2λ

(
[N]

φ
(
q1/2u

) −
[N−1]

φ
(
q−1/2u

))
= u−1

(
1−q−1/2 φ(u)

φ
(
q1/2u

))
−u

(
1−q1/2 φ(u)

φ
(
q1/2u

))
.

(4.23)

Here we used φ(u) ∼ uc.
Equation (4.23) has only two solutions for φ(u) and [N], corresponding

to |q| < 1 and |q| > 1. In our case |q| < 1

φ(u) = −q−1/2αu−1, [N] = −q1/2 α

λ

(
1−q−N

)
, (4.24)

where α is a complex parameter, [N] is normalized so as [0] = 0. With these
φ(u) and [N], equations (4.19) and (4.20) may be solved easily,

G|q|<1

(
N,u2

)
= gα,λ/α(N,N−s), (4.25)

where u2 ≡ qs (see (2.6)), and gα,β(n,m) is defined by (2.24). Parameter
α is an avoidable scale of u and it is convenient to put it to unity, α ≡ 1.
Note that expressions like (x;q)∞ in g-function appear as the appropriate
solutions of difference relations

(x;q)∞ = (1−x)(qx;q)∞ , (4.26)

and the separation between |q| < 1 and |q| > 1 is originated from the un-
avoidable sign of the quadratic exponent q±N(N−s). The other solution of
zero curvature condition is

φ(u) = αu, [N] = −
α

λ

(
1−qN

)
. (4.27)

This gives

G
(
N,qs

)
= q−N(N−s)

(
q−1/2 λ

α

)N−s(
q−1/2α

)N

×
(
q−1−N+s;q−1

)
∞

(
q−1−N;q−1

)
∞(

q−1;q−1
)
∞

.

(4.28)
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With φ(u) defined, the final expressions for M are, in the short form,

M =
∑
n∈Z

ang1,λ(N,N−s)(uv)n

≡
∑
n∈Z

(
λuv−1

)−n
g1,λ(N,N−s)

(
a+

)−n
,

(4.29)

and in q-oscillator’s form

M = g1,λ(N,N−s)+

∞∑
n=1

ang1,λ(N,N−s)(uv)n

+

∞∑
n=1

(
λuv−1

)n
g1,λ(N,N−s)

(
a+

)n
,

(4.30)

where, recall (2.6), u2 = qs.
Substituting φ(u) = −q−1/2u−1 into the expressions for M′ and M′′,

(4.9), and using our definition of the transfer matrix (2.8), we obtain the
Baxter equation exactly in the form (2.15).

Existence of the form (4.30) allows one to interpret a, a+ exactly as
q-oscillator generators, such that the spectrum of N is 0,1,2, . . . (we have
normalized [N] so that [0] = 0), and the state |N = 0〉 is the vacuum, a

|N = 0〉 = 0. Thus one may define the q-oscillator trace of any operator
F = F(a,a+,N). If

F = f0(N)+
∑
n≥1

fn(N)an +
∑
n≥1

f+
n(N)

(
a+

)n
, (4.31)

then taking such trace, one has to take a0 and (a+)0th components and
then take the sum over N = 0,1,2, . . .

trq-osc F
(
a,a+,N

) def
=

∑
n≥0

f0(n). (4.32)

Being applied to the monodromy (3.5) of M, (4.29), this trace definition
gives immediately and exactly Q−(x2), (2.26).

In general, one may obtain Q+ at once, considering the τ-involution
applied to M and to Q−

Mτ =
∑
n∈Z

(
avu−1

)n
g1,λ(N,N+s). (4.33)

But there are two objections to consider this case: first, τ-involution changes
a little the Baxter equation, and second, Mτ is the degenerate operator,(

avu−1 −1
) ·Mτ = 0, (4.34)

and hence we will look for another way to obtain Q+ operator.
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4.3. Extraction of a permutation

Solving (4.13), we mentioned the permutation-like relations. In this section,

we suppose that the quantum space f and the auxiliary one h are isomorphic.
Our aim is to extract the permutation operator, giving (4.13a) “by hands.” As
previously, we deal with the case |q| < 1, x = 1, u2 = qs, and

φ(u) = −q−1/2u−1, [N] = −q1/2λ−1
(
1−q−N

)
, (4.35)

so that we are looking for another realization of the same operator M. We
will search for M in the form

M = M ·Ph,f, (4.36)

where

aPh,f = Ph,f(uv)−1, NPh,f = Ph,fs, P2
h,f = 1. (4.37)

Here the first relation is exactly (4.13a), the second one is the consequence
of (4.15), and the last one is the definition of the permutation. System
(4.13) for operator M can be rewritten as follows:

a ·M = M ·a, (4.38a)

u−1v ·M = M ·(1−u2
)
u−1v, (4.38b)

M ·(uv)−1 = (uv)−1
(
1−u2 +q−1λa−1v−1u

) ·M, (4.38c)

q−N ·M = M ·(1+q−1λ
(
1−qu2

)−1
a−1v−1u

)
q−N. (4.38d)

Solution of it is given by

M =
(
−λa−1v−1u;q

)
∞

(
qu2;q

)
∞ . (4.39)

Operator (4.36) with the definitions (4.37) and (4.39) does solve the sys-
tem of the relations (4.13). Using the series decomposition for the compact
quantum dilogarithms, one may obtain the series representation (there is
used (v−1u)n = qn(n+1)/2u2n(uv)−n) for M, (4.36),

M =
∑
n≥0

qn2

(q;q)n
λnu2n

(
q1+nu2;q

)
∞ (uv)−nPh,f(uv)n. (4.40)

Note that the function g, (2.24), appears in this decomposition

M =
∑
n≥0

g1,λ(n+s,n)(uv)−nPh,f(uv)n. (4.41)

In this form all the h-space operators a, a+, and N are hidden into the
permutation symbol. The permutation operator allows one to calculate the
trace in the auxiliary space h in the invariant way via

trinv
(
Ph,1Ph,2 · · ·Ph,F

)
= P, (4.42)
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where P is the cyclic shift operator for the chain f = 1,2, . . . ,F, F+1 ∼ 1

ufP = Puf+1, vfP = Pvf+1, f ∼ f+F. (4.43)

The shift is one of the integrals of motion. Now using (4.41) and the defi-
nition of the shift operator, one obtains exactly Q+, (2.25), for the trace of
M-monodromy up to the shift

Q+P = PQ+ = trinv
(
M1M2 · · ·MF

)
. (4.44)

Now both forms of M-operators have been obtained, (4.22) and (4.41),
actually coincide. To show this, we represent Ph,f in the following form:

Ph,f =
∑
n∈Z

δ(N−s = n)(auv)n, (4.45)

where δ(N− s = n) is the projector of N− s into a state with the eigen-
value n

(N−s)δ(N−s = n) = δ(N−s = n)(N−s) = nδ(N−s = n). (4.46)

With this form of Ph,f (4.41) could be written as follows:

M =
∑
n,k

akg1,λ(n+s,n)δ(N−s = n)(uv)k. (4.47)

Now one may take the sum over n using the projectors as the delta symbols,
and exactly (4.29) appears

M =
∑

k

akg1,λ(N,N−s)(uv)k. (4.48)

Such exercises with the projector decomposition of operators are rather
formal. One may consider projectors and spectral decompositions of many
types, imposing some extra conditions for the spectra of the operators in-
volved. What is actually the difference between both Q operators: the dif-
ference is the conjecture about the spectrum of N. Due to the Weyl algebra
relations, the spectrum of N must be equidistant,

N ∈ Z+ζ. (4.49)

In the case when ζ = 0 we get q-oscillator representation. In the case when
ζ is the same as for s ∈ Z + ζ, we get the isomorphism between h and f

spaces and the permutation extracted representation. In general one may
generalize both Q+ and Q− into Qζ, dealing with arbitrary characteristics
of N,

Qζ =
∑

{nf∈Z+ζ}

(∏
f

g1,λ

(
nf,nf −sf

)) ·
(∏

f

(uv)
nf−nf−1

f

)
. (4.50)
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A summation over n ∈ Z may be restricted in q-hypergeometry by the factor

1

(q;q)n
=

(
q1+n;q

)
∞

(q;q)∞
= 0 for n < 0. (4.51)

Such restrictions in (4.50) appear when ζ = 0 and when s ∈ Z+ζ, these are
exactly the cases of Q− and Q+P.

Similar to the spectral decomposition of the permutation operator, one
may write down the spectral decomposition of the shift operator

P =
∑

{nf∈Z}

(∏
f

δ
(
sf = nf +ζ

))(∏
f

(uv)
nf−nf−1

f

)
. (4.52)

In this formula it is implied that ζ is the characteristics of sf. An example of
application of such formula, that is, explicit extraction of the shift operator,
is the following summation, where the shift nf �→ nf +sf is done:

∑
{nf∈ζ+Z}

G
({

nf,nf −sf

})∏
f

(uv)
nf−nf−1

f

=
∑

{nf∈Z}

G
({

nf +sf,nf

})∏
f

(uv)
nf+1−nf

f ·P.
(4.53)

To obtain it, one has to apply the spectral decomposition of each sf, and then
make the resummation. This trick gives Qζ = Q+(x2)P when sf ∈ ζ+Z.

5. Properties of M operators

5.1. Auxiliary L-operator

Proposition 5.1. Equation (3.3), provided by (4.13), (4.15), and (4.35),
holds for

L̃(x) =

(
xqN/2 −x−1q−N/2 λa+qN/2

λqN/2a −λx−1qN/2

)
. (5.1)

To be exact in our normalization M = M(1), for which (4.13), (4.15), and
(4.35) are written down, (3.1) looks like

M ·L(x) · L̃(x) = L̃(x) ·L(x) ·M, (5.2)

and M must intertwine each power of x. Useful relations following from
(4.13) are

M ·(uv)−1 = a ·M, M ·uv−1 = qN
(
λuv−1 +q1/2a

) ·M,

vu−1 ·M = M ·λa+, uv ·M = M ·λqN
(
uv+q−1/2a+

)
.

(5.3)
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Note, as far the quantum Lax operator (2.1) is called “the quantum relativis-
tic Toda chain L-operator,” then operator (5.1) is to be called “the quantum
relativistic Dimed self-trapping L-operator” (cf. [21]).

5.2. Intertwining

Now we consider the commutation relations of different Q-operators. Let the
operators Q1(y) and Q2(x) be constructed with the help of different local
Mh1,f(y) and Mh2,f(x) (here we imply different characteristics of h1 and
h2).

Proposition 5.2. Two products Mh1,f(y)·Mh2,f(x) and Mh2,f(x)·Mh1,f(y)

are connected by a canonical mapping Kh1,h2
(y/x) of the pair of Weyl

algebras h1 and h2,

Kh1,h2

(y

x

)
Mh1,f(y)Mh2,f(x) = Mh2,f(x)Mh1,f(y)Kh1,h2

(y

x

)
, (5.4)

where K acts as follows:

K(z)a+
1 = z−1a+

2 K(z), K(z)qN1 =
1+q1/2za1a+

2

1+q1/2z−1a1a+
2

qN2K(z),

K(z)a2 = za1K(z), K(z)qN2 = qN1
1+q1/2z−1a1a+

2

1+q1/2za1a+
2

K(z).

(5.5)

As an example we give the realization of K(z) with the permutation ex-
tracted

Kh1,h2
(z) =

(
−q1/2za1a+

2 ;q
)(

−q1/2z−1a1a+
2 ;q

)z−N1−N2Ph1,h2
, (5.6)

where Ph1,h2
—usual external permutation of the spaces h1 and h2. This per-

mutation may be canceled from KMM equation, and the following relation
for the Q-monodromies appears:

Ǩh1,h2

(y

x

)
Q̂h1

(
y2

)
Q̂h2

(
x2

)
= Q̂h1

(
x2

)
Q̂h2

(
y2

)
Ǩh1,h2

(y

x

)
, (5.7)

where

Ǩh1h2

(y

x

)
= Ph1h2

Kh1h2

(y

x

)
=

(x

y

)N1+N2

(
−q1/2(y/x)a+

1 a2;q
)
∞(

−q1/2(x/y)a+
1 a2;q

)
∞

,
(5.8)

and Q̂—the monodromy of M operators, Q(x2) = trh Q̂h. Equation (5.7)
leads to the pseudo-commutation of the pair of Q matrices with different
ζ-characteristics and allows one to calculate the Wronskian.
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5.3. Wronskian

To calculate the Wronskian, it is necessary to consider (5.7) with x/y = q1/2.
Then Ǩ(q−1/2) = q(N1+N2)/2(1+a+

1 a2), and

q(N1+N2)/2
(
1+a+

1 a2

)
Q̂1

(
q−1x2

)
Q̂2

(
x2

)
= Q̂1

(
x2

)
Q̂2

(
q−1x2

)(
1+a+

1 a2

)
q(N1+N2)/2.

(5.9)

Let δW be a projector to the subspace a+
1 a2 = −1, that is,

δW ·(a+
1 a2 +1

)
=

(
a+

1 a2 +1
) ·δW = 0. (5.10)

Then the pseudo-commutation relation provides the following triangle struc-
ture:

Q̂1

(
q−1x2

)
Q̂2

(
x2

)
δW = δWQ̂1

(
q−1x2

)
Q̂2

(
x2

)
δW ,

δWQ̂1

(
x2

)
Q̂2

(
q−1x2

)
= δWQ̂1

(
x2

)
Q̂2

(
q−1x2

)
δW .

(5.11)

Locally we consider the products

M1(y)M2(x)δW =
∑
n∈Z

(
λyuv−1

)n
Fy,x

(
N1,N2,u2

)(
a+

1

)n
δW ,

δWM1(x)M2(y) = δW

∑
m∈Z

am
2 F̃x,y

(
N1,N2,u2

)
(yuv)n,

(5.12)

where the sum simplified due to

δW ·(a+
1

)n
am−n

2 ≡ δW ·(−)nam
2 . (5.13)

Triangle structure means that when y2 = q−1x2, both F and F̃ depend actu-
ally only on N1 +N2 and u2.

For x and y arbitrary, one has

Fy,x

(
N1,N2,u2

) def
=

∑
m∈Z

(
−λxyu2

)m
qm2/2g1,λ

×(
N1,N1 −sy −m

)
g1,λ

(
N2 +m,N2 −sx

)
,

F̃x,y

(
N1,N2,u2

) def
=

∑
n∈Z

(
−λxyu2

)n
qn2/2g1,λ

×(
N1 +n,N1 −sx

)
g1,λ

(
N2,N2 −sy −n

)
.

(5.14)

Here

qsx = x2u2, qsy = y2u2. (5.15)
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One may see

F̃x,y

(
N1,N2,u2

) ≡ Fy,x

(
N2,N1,u

2
)
. (5.16)

These sums may be calculated with the help of the Rogers-Ramanujan sum-
mation formula. Auxiliary relations for this calculations are(

λxuv−1
)n

(yuv)n = qn2/2
(
λxyu2

)n
,

g1,λ(N+n,N−s)

g1,λ(N,N−s)
= qn(N−s) 1(

q1+N;q
)
n

,

g1,λ(N,N−s−n)

g1,λ(N,N−s)
= q−n2/2+n/2

(
−λqs

)−n(
qs−N;q

)
n
,

(5.17)

and the Rogers-Ramanujan celebrated identity is

1Ψ1(x,y;z)
def
=

∑
n∈Z

(x;q)n

(y;q)n
zn

=
(q;q)∞ (y/x;q)∞ (xz;q)∞ (q/xz;q)∞
(y;q)∞ (q/x;q)∞ (z;q)∞ (y/xz;q)∞

,

(5.18)

where the series for 1Ψ1 is convergent in∣∣∣y
x

∣∣∣ < |z| < 1. (5.19)

The results of summations are

Fy,x

(
N1,N2,u2

)
= g1,λ

(
N1,N1 −sy

)
g1,λ

(
N2,N2 −sx

)
×1Ψ1

(
qsy−N1 ,q1+N2 ;q1/2+N2−sy

y

x

)
,

F̃x,y

(
N1,N2,u2

)
= g1,λ

(
N1,N1 −sx

)
g1,λ

(
N2,N2 −sy

)
×1Ψ1

(
qsy−N2 ,q1+N1 ;q1/2+N1−sy

y

x

)
.

(5.20)

Put now y2 = q−1x2, then it appeared

F1,2

(
N1 +N2,sx

) def
= Fy,x

(
N1,N2,u2

)
= −F̃x,y

(
N1,N2,u2

)
, (5.21)

where y2 = q−1x2, and

F1,2

(
N1 +N2,sx

)
= qN2(N2−sx)+N1(N1−sx+1)λN1+N2−2sx+1

×Θ
(
qN2−N1

)(
q2+N1+N2−sx ;q

)
∞

(q;q)2∞
.

(5.22)

Here it is used the θ-function notation

Θ(x) = (x;q)∞
(
qx−1;q

)
∞ (q;q)∞ =

∑
n∈Z

(−x)nqn(n−1)/2, (5.23)
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such as

Θ
(
qkx

)
= (−x)−kq−k(k−1)/2Θ(x), Θ

(
x−1

)
= −x−1Θ(x). (5.24)

Indeed, due to the equidistant of N1 and N2, F1,2 depends only on N1+N2.
Now we may calculate the Wronskian. By definition, it is

W
(
x2

)
1,2

= Q1

(
q−1x2

)
Q2

(
x2

)
−Q1

(
x2

)
Q2

(
q−1x2

)
. (5.25)

Considering the monodromies of Q1 and Q2, standing in the definition of
the Wronskian and using (5.7), one may see that the most parts in the
subtraction, (5.25), are canceled. Only possible exception is the subspace
δW : a+

1 a2 = −1. So to calculate the Wronskian, one has to take a trace only
over this subspace. In general, let ζ1 and ζ2 be the characteristics of N1 and
N2, respectively. Then using the definition of F and F̃, (5.22) equivalence
of F and F̃, one may conclude

W1,2 = Ξ1,2

∑
nf∈ζ1+ζ2+Z

(∏
f

F1,2

(
nf,sf

))(∏
f

(uv)
nf−nf−1

f

)
, (5.26)

where Ξ1,2 is an extra multiplier that may come from the subtraction, δW-
trace definition and so on. Nevertheless, considering the case sx = ζ1 modulo
Z and ζ2 = 0, one obtains the following useful form of F1,2:

F1,2(n+s−,s) = (−)nqn(n−1)/2 λn

(q;q)n
λ−s Θ

(
qs

)
(q;q)∞

. (5.27)

Extracting now the shift operator as it is described in (4.53), one obtains
(2.27). Extra multiplier is equal to unity, this we have checked by a series
expansion with respect to λ.

6. Discussion

The technique and results, given in this paper, are rather formal. We have
dealt with the single Weyl pair in each site of the lattice, and q is an arbi-
trary complex number inside the unit circle. It is well known, this regime is
absolutely nonphysical, and thus the results presented are to be considered
as just an exercise in the field of q-combinatorial analysis. But, nevertheless,
some applications of the results and technique presented may be found.

Talking about the Weyl algebra, people usually keep in mind two aspects:
the first one is the Faddeev dualization, when q = ex{iπeiθ} with real θ is
the universal unitary regime [10, 11, 9], and the second one is the finite
state q = e2πi/N. This paper suggests the third aspect, applied in the back-
ward direction yet: several Toda-chain-type models, physical as well, may be
obtained from a model with arbitrary q in the limit q �→ 1+ h̄, regarded in a
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special way, such that a rational Weyl algebra mapping is linearized with re-
spect to one of Weyl generators in the first order of h̄. Our experience in the
Weyl algebra exercises says that most our results, especially containing the
q-dilogarithms and permutations, may be immediately rewritten in the dual-
ized form. In this way the results may be applied to the physical relativistic
Toda chain, [12]. It will be done in a separate paper.

The second aspect is also valid, especially in the part of the technique
derived. Preliminary considerations show that at the root of unity the model
contains the Baxter curve for the Chiral Potts model, the point on Baxter’s
curve is the spectral parameter of Q-operator, our constant parameter λ is
connected with the modulus of Baxter’s curve. Remarkable is that in the
relativistic Toda chain at the root of unity there appears only one point at
Baxter’s curve, while in the Chiral Potts model such point lives at each site
on the spin chain. This fact makes the relativistic Toda chain much more
simple than CPM itself. The investigation of such type models is started
in [16].
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