MIXED PROBLEM WITH INTEGRAL CONDITIONS FOR A CERTAIN CLASS OF HYPERBOLIC EQUATIONS

SAID MESLOUB AND ABDELFATAH BOUZIANI

Received 23 May 2001

We study a mixed problem with purely integral conditions for a class of two-dimensional second-order hyperbolic equations. We prove the existence, uniqueness, and the continuous dependence upon the data of a generalized solution. We use a functional analysis method based on a priori estimate and on the density of the range of the operator generated by the considered problem.

1. Introduction

The present paper is devoted to the proof of existence and uniqueness of a generalized solution for a mixed problem with only integral conditions related to a certain class of second-order hyperbolic equations in a twodimensional structure. That is, we consider the problem of searching a function $u=u(x, t)$, solution of the problem

$$
\begin{equation*}
\mathfrak{L} \mathfrak{u}=\mathfrak{u}_{\mathrm{tt}}-\mathfrak{a}(\mathrm{t}) \Delta \mathfrak{u}=\mathrm{f}(\mathrm{x}, \mathrm{t}), \quad \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \Omega, \mathrm{t} \in(0, \mathrm{~T}), \tag{1.1}
\end{equation*}
$$

where $\Omega=(0, a) \times\left(0, b_{i}\right)$ and $b_{i}, T, i=1,2$, are known constants and $a(t)$ is a given function satisfying the conditions

$$
\begin{equation*}
c_{0} \leq a(t) \leq c_{1}, \quad a^{\prime}(t) \leq c_{2}, \tag{1.2}
\end{equation*}
$$

where $c_{i}, i=0,1,2$, are positive constants.
To (1.1), we associate the initial conditions

$$
\begin{equation*}
\ell_{1} u=u(x, 0)=\varphi(x), \quad \ell_{2} u=u_{t}(x, 0)=\beta(x), \quad x \in \Omega, \tag{1.3}
\end{equation*}
$$

[^0]and the integral conditions
\[

$$
\begin{equation*}
\int_{0}^{b_{i}} x_{i}^{k} u(x, t) d x_{i}=0, \quad i=1,2 ; k=0,1 \tag{1.4}
\end{equation*}
$$

\]

where f, φ, and β are given functions such that $f \in C(\bar{Q})$ and $\varphi, \beta \in C^{1}(\bar{\Omega})$. The given data satisfy the consistency conditions

$$
\begin{equation*}
\int_{0}^{b_{i}} x_{i}^{k} \varphi d x_{i}=\int_{0}^{b_{i}} x_{i}^{k} \beta d x_{i}=0, \quad i=1,2 ; k=0,1 \tag{1.5}
\end{equation*}
$$

The results concerning problems with integral conditions related to onedimensional parabolic equations are due to Batten [1], Cannon [7, 8], Cannon and van der Hoek [10, 11], Cannon et al. [9], Kamynin [13], Ionkin [12], Yurchuk [17], Benouar and Yurchuk [2], Muravey-Philinovskii [14], Shi [16], Bouziani [3, 4], and Bouziani and Benouar [6]. For problems related to onedimensional hyperbolic equations we have the result of Bouziani [5], in which a Neumann and an integral condition are combined.

The present paper can be considered as an extension of Bouziani [5] in the way that the conditions are purely integral and the considered equation is a two-dimensional one. We first write the posed problem in its operational form $\mathrm{Lu}=\mathcal{F}$, where the operator L is considered from the Banach space E into the Hilbert space F, which are conveniently chosen, then we establish an energy inequality for the operator L, and extend the obtained estimate to the closure \bar{L}, of the operator L. Finally, we prove the density of the range $R(L)$ of the operator L in the space F.

2. Energy inequality and its consequences

Problem (1.1), (1.3), and (1.4) can be considered as the resolution of the operator equation

$$
\begin{equation*}
L u=\mathcal{F} \tag{2.1}
\end{equation*}
$$

where $L=\left(\mathcal{L}, \ell_{1}, \ell_{2}\right), \mathcal{F}=(f, \varphi, \beta)$ and L is an operator defined on E into F, where E is the Banach space of functions $\Im_{x_{1} x_{2}} u \in L^{2}(Q)$, having the finite norm

$$
\begin{equation*}
\|\mathfrak{u}\|_{E}^{2}=\sup _{0 \leq \tau \leq 0} \int_{\Omega}\left(\left(\Im_{x_{1}} u(\cdot, \cdot \tau)\right)^{2}+\left(\Im_{x_{2}} u(\cdot, \cdot \tau)\right)^{2}+\left(\Im_{x_{1} x_{2}} u_{t}(\cdot, \cdot \tau)\right)^{2}\right) d x_{1} d x_{2} \tag{2.2}
\end{equation*}
$$

with $\mathfrak{I}_{x_{1}} u=\int_{0}^{x_{1}} u\left(\xi, x_{2}, t\right) d \xi, \Im_{x_{1} x_{2}} u=\int_{0}^{x_{1}} \int_{0}^{x_{2}} u(\xi, \eta, t) d \xi d \eta$, and F is the

Hilbert space equipped with the scalar product

$$
\begin{align*}
& \left(\left(\mathcal{L} u, \ell_{1} u, \ell_{2} u\right),(f, \varphi, \beta)\right)_{F} \\
& =\int_{\mathrm{Q}} \mathfrak{I}_{x_{1} x_{2}}(\mathcal{L} \mathfrak{u}) \cdot \mathfrak{I}_{x_{1} x_{2}} f \mathrm{~d} x d t+\int_{\Omega} \mathfrak{I}_{x_{1}} \ell_{1} u \cdot \Im_{x_{1}} \varphi \mathrm{~d} x \tag{2.3}\\
& \quad+\int_{\Omega} \mathfrak{I}_{x_{2}} \ell_{1} u \cdot \Im_{x_{2}} \varphi \mathrm{~d} x+\int_{\Omega} \mathfrak{I}_{x_{1} x_{2}} \ell_{2} u \cdot I_{x_{1} x_{2}} \beta \mathrm{~d} x
\end{align*}
$$

and the associated norm

$$
\begin{align*}
\|L u\|_{F}^{2}= & \int_{Q}\left(\Im_{x_{1} x_{2}}(\mathcal{L} u)\right)^{2} d x d t \tag{2.4}\\
& +\int_{\Omega}\left(\left(\Im_{x_{1}} \ell_{1} u\right)^{2}+\left(\mathfrak{I}_{x_{2}} \ell_{1} u\right)^{2}+\left(\mathfrak{I}_{x_{1} x_{2}} \ell_{2} u\right)^{2}\right) d x
\end{align*}
$$

The domain of definition $D(L)$ of the operator L is the set of functions $\Im_{x_{1} x_{2}} u \in L^{2}(Q)$ such that $\Im_{x_{1} x_{2}} u_{t}, \Im_{x_{1} x_{2}} u_{x_{1} x_{1}}, \Im_{x_{1} x_{2}} u_{x_{2} x_{2}} \in L^{2}(Q)$, and the conditions (1.4) are fulfilled.

Theorem 2.1. If $\mathrm{a}(\mathrm{t})$ satisfies conditions (1.2), then for all functions $u \in \mathrm{D}(\mathrm{L})$ we have the a priori estimate

$$
\begin{equation*}
\|\mathfrak{u}\|_{\mathrm{E}} \leq \mathrm{c}\|\mathrm{Lu}\|_{\mathrm{F}}, \tag{2.5}
\end{equation*}
$$

where c is a positive constant independent of the solution u.
Proof. We consider the scalar product in $\mathrm{L}^{2}\left(\mathrm{Q}^{\tau}\right)$ of (1.1) and the integrodifferential operator

$$
\begin{equation*}
M u=\Im_{x_{1} x_{2}}^{2} u_{t}=\int_{0}^{x_{1}} \int_{0}^{x_{2}} \int_{0}^{\xi_{1}} \int_{0}^{\xi_{2}} u_{t}\left(\eta_{1}, \eta_{2}, t\right) d \eta_{2} d \eta_{1} d \xi_{2} d \xi_{1} \tag{2.6}
\end{equation*}
$$

where $\mathrm{Q}^{\tau}=\Omega \times(0, \tau)$ and $\tau \in(0, \mathrm{~T})$, we obtain

$$
\begin{align*}
& \int_{Q^{\tau}} u_{t t} \cdot \mathfrak{I}_{x_{1} x_{2}}^{2} u_{t} d x d t \\
& \quad \\
& \quad-\int_{Q^{\tau}} a(t) u_{x_{1} x_{1}} \cdot \Im_{x_{1} x_{2}}^{2} u_{t} d x d t-\int_{Q^{\tau}} a(t) u_{x_{2} x_{2}} \cdot \Im_{x_{1} x_{2}}^{2} u_{t} d x d t \tag{2.7}\\
& \quad=\int_{Q^{\tau}} f \cdot \mathfrak{I}_{x_{1} x_{2}}^{2} u_{t} d x d t
\end{align*}
$$

We separately consider the integrals of the equality (2.7). Integrating by parts and taking into account conditions (1.3) and (1.4), we get

$$
\begin{align*}
& \int_{Q^{\tau}} u_{t t} \cdot \mathfrak{I}_{x_{1} x_{2}}^{2} u_{t} d x d t \tag{2.8}\\
& =\frac{1}{2} \int_{\Omega}\left(\Im_{\chi_{1} x_{2}} u_{t}\left(\xi_{1}, \xi_{2}, \tau\right)\right)^{2} d x-\frac{1}{2} \int_{\Omega}\left(\Im_{\chi_{1} x_{2}} \beta\right)^{2} d x, \\
& -\int_{Q^{\tau}} a(t) u_{x_{1} x_{1}} \cdot \mathfrak{I}_{x_{1} x_{2}}^{2} u_{t} d x d t \\
& =\frac{1}{2} \int_{\Omega} a(\tau)\left(\Im_{x_{2}} u\left(x_{1}, \xi_{2}, \tau\right)\right)^{2} d x \tag{2.9}\\
& -\frac{1}{2} \int_{\Omega} a(0)\left(\Im_{x_{2}} \varphi\right)^{2} d x-\frac{1}{2} \int_{Q^{\tau}} a^{\prime}(t)\left(\Im_{x_{2}} u\right)^{2} d x d t, \\
& -\int_{Q^{\tau}} a(t) u_{x_{2} x_{2}} \cdot \Im_{x_{1} x_{2}}^{2} u_{t} d x d t \\
& =\frac{1}{2} \int_{\Omega} a(\tau)\left(\mathcal{I}_{x_{1}} u\left(\xi_{1}, x_{2}, \tau\right)\right)^{2} d x \tag{2.10}\\
& -\frac{1}{2} \int_{\Omega} a(0)\left(\Im_{x_{1}} \varphi\right)^{2} d x-\frac{1}{2} \int_{Q^{\tau}} a^{\prime}(t)\left(\Im_{x_{1}} u\right)^{2} d x d t \text {, } \\
& \int_{Q^{\tau}} f \cdot \Im_{x_{1} x_{2}}^{2} u_{t} d x d t=\int_{Q^{\tau}} \Im_{x_{1} x_{2}} f \cdot \Im_{x_{1} x_{2}} u_{t} d x d t . \tag{2.11}
\end{align*}
$$

Substitution of (2.8), (2.9), (2.10), and (2.11) into (2.7) yields

$$
\begin{align*}
& \int_{\Omega}\left(\Im_{x_{1} x_{2}} u_{t}\left(\xi_{1}, \xi_{2}, \tau\right)\right)^{2} d x+\int_{\Omega} a(\tau)\left(\Im_{x_{2}} u\left(x_{1}, \xi_{2}, \tau\right)\right)^{2} d x \\
& \quad+\int_{\Omega} a(\tau)\left(\Im_{x_{1}} u\left(\xi_{1}, x_{2}, \tau\right)\right)^{2} d x \\
& = \tag{2.12}\\
& 2 \int_{Q^{\tau}} \Im_{x_{1} x_{2}} f \cdot \Im_{x_{1} x_{2}} u_{t} d x d t+\int_{\Omega} a(0)\left(\Im_{x_{1}} \varphi\right)^{2} d x \\
& \quad+\int_{\Omega} a(0)\left(\Im_{x_{2}} \varphi\right)^{2} d x+\int_{\Omega}\left(\Im_{x_{1} x_{2}} \beta\right)^{2} d x \\
& \quad+\int_{Q^{\tau}} a^{\prime}(t)\left(I_{x_{1}} u\right)^{2} d x d t+\int_{Q^{\tau}} a^{\prime}(t)\left(I_{x_{2}} u\right)^{2} d x d t
\end{align*}
$$

Using the Cauchy inequality and taking into account conditions (1.2), it follows that

$$
\begin{align*}
& \left\|\mathfrak{I}_{x_{1}} u\left(\xi_{1}, x_{2}, \tau\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{2}} u\left(x_{1}, \xi_{2}, \tau\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{1} x_{2}} u_{t}\left(\xi_{1}, \xi_{2}, \tau\right)\right\|_{L^{2}(\Omega)}^{2} \\
& \leq c_{3}\left(\left\|\Im_{x_{1} x_{2}} f\right\|_{L^{2}(Q)}^{2}+\left\|\mathfrak{I}_{x_{1}} \varphi\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{2}} \varphi\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{1} x_{2}} \beta\right\|_{L^{2}(\Omega)}^{2}\right) \\
& \quad+c_{4} \int_{0}^{\tau}\left(\left\|\mathfrak{I}_{x_{1}} u\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{2}} u\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{1} x_{2}} u_{t}\right\|_{L^{2}(\Omega)}^{2}\right) d t \tag{2.13}
\end{align*}
$$

where

$$
\begin{equation*}
c_{3}=\max \frac{\left(1, c_{1}\right)}{c_{0}}, \quad c_{4}=\max \frac{\left(1, c_{2}\right)}{c_{0}} \tag{2.14}
\end{equation*}
$$

Applying the Gronwall's lemma [4] to inequality (2.13), we get

$$
\begin{align*}
& \left\|\Im_{x_{1}} u\left(\xi_{1}, x_{2}, \tau\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|\Im_{x_{2}} u\left(x_{1}, \xi_{2}, \tau\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{1} x_{2}} u_{t}\left(\xi_{1}, \xi_{2}, \tau\right)\right\|_{L^{2}(\Omega)}^{2} \\
& \quad \leq c_{3} e^{c_{4} T}\left(\left\|\Im_{x_{1} x_{2}} f\right\|_{L^{2}(Q)}^{2}+\left\|\mathfrak{I}_{x_{1}} \varphi\right\|_{L^{2}(\Omega)}^{2}\left\|\Im_{x_{1}} \varphi\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{1} x_{2}} \beta\right\|_{L^{2}(\Omega)}^{2}\right) . \tag{2.15}
\end{align*}
$$

Since the right-hand side of (2.15) does not depend on τ, then by taking the supremum with respect to τ over the interval $[0, T]$, we obtain the desired inequality (2.5), with $c=c_{3} / 2 \exp \left(c_{4} T / 2\right)$. This completes the proof of Theorem 2.1.

Proposition 2.2. The operator $\mathrm{L}: \mathrm{E} \rightarrow \mathrm{F}$ is closable.
Proof. The proof of this proposition is analogous to Proposition 3.1 in [4].

Let $\overline{\mathrm{L}}$ be the closure of the operator L , and $\mathrm{D}(\overline{\mathrm{L}})$ its domain of definition.
Definition 2.3. The solution of the equation

$$
\begin{equation*}
\overline{\mathrm{L}} \mathfrak{u}=\mathcal{F} \tag{2.16}
\end{equation*}
$$

is called strong solution of problem (1.1), (1.3), and (1.4).
We extend inequality (2.5) to the set of solutions $u \in D(\overline{\mathrm{~L}})$ by passing to the limit and thus establish uniqueness of a strong solution and closedness of the range $R(\bar{L})$ of the operator L in the space F.

3. Solvability of the problem

Theorem 3.1. If conditions (1.2) are satisfied, then for all $\mathcal{F}=(f, \varphi, \beta) \in$ F, there exists a unique strong solution $u=\bar{L}^{-1} \mathcal{F}=\overline{L^{-1}} \mathcal{F}$ of problem (1.1), (1.3), and (1.4).

Proof. To prove that problem (1.1), (1.3), and (1.4) has a unique strong solution for all $\mathcal{F} \in F$, it suffices to prove that $R(L)$ is dense in F. For this we need the following proposition.

Proposition 3.2. If conditions (1.2) are satisfied, and if for $\Im_{x_{1} x_{2}} \omega \in$ $L^{2}(Q)$,

$$
\begin{equation*}
\int_{Q} \mathfrak{I}_{x_{1} x_{2}}(\mathcal{L} u) \cdot \mathfrak{I}_{x_{1} x_{2}} \omega d x d t=0 \tag{3.1}
\end{equation*}
$$

for all the functions $u \in D_{0}(\mathrm{~L})=\left\{u / u \in D(L), \ell_{1} u=\ell_{2} u=0\right\}$, then $\Im_{\chi_{1} x_{2}} \omega=0$ almost everywhere in Q .

Using the fact that relation (3.1) is given for all $u \in D_{0}(L)$, we can express it in a particular form.

Let u be defined as

$$
u=\left\{\begin{array}{l}
0, \quad 0 \leq t \leq s, \tag{3.2}\\
\int_{s}^{t}(t-\tau) u_{\tau \tau} d \tau, \quad s \leq t \leq T,
\end{array}\right.
$$

and let $u_{t t}$ be the solution of the equation

$$
\begin{equation*}
a(t) I_{x_{1} x_{2}} u_{t t}=\int_{t}^{T} \Im_{x_{1} x_{2}} \omega d \tau \tag{3.3}
\end{equation*}
$$

We now have

$$
\begin{equation*}
\mathfrak{I}_{x_{1} x_{2}} \omega=-\left(a(t) \mathfrak{I}_{x_{1} x_{2}} u_{t t}\right)_{t} \tag{3.4}
\end{equation*}
$$

To continue the proof of the proposition, we need the following lemma.
Lemma 3.3. If conditions (1.2) are satisfied, then the function u defined by relations (3.2) and (3.3) possesses derivatives with respect to $t u p$ to the third order belonging to $\mathrm{L}^{2}(\mathrm{Q})$.

The proof of this lemma is analogous to that of [3, Lemma 4.1].
We now prove the proposition. Replacing $\Im_{x_{1 \times 2}} \omega$ in (3.1) by its representation (3.4), we have

$$
\begin{align*}
& -\int_{Q} \mathfrak{I}_{x_{1} x_{2}} u_{t t}\left(a(t) I_{x_{1} x_{2}} u_{t t}\right)_{t} d x d t \\
& \quad+\int_{Q} \Im_{x_{1} x_{2}} u_{x_{1} x_{1}}\left(a(t) I_{x_{1} x_{2}} u_{t t}\right)_{t} d x d t \tag{3.5}\\
& \quad+\int_{Q} I_{x_{1} x_{2}} u_{x_{2} x_{2}}\left(a(t) \Im_{x_{1} x_{2}} u_{t t}\right)_{t} d x d t=0
\end{align*}
$$

We write the terms of (3.5) in the form

$$
\begin{align*}
& -\int_{Q} \Im_{x_{1} x_{2}} u_{t t}\left(a(t) \Im_{x_{1} x_{2}} u_{t t}\right)_{t} d x d t \\
& =\frac{1}{2} \int_{\Omega} a(s)\left(\Im_{x_{1} x_{2}} u_{t t}(x, s)\right)^{2} d x-\int_{Q_{s}} a^{\prime}(t)\left(\Im_{x_{1} x_{2}} u_{t t}\right)^{2} d x d t, \tag{3.6}\\
& \int_{Q} \mathfrak{I}_{x_{1} x_{2}} u_{x_{1} x_{1}}\left(a(t) \mathfrak{I}_{x_{1} x_{2}} u_{t t}\right)_{t} d x d t \\
& =\frac{1}{2} \int_{\Omega} a(T)\left(\mathfrak{I}_{x_{2}} u_{t}(x, T)\right)^{2} d x-\frac{1}{2} \int_{Q_{s}} a^{\prime}(t)\left(\Im_{x_{2}} u_{t}\right)^{2} d x d t \tag{3.7}\\
& -\int_{Q_{s}} a^{\prime}(t) \mathfrak{I}_{x_{2}} u \mathfrak{I}_{x_{2}} u_{t t} d x d t, \\
& \int_{Q} \Im_{x_{1} x_{2}} u_{x_{2} x_{2}}\left(a(t) \Im_{x_{1} x_{2}} u_{t t}\right)_{t} d x d t \\
& =\frac{1}{2} \int_{\Omega} a(T)\left(\Im_{x_{1}} u_{t}(x, T)\right)^{2} d x-\frac{1}{2} \int_{Q_{s}} a^{\prime}(t)\left(\Im_{x_{1}} u_{t}\right)^{2} d x d t \tag{3.8}\\
& -\int_{Q_{s}} a^{\prime}(t) \mathfrak{I}_{x_{1}} u \mathfrak{I}_{x_{1}} u_{t t} d x d t .
\end{align*}
$$

Combining conditions (3.5), (3.6), (3.7), and (3.8) and using conditions (1.2), we obtain the inequality

$$
\begin{align*}
& \left\|\Im_{x_{1} x_{2}} u_{t t}(x, s)\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{1}} u_{t}(x, T)\right\|_{L^{2}(\Omega)}^{2}+\left\|\Im_{x_{2}} u_{t}(x, T)\right\|_{L^{2}(\Omega)}^{2} \\
& \leq c_{5}\left\{\left\|\Im_{x_{1} x_{2}} u_{t t}\right\|_{L^{2}\left(Q_{s}\right)}^{2}+\left\|\Im_{x_{1}} u_{t}\right\|_{L^{2}\left(Q_{s}\right)}^{2}\right. \tag{3.9}\\
& \left.+\left\|\Im_{x_{2}} u_{t}\right\|_{\mathrm{L}^{2}\left(\mathrm{Q}_{s}\right)}^{2}+\left\|\Im_{\mathrm{x}_{1}} u\right\|_{\mathrm{L}^{2}\left(\mathrm{Q}_{s}\right)}^{2}+\left\|\Im_{\mathrm{x}_{2}} u\right\|_{\mathrm{L}^{2}\left(\mathrm{Q}_{s}\right)}^{2}\right\},
\end{align*}
$$

where

$$
\begin{equation*}
c_{5}=\max \frac{c_{0}}{2}\left(\frac{c_{2}}{2}+\frac{c_{2}^{2}}{2}, 1\right) \tag{3.10}
\end{equation*}
$$

Using now the Friedrichs inequality [15], to express the norms of $\Im_{x_{1}} u$ and $\Im_{x_{2}} u$, in terms of the norms of $\Im_{x_{1}} u_{t}$ and $\mathfrak{I}_{x_{2}} u_{t}$, respectively, then it follows from (3.9) that

$$
\begin{align*}
& \left\|\Im_{x_{1} x_{2}} u_{t t}(x, s)\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{1}} u_{t}(x, T)\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathfrak{I}_{x_{2}} u_{t}(x, T)\right\|_{L^{2}(\Omega)}^{2} \tag{3.11}\\
& \quad \leq c_{6}\left\{\left\|\mathfrak{I}_{x_{1} x_{2}} u_{t t}\right\|_{L^{2}\left(Q_{s}\right)}^{2}+\left\|\mathfrak{I}_{x_{1}} u_{t}\right\|_{L^{2}\left(Q_{s}\right)}^{2}+\left\|\mathfrak{I}_{x_{2}} u_{t}\right\|_{L^{2}\left(Q_{s}\right)}^{2}\right\} .
\end{align*}
$$

To continue, we introduce the new function θ defined by

$$
\begin{equation*}
\theta(x, t)=\int_{t}^{T} u_{\tau \tau} d \tau \tag{3.12}
\end{equation*}
$$

114 Mixed problem with integral conditions
then

$$
\begin{equation*}
u_{t}(x, t)=\theta(x, s)-\theta(x, t), \quad u_{t}(x, T)=\theta(x, s) . \tag{3.13}
\end{equation*}
$$

Hence

$$
\begin{align*}
\left(1-2 c_{6}(T-s)\right) & \left(\left\|\Im_{x_{1}} \theta(x, s)\right\|_{L^{2}(\Omega)}^{2}+\left\|\Im_{x_{2}} \theta(x, s)\right\|_{L^{2}(\Omega)}^{2}\right) \\
& +\left\|\Im_{x_{1} x_{2}} u_{t t}(x, s)\right\|_{L^{2}(\Omega)}^{2} \tag{3.14}\\
\leq & 2 c_{6}\left\{\left\|I_{x_{1} x_{2}} u_{t t}\right\|_{L^{2}\left(Q_{s}\right)}^{2}+\left\|\mathfrak{I}_{x_{1}} \theta\right\|_{L^{2}\left(Q_{s}\right)}^{2}+\left\|I_{x_{2}} \theta\right\|_{L^{2}\left(Q_{s}\right)}^{2}\right\} .
\end{align*}
$$

Consequently, if $s_{0}>0$ satisfies

$$
\begin{equation*}
\left(1-2 c_{6}(T-s)\right)=\frac{1}{2} \tag{3.15}
\end{equation*}
$$

then (3.14) implies

$$
\begin{align*}
& \left\|\Im_{x_{1} x_{2}} u_{t t}(x, s)\right\|_{L^{2}(\Omega)}^{2}+\left\|\Im_{x_{1}} \theta(x, s)\right\|_{L^{2}(\Omega)}^{2}+\left\|\Im_{x_{1}} \theta(x, s)\right\|_{L^{2}(\Omega)}^{2} \tag{3.16}\\
& \quad \leq 2 c_{6}\left\{\left\|\Im_{x_{1} x_{2}} u_{t t}\right\|_{L^{2}\left(Q_{s}\right)}^{2}+\left\|\Im_{x_{1}} \theta\right\|_{L^{2}\left(Q_{s}\right)}^{2}+\left\|\mathfrak{I}_{x_{2}} \theta\right\|_{\mathrm{L}^{2}\left(Q_{s}\right)}^{2}\right\},
\end{align*}
$$

for all $s \in\left[T-s_{0}, T\right]$.
If we denote the sum of terms involving norms on the right-hand side of (3.16) by $y(s)$, we obtain

$$
\begin{equation*}
-\frac{d y(s)}{d s} \leq 4 c_{6} y(s) \tag{3.17}
\end{equation*}
$$

Integrating (3.17) over (s, T) and taking into account that $\mathrm{y}(\mathrm{T})=0$, we get

$$
\begin{equation*}
y(s) e^{4 c_{6} s} \leq 0 \tag{3.18}
\end{equation*}
$$

It follows then from (3.18) that $\Im_{\chi_{1} x_{2}} \omega=0$ almost everywhere in $Q_{T-s_{0}}$. Proceeding in this way step by step, we prove that $\Im_{x_{1} x_{2}} \omega=0$ in Q .

To conclude, we prove Theorem 3.1. We should prove the validity of the equality $\overline{R(L)}=F$.

Since F is a Hilbert space, $\overline{R(L)}=F$ holds, if

$$
\begin{align*}
(L u, W)_{F}= & \int_{Q} \Im_{x_{1} x_{2}}(\mathcal{L u} u) \cdot \Im_{x_{1} x_{2}} \omega d x d t+\int_{\Omega} \Im_{x_{1}} \ell_{1} u \cdot \Im_{x_{1}} \omega_{0} d x \\
& +\int_{\Omega} \Im_{x_{2}} \ell_{1} u \cdot \Im_{x_{2}} \omega_{0} d x+\int_{\Omega} \Im_{x_{1} x_{2}} \ell_{2} u \cdot \Im_{x_{1} x_{2}} \omega_{1} d x \tag{3.19}\\
= & 0
\end{align*}
$$

it follows that $\omega=0, \omega_{0}=0$, and $\omega_{1}=0$, almost everywhere in Q , where $W=\left(\omega, \omega_{0}, \omega_{1}\right) \in R(L)^{\perp}$.

Putting $u \in \mathrm{D}_{0}(\mathrm{~L})$ into (3.19), we obtain

$$
\begin{equation*}
\int_{Q} \Im_{x_{1} x_{2}}(\mathcal{L} u) \cdot \Im_{x_{1} x_{2}} w d x d t=0 \tag{3.20}
\end{equation*}
$$

Hence, Proposition 3.2 implies that $\omega=0$. Thus (3.19) takes the form

$$
\begin{align*}
& \int_{\Omega} \mathfrak{I}_{x_{1}} \ell_{1} u \cdot I_{x_{1}} \omega_{0} d x+\int_{\Omega} \Im_{x_{2}} \ell_{1} u \cdot \Im_{x_{2}} \omega_{0} d x \tag{3.21}\\
& \quad+\int_{\Omega} \Im_{x_{1} x_{2}} \ell_{2} u \cdot I_{x_{1} x_{2}} \omega_{1} d x=0, \quad \forall u \in D_{0}(\mathrm{~L}) .
\end{align*}
$$

Since the sets $\ell_{1} u$ and $\ell_{2} u$ are independent and the ranges of the trace operators ℓ_{1} and ℓ_{2} are everywhere dense in the Hilbert spaces having the norms $\left(\int_{\Omega}\left(\left(I_{x_{1}} \omega_{0}\right)^{2}+\left(\Im_{x_{2}} \omega_{0}\right)^{2}\right) \mathrm{d} x\right)^{1 / 2}$ and $\left(\int_{\Omega}\left(\Im_{x_{1} x_{2}} \omega_{1}\right)^{2} \mathrm{~d} x\right)^{1 / 2}$, respectively, then $\omega_{0}=0, \omega_{1}=0$, almost everywhere in Ω. This completes the proof of Theorem 3.1.

Remark 3.4. The above used method can be easily applied to solve the following differential problem of higher order

$$
\begin{gather*}
\mathcal{L} u=u_{t t}+(-1)^{m} a(t) \Delta^{2 m} u=f(x, t), \\
\ell_{1} u=u(x, 0)=\varphi(x), \quad \ell_{2} u=u_{t}(x, 0)=\beta(x), \quad x \in \Omega, \\
\int_{0}^{b_{i}} x_{i}^{k} u\left(x_{1}, x_{2}, t\right) d x_{1} d x_{2}=0, \quad k=0, \ldots, 2 m-1 ; i=1,2, \tag{3.22}\\
x=\left(x_{1}, x_{2}\right) \in \Omega=\left(0, b_{1}\right) \times\left(0, b_{2}\right) \subset \mathbb{R}^{2}, \quad t \in(0, T) .
\end{gather*}
$$

References

[1] G. W. Batten Jr., Second-order correct boundary conditions for the numerical solution of the mixed boundary problem for parabolic equations, Math. Comp. 17 (1963), 405-413. MR 27\#6399. Zbl 133.38601.
[2] N.-E. Benouar and N. I. Yurchuk, A mixed problem with an integral condition for parabolic equations with a Bessel operator, Differentsial'nye Uravneniya 27 (1991), no. 12, 2094-2098 (Russian), [translated in Differential Equations 27 (1991), no. 12, 1482-1487. Zbl 788.35056]. MR 92k:35120.
[3] A. Bouziani, Mixed problem with boundary integral conditions for a certain parabolic equation, J. Appl. Math. Stochastic Anal. 9 (1996), no. 3, 323-330. MR 97f:35090. Zbl 864.35049.
[4] _ Solution forte d'un problème mixte avec condition intégrale pour une classe d'équations paraboliques [Strong solutions of a mixed problem with an integral condition for a class of parabolic equations], Maghreb Math. Rev. 6 (1997), no. 1, 1-17 (French). MR 99a:35109.
[5] __ Solution forte d'un problème mixte avec une condition non locale pour une classe d'équations hyperboliques [Strong solution of a mixed problem with a nonlocal condition for a class of hyperbolic equations], Acad. Roy. Belg. Bull. Cl. Sci. (6) 8 (1997), no. 1-6, 53-70 (French). MR 99f:35118.

116 Mixed problem with integral conditions
[6] A. Bouziani and N.-E. Benouar, Problème mixte avec conditions intégrales pour une classe d'équations paraboliques [Mixed problem with integral conditions for certain parabolic equations], C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 9, 1177-1182 (French). MR 97f:35085. Zbl 837.35057.
[7] J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21 (1963), 155-160. MR 28\#3650.
[8] , The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, vol. 23, Addison-Wesley, Massachusetts, 1984. MR 86b:35073. Zbl 567.35001.
[9] J. R. Cannon, S. Esteva Pérez, and J. van der Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J. Numer. Anal. 24 (1987), no. 3, 499-515. MR 88e:65132. Zbl 677.65108.
[10] J. R. Cannon and J. van der Hoek, The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy, Boll. Un. Mat. Ital. Suppl. (1981), no. 1, 253-282. MR 83h:35055. Zbl 538.35038.
[11] An implicit finite difference scheme for the diffusion equation subject to the specification of mass in a portion of the domain, Numerical Solutions of Partial Differential Equations, North-Holland, Amsterdam, 1982, pp. 527-539. MR 83c:65212. Zbl 477.65072.
[12] N. I. Ionkin, The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition, Differencial'nye Uravnenija 13 (1977), no. 2, 294-304 (Russian). MR 58\#29240a.
[13] L. I. Kamynin, A boundary-value problem in the theory of heat conduction with non-classical boundary conditions, Ž. Vyčisl. Mat. i Mat. Fiz. 4 (1964), 1006-1024 (Russian), [translated in U.S.S.R. Comput. Math. and Math. Phys. 4 (1964), no. 6, 33-59. Zbl 206.39801]. MR 30\#1316.
[14] L. A. Muraveĭ and A. V. Filinovskiĭ, A problem with a nonlocal boundary condition for a parabolic equation, Mat. Sb. 182 (1991), no. 10, 1479-1512 (Russian). MR 92k:35119.
[15] K. Rektorys, Variational Methods in Mathematics, Science and Engineering, 2nd ed., D. Reidel Publishing, Dordrecht, 1980, translated from the Czech by Michael Basch. MR 83e:49001. Zbl 481.49002.
[16] P. Shi, Weak solution to an evolution problem with a nonlocal constraint, SIAM J. Math. Anal. 24 (1993), no. 1, 46-58. MR 93m:35090. Zbl 810.35033.
[17] N. I. Yurchuk, A mixed problem with an integral condition for some parabolic equations, Differentsial'nye Uravneniya 22 (1986), no. 12, 2117-2126, [translated in Differential Equations 22 (1986), 1457-1463. Zbl 654.35041]. MR 88g:35100.

Said Mesloub: Department of Mathematics, University of Tebessa, Tebessa 12002, Algeria

E-mail address: mesloubs@yahoo.com
Abdelfatah Bouziani: Department of Mathematics, University of Oum El Bouaghi, BP 565, 04000, Algeria

[^0]: Copyright © 2001 Hindawi Publishing Corporation
 Journal of Applied Mathematics 1:3 (2001) 107-116
 2000 Mathematics Subject Classification: 35L20
 URL: http://jam.hindawi.com/volume-1/S1110757X01000365.html

