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In this paper, a numerical Laplace transform algorithm which is based on
the decomposition method is introduced for the approximate solution of a
class of nonlinear differential equations. The technique is described and il-
lustrated with some numerical examples. The results assert that this scheme
is rapidly convergent and quite accurate by which it approximates the solu-
tion using only few terms of its iterative scheme.

1. Introduction

This paper presents a Laplace transform numerical scheme, based on the
decomposition method, for solving nonlinear differential equations. The
analysis will be adapted to the approximate solution of a class of nonlinear
second-order initial-value problems, though the algorithm is well suited for
a wide range of nonlinear problems. The numerical technique basically illus-
trates how the Laplace transform may be used to approximate the solution
of the nonlinear differential equation by manipulating the decomposition
method which was first introduced by Adomian [1, 2]. The underlying idea
of the technique is to assume an infinite solution of the form u=3""  unx,
then apply Laplace transformation to the differential equation. The non-
linear term is then decomposed in terms of Adomian polynomials and an
iterative algorithm is constructed for the determination of the u/s in a
recursive manner. The method is implemented for three numerical exam-
ples and the numerical results show that the scheme approximates the exact
solution with a high degree of accuracy using only few terms of the itera-
tive scheme. The main thrust of this technique is that the solution which is
expressed as an infinite series converges fast to exact solutions.
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The balance in this paper is as follows. In Section 2, the Laplace transform
decomposition method will be presented as it applies to a class of second-
order nonlinear equations. In Section 3, the algorithm is implemented for
three numerical examples.

2. Numerical Laplace transform method

In this paper, a Laplace transform decomposition algorithm is implemented
for the solution of the following class of second-order nonlinear initial-value
problems

v +ax)y’ +b(x)y = f(y), (2.1)
y0)=a, y'(0)=p. (2.2)

Here f(y) is a nonlinear operator and a(x) and b(x) are known functions
in the underlying function space. The technique consists first of applying
Laplace transformation (denoted throughout this paper by £) to both sides
of (2.1), hence

Lly"]+L[ax)y’]+Lb(x)y] = L[f(y)]. (2.3)
Applying the formulas on Laplace transform, we obtain
s2LHyl—y(0)s—y’(0) + L [a(x)y'] + £ [b(x)y] = L [f(y)]. (2.4)

Using the initial conditions (2.2), we have

s? Lyl =B+as—L[alx)y'] —L[b(x)y] +L[f(y)] (2.5)
or
x B 1 L] 1
Lyl = s+ 7= FLlaldy’] = FL 0]+ FL[fv)]. (2.6)

The Laplace transform decomposition technique consists next of representing
the solution as an infinite series, namely,

Y=Y Un, (2.7)
n=0

where the terms y,, are to be recursively computed. Also the nonlinear op-
erator f(y) is decomposed as follows:

fly)=) An, (2.8)

n=0
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where Ay = A, (Yo,Y1,Y2,...,yn) are the so-called Adomian polynomials.
The first few polynomials are given by

Ao :f(yo)
=yt (yo),
Az =2t (yo) + 5,837 (vo), (&9
Az =y3f" (yo) +ury2f? (yo) + %U?fm (o).
Substituting (2.7) and (2.8) into (2.6) results

L Zynl :%+5E2_:_2L ax)Zy
n=0 n=0

N (2.10)
- de[om S e |
Using the linearity of Laplace transform it follows that
n=0 Lo (2.11)

1 1 &
—S—zéﬁ[b(x)yn] +S—2T;)L[An].

Matching both sides of (2.11) yields the following iterative algorithm:

Lyo] :%ﬂﬁz’ (2.12)
Llyi] :—:—zﬁ[a(x)yé] fs]—zL[b(x)yo] +S1—2L[Ao], (2.13)
L[] =~ 5L [aby;] ~ L [olxu] + L [A]. (2.14)
In general,
Llunaa] =~ Llaldun] ~ LKy + LA (219)

Applying the inverse Laplace transform to (2.12) we get
Yo = o+ PBx. (2.16)

Substituting this value of yo into (2.13) gives

L] =~ L [Bab] — L) et B+ HL[A].  (217)
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Evaluating the Laplace transform of the quantities on the right-hand side
of (2.17) then applying the inverse Laplace transform, we obtain the value
of y;. The other terms y,,ys,... can be obtained recursively in a similar
fashion using (2.15).

3. Numerical examples

The Laplace transform decomposition algorithm, described in Section 2, is
applied to some special cases of the class of nonlinear initial-value problems
given in (2.1) and (2.2).

Example 3.1. Consider the nonlinear problem

Y+ (1—x)y' —y =2y, (3.1)
y(0) =1, y'(0)=1, (3.2)

whose closed form solution is

1

Taking Laplace transform of both sides of (3.1) gives
s2L[yl—y(0)s—y’(0) = —L[(1—x)y'] + Lyl +2L [yﬂ. (3.4)

The initial conditions (3.2) imply

s2Lyl =s+1—L[(1—x)y’] + Lyl +2L [y?] (3.5)
or
T 1 1 a1 2
Llyl = g+s—2—s—25[(1 —x)y }+S—2L[y]+s—2);[y3]. (3.6)

Following the technique, if we assume an infinite series solution of the form
(2.7) we obtain

L[Zyn
n=0

T 1 1 -
:g‘|'57—575 l“—x)nzoyn

(3.7)

1 = 2 -
—I_S_ZL Zyn +S_2L ZAn N
n=0 n=0

where the nonlinear operator f(y) =y?> is decomposed as in (2.8) in terms
of the Adomian polynomials. From (2.9) the first few Adomian polynomials
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for f(y) =y?3 are given by
AO :US»
Ay =3y,
A2 =3ydy2+3youT, (3.8)
As =3ydys +6yoyry2 +yi’

Upon using the linearity of Laplace transform then matching both sides of
(3.7), results in the iterative scheme

1 1

Llyo] = Tt (3.9)
L] ==L [1-0e] + zL ol + L [A),  (3.10)
L[y =—S]—2£[(1 —x)y ] +:—ZL[U1} +§L[A1]- (3.11)
In general,
Llynii] :—:—ZL[(l—x)y;]—I—J—ZL[yn]—i—SéL[An] (3.12)

Operating with Laplace inverse on both sides of (3.9) gives
Yo =1+x. (3.13)

Substituting this value of yo and that of Ay =y3 given in (3.8) into (3.10),
we get

L] = L2+ L [(1+0)7] (3.14)

]
2 21 3 6 6 2 8 12 12

L —_ | = J— J— — | = — —_— —. 3.15
[u1] s4+sz s+sz s3+s4 3 g4 g5 g6 (3.15)
The inverse Laplace transform applied to (3.15) yields
4 1 1
y1 =x*+ 3+ ox . (3.16)

3 2 10

Substituting (3.16) into (3.11) and using the value of A; given in (3.8)
implies

1 1
Llyz] = s L[U —x) <2x+4x2+2x3 + §X4)]
1 4.5 1 4 1 2 (3.17)
2 3 4 5 2
+S—2£;|:X “ng +§X +ﬁxj|+—szﬁ[3yoy1}
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Table 3.1. Error obtained using Laplace transform numerical algorithm with
four iterations.

X Error Relative error

0.1 1.7858 x 107 1.6072x 107
0.2 9.4926x 1078 7.5941 x 1078
0.3 1.0220 x 10~° 7.1542x 1077
0.4 1.2033x10°° 7.2195x10°°
0.5 2.3196x107% 1.1598 x 10~%
0.6 3.2598 x 1073 1.3039x 103
0.7 3.2952x 1072 9.8855x 1073

Simplifying the right-hand side of (3.17) then applying the inverse Laplace
transform, we obtain
13,5 4,75 9.6, 38 5, 3 5. 1 o
Y2 =—3Xx +]2x +6x +1OX +105x +4OX +120x. (3.18)
Higher iterates can be easily obtained using the computer algebra system
Maple. For example,
b s 1 s 1 g4, 25
ygf]zx 4x +4OX —|—5x +24x
361 o 3233 4o 29 41 11 4, 1M 45
540° T12600° T262° T1200° T 15600"
1 5 13 o 41 , 1213 4

Y4= 700" T180" 280" 6720°

L7 0, 9991 o 14603 4y 832991
187 " 10800 16632 1663200
2066429 13, 20101 0 8101 45 201 o 211 o

170810800° 400400 ° 1900900 1208000 3536000
(3.20)

(3.19)

Therefore, the approximate solution is
Y=Yo+yr+yz2+ys+ys+---
359 853 2097
_ 2,345,927 6, 999 7 8
=T14+x+x"+x"+x"+x +36OX +84OX —2240x
1151 5, 17867 1o, 15647y, 848237 , 518513 5 (3.21)
1080 T 15120° T 16632° ' 1663200 ' 2702700
20101, 8101 45 211 46 211
T 300400% T900900° 208000 3536000
Table 3.1 exhibits the results of the approximation using only four iterations
of the Laplace transform decomposition technique. The table shows the ab-
solute error, that is, the difference between the approximate solution given

7.
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Table 3.2. Error obtained using the [5,5] Padé approximant of the infinite
series solution obtained by the Laplace transform numerical algorithm using
four iterations.

X Error Relative error
0.5 1.041x 1073 5.2075x 10~¢
1.5 6.417x107° 3.2083x107°
3 1.596x 107> 3.1920x107°
5 1111 x107° 4.4470x107°
7 9.705%x10~° 5.8230x107°
9 9.036x10°° 7.2290 x 1073
10 8.819x10°¢ 7.9372x107°
20 7.935x107° 1.5076 x 10~4
50 7.469x107° 3.6596x 1074

100 7.322x10°° 7.2494 x 104

in (3.22) and the exact solution in (3.3), as well as the relative error. In both
cases the error is less than 1%. Note that the error is small for small values of
x and the accuracy degrades heavily for x greater than 1. The infinite series
solution diverges for values of x greater than 1, however we can use Maple
to calculate the [5,5] Padé approximant of the infinite series solution (3.21)
which gives the following rational fraction approximation to the solution:

53, 8703.2  46607.3 178320109 4 , 1 .5
- 1+ 5 x+ 555 X" — Shss X 360992 X 1 360X (3.22)
V=3 46, [ 57352 369191, 3 559600474 | 2674820843, 5" :
7 392 8232 153664 6914880

In Table 3.2 we calculate the absolute and relative errors using this [5,5]
Padé approximant of the infinite series solution obtained by the Laplace de-
composition algorithm. In both cases the error is less than 0.75%. Clearly for
large values of x, calculating the errors using the Padé approximant instead
of the approximate infinite solution will lead to a drastic improvement in the
degree of accuracy. The infinite series solution does not provide a good ap-
proximation for substantial values of x, however replacing the partial sum of
the infinite series solution with its Padé approximant yields a very accurate
rational solution.

Example 3.2. Consider the initial-value problem

vyt =1, (3.23)
y(0) =3, (3.24)
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whose closed form solution is
2

First, we apply Laplace transform to both sides of (3.23),
sLlyl—y(0)+L[y?] = % (3.26)
The initial condition (3.24) gives
Llyl==+—5—-L[v?]. (3.27)

Assuming an infinite series solution of the form (2.7), we have

- 301 1 | &
L § Un‘|—g+s—2gﬁz E Anl, (3.28)
n=0 n=0

where the nonlinear operator f(y) = y? is decomposed as in (2.8) in terms
of the Adomian polynomials. From (2.9) the first few Adomian polynomials
are

AO :y%a
A1 =2yoy1,
Az =2yoy2 +V7, (3.29)

Az =2yoysz+2y1y2

Following the Laplace transform decomposition method, if we match both
sides of (3.27) we obtain the iterative scheme

L]yo] =§+;—2, (3.30)
L] = £ [Ao], (3.31)
Llyz] = —%L[AJ, (3.32)

and the general iterative step is

Llunn] =LA, (3.33)

The inverse Laplace transform applied to (3.30) results

Yo =3+x. (3.34)
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Substituting yo =3+x and Ao =y3 given in (3.8) into (3.31), we obtain

1 1
Cloi) =12 [u3) = L3+
_a(e e 2y 0 6 2 B
 s\s sz s3] '
Consequently,
Y1 :—9x—3x2—%x3. (3.36)

Using this value of y; into (3.32) yields

Llyz] = —%L [2you1] = —%L —27x—18x% —4x3 — %x“ (3.37)
or
L[&Jz]zi’—j+§—f+i—§+l—g. (3.38)
Hence,
Y2 :27x2+12x3—|—2x4+%x5. (3.39)

The following higher iterates are obtained using Maple:

Sl Ve 174

— 5_
ys = —81x3 —45x* — R Tt (3.40)
2316 2487 628 62 o
Ya = 243162+ =5+ 5 o g+ e (3.41)
The infinite series solution becomes, upon using six iterations,
2 2497
Y= 3—8x+24x%— 28 34 200x4 — 8?26 5y 195 6X6+553313539 .
(3.42)

| 15550 5 502784 , 125536 o, 78362 i,
21 ¢ 72835 4725 31185

The [3,3] Padé approximant of the solution obtained in (3.42) is given by

_34x+(6/5)x* +(1/15)%
T 14 3x+(2/5)x2 +(1/5)x3

(3.43)

Table 3.3 gives the absolute and relative errors of the infinite series approx-
imation using six iterations of the Laplace transform decomposition tech-
nique. The error is less than 0.025%. As in Example 3.1, it was noticed that
for large values of x, replacing the infinite series solution (3.42) with its
Padé approximant (3.43) will improve the error.
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Table 3.3. Error obtained upon using six iterations of the Laplace transform

decomposition algorithm.

X Error Relative error
0.1 29849 x 107 1° 1.2509 x 107 '°
0.2 2.4803x 1078 1.2351x 108
0.3 2.9356x 1077 1.6714 %107
0.4 1.5941x10°° 1.0092 x 10~°
0.5 5.6963x107° 3.9263x10°°
0.6 1.5688x107° 1.1581x 1077
0.7 3.6180x107° 2.8237x107°
0.8 7.3380x 107> 5.9923x107°
0.9 1.3503x 104 1.1441 x 1074
1.0 2.3023x 1074 2.0105x 104

Example 3.3. Consider the following nonlinear problem:

Yy =4y—y’,
y(0) =0.5.

The exact solution is

Y =2(&;) 1/2. (3.46)

e3x+15

Operating with Laplace transform on both sides of (3.44) results
sLyl—y(0) =4L Nyl —L[y?]. (3.47)

Using the initial condition (3.45) then simplifying the resulting equation in
(3.47), we obtain

Lyl = %4—%&[13] ]

- L[y?]. (3.48)

S

Assuming an infinite series solution as in (2.7) we have

i 05 4 | & 1 >
L Zyn]—T+gL > un —<L > Anl, (3.49)
n=0 n=0 n=0

where the nonlinear operator f(y) =y> is decomposed as in (2.8) in terms
of the Adomian polynomials, which for this case the first few are given in
(3.8). Matching both sides of (3.49), the components of y can be defined



Suheil A. Khuri 151

as follows:
£[yo] = % (3.50)
Llw1] = 28 [ol ~ £ [Ad), (3.51)
Llya] = T8 fwi] -~ L [AY] (3.52)
and the general term is
Llunar] = 2L [un] — L [AN]. (3.53)

The terms y, can be obtained in a recursive manner. Taking the inverse
Laplace transform of (3.50) gives

yo =0.5. (3.54)

Substituting this value of yo into (3.51), and using that Ay =y3 from (3.8),
we obtain

2 1 2 1

= 3 = — —
Lln]=5-L[05°] =555 (3.55)
It follows that
Y1 = 1.875x. (3.56)
Using this value of y; into (3.52) gives
4 1
Llya] = L0875 — L [3ygu]. (3.57)
Consequently
Y2 = 3.046875x7. (3.58)

The next higher iterates are obtained using Maple,

y3 = 1.54296875%3,

4 (3.59)
ys4 = —4.678955079x".
The series solution is therefore
y = 0.5+ 1.875x +3.046875x* + 1.54296875x> (5.60)

—4.678955079x* —13.98919678x° + - - - .
The [4,4] Padé approximant of this approximate solution is

_0.5+2.940330021x +9.262070767x +13.01811008x +9.597056446x*
= 142.130660041x +4.440416382x2 — 6.684988403x3 + 19.98685852x"
(3.61)
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Table 3.4. Error obtained using four iterations of the numerical algorithm.

X Error Relative error
0.05 2.5873x 1077 4.3013x10°7
0.10 1.5733x10°° 2.1885%x10°°
0.15 1.6370x 1074 1.9226 x 104
0.20 7.9299 %1071 7.9581 %1077
0.25 2.3856x 1073 2.0763x 1073
0.30 4.8087 x 1073 3.6942x 1073
0.35 5.6245x 1073 3.8888x 1073
0.40 2.3004x 103 1.4601x 103

Table 3.4 shows that the absolute and relative errors of the approximation
(3.61), using four iterations of the numerical technique, is less than 2%.
Again, as in the previous examples, the Padé approximant (3.61) of the so-
lution (3.60) yields a better approximation of the exact solution for larger
values of x.

Example 3.4. In this last example, the method is illustrated by considering
the damped Duffing’s equation

vy +ky’ =—y?, (3.62)
y(0)=«,  y'(0)=4, (3.63)

where k is a positive constant. Applying Laplace transform to both sides of
(3.62) we obtain

s2Lyl—y(0)s—y'(0)+k(sLlyl —y(0)) = —L[y?]. (3.64)
Simplifying this equation and using the initial conditions (3.63) yields
(s*+ks)Llyl = als+k)+B—L[y?] (3.65)
or
s+k A 1

Lyl = — Ly?]. 3.66
] asz+ks+sz+ks sZ+ks [y] ( )

Assuming an infinite series solution of the form (2.7) we get
D_An
n=0

where the nonlinear operator f(y) = y3 is decomposed in terms of the
Adomian polynomials which for this case are given in (3.8). Upon using

L

, (3.67)

i s+k B 1
= — L
;ynl “sz+ks+sz+ks s2+ks
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the linearity of Laplace transform then matching both sides of (3.67),
results in the iterative algorithm

Llyo] = ocsji—ts sz—i—Lks (3.68)

Llyi] = —Ser—ksL[Ao}, (3.69)

L] =~ b (3.70)
In general,

fynsr] = —Szl_—ksL[An] (3.71)

Consider the case where o« = 3 = k = 1. Operating with Laplace inverse on
both sides of (3.68) gives

Yo=2—e¢"%. (3.72)

Substituting this value of yo and that of Ay =y3 given in (3.8) into (3.69),
we obtain

= o= r[2-e) .
e e L e e (I b I CR E)
o]
~8/s—12/(s+1)+6/(s+2)—1/(3+5)
L] = s . (3.74)
The inverse Laplace transform applied to (3.74) yields
_ 52 —X 29 —X —2x 1 —3x
i ——8x+?—12xe > € 3e +6e . (3.75)
Substituting the value of A; given in (3.8) into (3.70) implies
__ 2
Llyz] = SZ+kSL[3yOy1}. (3.76)

Substituting the values of yo and y; given in (3.72) and (3.75) into (3.76)
then applying the inverse Laplace transform, we obtain

7049 1054
Y2 = 48x%* —304x + % - (24)(2 +430x + —0254 3) e

(3.77)

71 11 1
o 18 —2x —3x —4x 75x‘
(60x+185)e +<6x+—]2)e +33¢ 20¢
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Table 3.5. Error that results from comparing the solution derived by the
Laplace transform numerical algorithm with four iterations, and the numerical
solution obtained using Maple.

X Error Relative error

0.1 1.6482 %107 1° 1.5123x107'°
0.2 3.7401x 107 '° 3.2275x 107 '°
0.3 3.6991x 1078 3.0661x 1078
0.4 7.8776 x 1077 6.3895x10~7
0.5 8.5726x107° 6.9187 x10°°
0.6 6.0690 x 107> 49478 x107°
0.7 3.1769x 1074 2.6522x 104
0.8 1.3281x 103 1.1494 x 103
0.9 4.6628 x 1073 422921073
1.0 1.4236x 102 1.3664 x 1072

In a similar fashion, higher iterates are obtained using Maple. For example,

Y3 = —320x> 4 3616x% — 24$§67 1846833030613
+ (32X3 _796x% — 54?;19 B 7];2?;279) o
+<84 4109 +‘7]14<Z3>63X_<3 +42090> .
- (360x2—|—4308x-|- 382869)62X N (%X . ?
-l-% 77"*%e76x

Therefore, the approximate solution is

Y=Yo+tyr+yz+ys+---

21T s <39£21589

ol

+323+

15

39 +3
400 ' 2

- (731 72029

3600

(121 3485

R

)e—“x 373

558979
30

1800

1073
Tt xt

+4368x+360x2> e 2

9979\ 3
144

x+ 820x2> e X +3664x%

19 7, 94422779
5040

) ef4x

(3.78)

(3.79)



Suheil A. Khuri 155

Table 3.5 shows the absolute and relative errors that result from compar-
ing the approximate solution obtained from the Laplace transform decom-
position algorithm using four iterations, and the numerical solution of the
damped Duffing’s equation evaluated using Maple solve commands. The error
is less than 0.001%. In all the previous four examples, it was observed that
increasing the number of iterates will improve the accuracy of the solution.
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