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In this paper, a numerical Laplace transform algorithm which is based on
the decomposition method is introduced for the approximate solution of a
class of nonlinear differential equations. The technique is described and il-
lustrated with some numerical examples. The results assert that this scheme
is rapidly convergent and quite accurate by which it approximates the solu-
tion using only few terms of its iterative scheme.

1. Introduction

This paper presents a Laplace transform numerical scheme, based on the
decomposition method, for solving nonlinear differential equations. The
analysis will be adapted to the approximate solution of a class of nonlinear
second-order initial-value problems, though the algorithm is well suited for
a wide range of nonlinear problems. The numerical technique basically illus-
trates how the Laplace transform may be used to approximate the solution
of the nonlinear differential equation by manipulating the decomposition
method which was first introduced by Adomian [1, 2]. The underlying idea
of the technique is to assume an infinite solution of the form u =

∑∞
n=0 un,

then apply Laplace transformation to the differential equation. The non-
linear term is then decomposed in terms of Adomian polynomials and an
iterative algorithm is constructed for the determination of the u ′

ns in a
recursive manner. The method is implemented for three numerical exam-
ples and the numerical results show that the scheme approximates the exact
solution with a high degree of accuracy using only few terms of the itera-
tive scheme. The main thrust of this technique is that the solution which is
expressed as an infinite series converges fast to exact solutions.

Copyright c© 2001 Hindawi Publishing Corporation
Journal of Applied Mathematics 1:4 (2001) 141–155
2000 Mathematics Subject Classification: 41A10, 45M15, 65L05
URL: http://jam.hindawi.com/volume-1/S1110757X01000183.html

http://jam.hindawi.com/volume-1/S1110757X01000183.html


142 Laplace decomposition algorithm

The balance in this paper is as follows. In Section 2, the Laplace transform
decomposition method will be presented as it applies to a class of second-
order nonlinear equations. In Section 3, the algorithm is implemented for
three numerical examples.

2. Numerical Laplace transform method

In this paper, a Laplace transform decomposition algorithm is implemented
for the solution of the following class of second-order nonlinear initial-value
problems

y ′′+a(x)y ′+b(x)y = f(y), (2.1)

y(0) = α, y ′(0) = β. (2.2)

Here f(y) is a nonlinear operator and a(x) and b(x) are known functions
in the underlying function space. The technique consists first of applying
Laplace transformation (denoted throughout this paper by L) to both sides
of (2.1), hence

L
[
y ′′]+L

[
a(x)y ′]+L[b(x)y] = L

[
f(y)

]
. (2.3)

Applying the formulas on Laplace transform, we obtain

s2L[y]−y(0)s−y ′(0)+L
[
a(x)y ′]+L

[
b(x)y

]
= L

[
f(y)

]
. (2.4)

Using the initial conditions (2.2), we have

s2L[y] = β+αs−L
[
a(x)y ′]−L

[
b(x)y

]
+L

[
f(y)

]
(2.5)

or

L[y] =
α

s
+

β

s2
−

1

s2
L

[
a(x)y ′]−

1

s2
L

[
b(x)y

]
+

1

s2
L

[
f(y)

]
. (2.6)

The Laplace transform decomposition technique consists next of representing
the solution as an infinite series, namely,

y =

∞∑
n=0

yn, (2.7)

where the terms yn are to be recursively computed. Also the nonlinear op-
erator f(y) is decomposed as follows:

f(y) =

∞∑
n=0

An, (2.8)
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where An = An(y0,y1,y2, ...,yn) are the so-called Adomian polynomials.
The first few polynomials are given by

A0 = f
(
y0

)
,

A1 = y1f(1)
(
y0

)
,

A2 = y2f(1)
(
y0

)
+

1

2!
y2

1f(2)
(
y0

)
,

A3 = y3f(1)
(
y0

)
+y1y2f(2)

(
y0

)
+

1

3!
y3

1f(3)
(
y0

)
.

(2.9)

Substituting (2.7) and (2.8) into (2.6) results

L

[ ∞∑
n=0

yn

]
=

α

s
+

β

s2
−

1

s2
L

[
a(x)

∞∑
n=0

y
′
n

]

−
1

s2
L

[
b(x)

∞∑
n=0

yn

]
+

1

s2
L

[ ∞∑
n=0

An

]
.

(2.10)

Using the linearity of Laplace transform it follows that

∞∑
n=0

L
[
yn

]
=

α

s
+

β

s2
−

1

s2

∞∑
n=0

L
[
a(x)y

′
n

]

−
1

s2

∞∑
n=0

L
[
b(x)yn

]
+

1

s2

∞∑
n=0

L
[
An

]
.

(2.11)

Matching both sides of (2.11) yields the following iterative algorithm:

L
[
y0

]
=

α

s
+

β

s2
, (2.12)

L
[
y1

]
= −

1

s2
L

[
a(x)y

′
0

]
−

1

s2
L

[
b(x)y0

]
+

1

s2
L

[
A0

]
, (2.13)

L
[
y2

]
= −

1

s2
L

[
a(x)y

′
1

]
−

1

s2
L

[
b(x)y1

]
+

1

s2
L

[
A1

]
. (2.14)

In general,

L
[
yn+1

]
= −

1

s2
L

[
a(x)y

′
n

]
−

1

s2
L

[
b(x)yn

]
+

1

s2
L

[
An

]
. (2.15)

Applying the inverse Laplace transform to (2.12) we get

y0 = α+βx. (2.16)

Substituting this value of y0 into (2.13) gives

L
[
y1

]
= −

1

s2
L

[
βa(x)

]
−

1

s2
L

[
b(x)(α+βx)

]
+

1

s2
L

[
A0

]
. (2.17)
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Evaluating the Laplace transform of the quantities on the right-hand side
of (2.17) then applying the inverse Laplace transform, we obtain the value
of y1. The other terms y2,y3, . . . can be obtained recursively in a similar
fashion using (2.15).

3. Numerical examples

The Laplace transform decomposition algorithm, described in Section 2, is
applied to some special cases of the class of nonlinear initial-value problems
given in (2.1) and (2.2).

Example 3.1. Consider the nonlinear problem

y ′′+(1−x)y ′−y = 2y3, (3.1)

y(0) = 1, y ′(0) = 1, (3.2)

whose closed form solution is

y =
1

1−x
. (3.3)

Taking Laplace transform of both sides of (3.1) gives

s2L[y]−y(0)s−y ′(0) = −L
[
(1−x)y ′]+L[y]+2L

[
y3

]
. (3.4)

The initial conditions (3.2) imply

s2L[y] = s+1−L
[
(1−x)y ′]+L[y]+2L

[
y3

]
(3.5)

or

L[y] =
1

s
+

1

s2
−

1

s2
L

[
(1−x)y ′]+

1

s2
L[y]+

2

s2
L

[
y3

]
. (3.6)

Following the technique, if we assume an infinite series solution of the form
(2.7) we obtain

L

[ ∞∑
n=0

yn

]
=

1

s
+

1

s2
−

1

s2
L

[
(1−x)

∞∑
n=0

y
′
n

]

+
1

s2
L

[ ∞∑
n=0

yn

]
+

2

s2
L

[ ∞∑
n=0

An

]
,

(3.7)

where the nonlinear operator f(y) = y3 is decomposed as in (2.8) in terms
of the Adomian polynomials. From (2.9) the first few Adomian polynomials
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for f(y) = y3 are given by

A0 = y3
0,

A1 = 3y2
0y1,

A2 = 3y2
0y2 +3y0y2

1,

A3 = 3y2
0y3 +6y0y1y2 +y1

3

. . .

(3.8)

Upon using the linearity of Laplace transform then matching both sides of
(3.7), results in the iterative scheme

L
[
y0

]
=

1

s
+

1

s2
, (3.9)

L
[
y1

]
= −

1

s2
L

[
(1−x)y

′
0

]
+

1

s2
L

[
y0

]
+

2

s2
L

[
A0

]
, (3.10)

L
[
y2

]
= −

1

s2
L

[
(1−x)y

′
1

]
+

1

s2
L

[
y1

]
+

2

s2
L

[
A1

]
. (3.11)

In general,

L
[
yn+1

]
= −

1

s2
L

[
(1−x)y

′
n

]
+

1

s2
L

[
yn

]
+

2

s2
L

[
An

]
. (3.12)

Operating with Laplace inverse on both sides of (3.9) gives

y0 = 1+x. (3.13)

Substituting this value of y0 and that of A0 = y3
0 given in (3.8) into (3.10),

we get

L
[
y1

]
=

1

s2
L[2x]+

1

s2
L

[
(1+x)3

]
(3.14)

so

L
[
y1

]
=

2

s4
+

2

s2

[
1

s
+

3

s2
+

6

s3
+

6

s4

]
=

2

s3
+

8

s4
+

12

s5
+

12

s6
. (3.15)

The inverse Laplace transform applied to (3.15) yields

y1 = x2 +
4

3
x3 +

1

2
x4 +

1

10
x5. (3.16)

Substituting (3.16) into (3.11) and using the value of A1 given in (3.8)
implies

L
[
y2

]
= −

1

s2
L

[
(1−x)

(
2x+4x2 +2x3 +

1

2
x4

)]

+
1

s2
L

[
x2 +

4

3
x3 +

1

2
x4 +

1

10
x5

]
+

2

s2
L

[
3y2

0y1

]
.

(3.17)
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Table 3.1. Error obtained using Laplace transform numerical algorithm with
four iterations.

x Error Relative error

0.1 1.7858×10−9 1.6072×10−9

0.2 9.4926×10−8 7.5941×10−8

0.3 1.0220×10−6 7.1542×10−7

0.4 1.2033×10−5 7.2195×10−6

0.5 2.3196×10−4 1.1598×10−4

0.6 3.2598×10−3 1.3039×10−3

0.7 3.2952×10−2 9.8855×10−3

Simplifying the right-hand side of (3.17) then applying the inverse Laplace
transform, we obtain

y2 = −
1

3
x3 +

5

12
x4 +

7

6
x5 +

9

10
x6 +

38

105
x7 +

3

40
x8 +

1

120
x9. (3.18)

Higher iterates can be easily obtained using the computer algebra system
Maple. For example,

y3 =
1

12
x4 −

1

4
x5 +

1

40
x6 +

4

5
x7 +

25

24
x8

+
361

540
x9 +

3233

12600
x10 +

29

462
x11 +

11

1200
x12 +

11

15600
x13,

(3.19)

y4 = −
1

60
x5 +

13

180
x6 −

41

280
x7 −

1213

6720
x8

+
7

18
x9 +

9991

10800
x10 +

14603

16632
x11 +

832991

1663200
x12

+
2066429

10810800
x13+

20101

400400
x14+

8101

900900
x15+

211

208000
x16+

211

3536000
x17.

(3.20)

Therefore, the approximate solution is

y = y0 +y1 +y2 +y3 +y4 + · · ·

= 1+x+x2 +x3 +x4 +x5 +
359

360
x6 +

853

840
x7 +

2097

2240
x8

+
1151

1080
x9 +

17867

15120
x10 +

15647

16632
x11 +

848237

1663200
x12 +

518513

2702700
x13

+
20101

400400
x14 +

8101

900900
x15 +

211

208000
x16 +

211

3536000
x17 + · · · .

(3.21)

Table 3.1 exhibits the results of the approximation using only four iterations
of the Laplace transform decomposition technique. The table shows the ab-
solute error, that is, the difference between the approximate solution given
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Table 3.2. Error obtained using the [5,5] Padé approximant of the infinite
series solution obtained by the Laplace transform numerical algorithm using
four iterations.

x Error Relative error

0.5 1.041×10−5 5.2075×10−6

1.5 6.417×10−5 3.2083×10−5

3 1.596×10−5 3.1920×10−5

5 1.111×10−5 4.4470×10−5

7 9.705×10−6 5.8230×10−5

9 9.036×10−6 7.2290×10−5

10 8.819×10−6 7.9372×10−5

20 7.935×10−6 1.5076×10−4

50 7.469×10−6 3.6596×10−4

100 7.322×10−6 7.2494×10−4

in (3.22) and the exact solution in (3.3), as well as the relative error. In both
cases the error is less than 1%. Note that the error is small for small values of
x and the accuracy degrades heavily for x greater than 1. The infinite series
solution diverges for values of x greater than 1, however we can use Maple
to calculate the [5,5] Padé approximant of the infinite series solution (3.21)
which gives the following rational fraction approximation to the solution:

y � 1+ 53
7 x+ 8703

392 x2 − 46607
2058 x3 − 178320109

460992 x4 + 1
360x5

1+ 46
7 x+ 5735

392 x2 − 369191
8232 x3 − 55960047

153664 x4 + 2674820843
6914880 x5

. (3.22)

In Table 3.2 we calculate the absolute and relative errors using this [5,5]

Padé approximant of the infinite series solution obtained by the Laplace de-
composition algorithm. In both cases the error is less than 0.75%. Clearly for
large values of x, calculating the errors using the Padé approximant instead
of the approximate infinite solution will lead to a drastic improvement in the
degree of accuracy. The infinite series solution does not provide a good ap-
proximation for substantial values of x, however replacing the partial sum of
the infinite series solution with its Padé approximant yields a very accurate
rational solution.

Example 3.2. Consider the initial-value problem

y ′+y2 = 1, (3.23)

y(0) = 3, (3.24)
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whose closed form solution is

y = −1+
2

1− .5e−2x
. (3.25)

First, we apply Laplace transform to both sides of (3.23),

sL[y]−y(0)+L
[
y2

]
=

1

s
. (3.26)

The initial condition (3.24) gives

L[y] =
3

s
+

1

s2
−

1

s
L

[
y2

]
. (3.27)

Assuming an infinite series solution of the form (2.7), we have

L

[ ∞∑
n=0

yn

]
=

3

s
+

1

s2
−

1

s
L

[ ∞∑
n=0

An

]
, (3.28)

where the nonlinear operator f(y) = y2 is decomposed as in (2.8) in terms
of the Adomian polynomials. From (2.9) the first few Adomian polynomials
are

A0 = y2
0,

A1 = 2y0y1,

A2 = 2y0y2 +y2
1,

A3 = 2y0y3 +2y1y2

. . .

(3.29)

Following the Laplace transform decomposition method, if we match both
sides of (3.27) we obtain the iterative scheme

L
[
y0

]
=

3

s
+

1

s2
, (3.30)

L
[
y1

]
= −

1

s
L

[
A0

]
, (3.31)

L
[
y2

]
= −

1

s
L

[
A1

]
, (3.32)

and the general iterative step is

L
[
yn+1

]
= −

1

s
L

[
An

]
. (3.33)

The inverse Laplace transform applied to (3.30) results

y0 = 3+x. (3.34)
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Substituting y0 = 3+x and A0 = y2
0 given in (3.8) into (3.31), we obtain

L
[
y1

]
= −

1

s
L

[
y2

0

]
= −

1

s
L

[
(3+x)2

]
= −

1

s

(
9

s
+

6

s2
+

2

s3

)
= −

9

s2
−

6

s3
−

2

s4
.

(3.35)

Consequently,

y1 = −9x−3x2 −
1

3
x3. (3.36)

Using this value of y1 into (3.32) yields

L
[
y2

]
= −

1

s
L

[
2y0y1

]
= −

2

s
L

[
−27x−18x2 −4x3 −

1

3
x4

]
(3.37)

or

L
[
y2

]
=

54

s3
+

72

s4
+

48

s5
+

16

s6
. (3.38)

Hence,

y2 = 27x2 +12x3 +2x4 +
2

15
x5. (3.39)

The following higher iterates are obtained using Maple:

y3 = −81x3 −45x4 −
51

5
x5 −

17

15
x6 −

17

315
x7, (3.40)

y4 = 243x4 +162x5 +
231

5
x6 +

248

35
x7 +

62

105
x8 +

62

2835
x9. (3.41)

The infinite series solution becomes, upon using six iterations,

y = 3−8x+24x2 −
208

3
x3 +200x4 −

8656

15
x5 +

24976

15
x6 +

553339

315
x7

+
15550

21
x8 +

502784

2835
x9 +

125536

4725
x10 +

78362

31185
x11 + · · · .

(3.42)

The [3,3] Padé approximant of the solution obtained in (3.42) is given by

y � 3+x+(6/5)x2 +(1/15)x3

1+3x+(2/5)x2 +(1/5)x3
. (3.43)

Table 3.3 gives the absolute and relative errors of the infinite series approx-
imation using six iterations of the Laplace transform decomposition tech-
nique. The error is less than 0.025%. As in Example 3.1, it was noticed that
for large values of x, replacing the infinite series solution (3.42) with its
Padé approximant (3.43) will improve the error.
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Table 3.3. Error obtained upon using six iterations of the Laplace transform
decomposition algorithm.

x Error Relative error

0.1 2.9849×10−10 1.2509×10−10

0.2 2.4803×10−8 1.2351×10−8

0.3 2.9356×10−7 1.6714×10−7

0.4 1.5941×10−6 1.0092×10−6

0.5 5.6963×10−6 3.9263×10−6

0.6 1.5688×10−5 1.1581×10−5

0.7 3.6180×10−5 2.8237×10−5

0.8 7.3380×10−5 5.9923×10−5

0.9 1.3503×10−4 1.1441×10−4

1.0 2.3023×10−4 2.0105×10−4

Example 3.3. Consider the following nonlinear problem:

y ′ = 4y−y3, (3.44)

y(0) = 0.5. (3.45)

The exact solution is

y = 2

(
e8x

e8x +15

)1/2

. (3.46)

Operating with Laplace transform on both sides of (3.44) results

sL[y]−y(0) = 4L[y]−L
[
y3

]
. (3.47)

Using the initial condition (3.45) then simplifying the resulting equation in
(3.47), we obtain

L[y] =
0.5

s
+

4

s
L[y]−

1

s
L
[
y3

]
. (3.48)

Assuming an infinite series solution as in (2.7) we have

L

[ ∞∑
n=0

yn

]
=

0.5

s
+

4

s
L

[ ∞∑
n=0

yn

]
−

1

s
L

[ ∞∑
n=0

An

]
, (3.49)

where the nonlinear operator f(y) = y3 is decomposed as in (2.8) in terms
of the Adomian polynomials, which for this case the first few are given in
(3.8). Matching both sides of (3.49), the components of y can be defined
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as follows:

L
[
y0

]
=

0.5

s
, (3.50)

L
[
y1

]
=

4

s
L

[
y0

]
−

1

s
L

[
A0

]
, (3.51)

L
[
y2

]
=

4

s
L

[
y1

]
−

1

s
L

[
A1

]
(3.52)

and the general term is

L
[
yn+1

]
=

4

s
L

[
yn

]
−

1

s
L

[
An

]
. (3.53)

The terms yn can be obtained in a recursive manner. Taking the inverse
Laplace transform of (3.50) gives

y0 = 0.5. (3.54)

Substituting this value of y0 into (3.51), and using that A0 = y3
0 from (3.8),

we obtain

L
[
y1

]
=

2

s2
−

1

s
L

[
(0.5)3

]
=

2

s2
−

1

8s2
. (3.55)

It follows that

y1 = 1.875x. (3.56)

Using this value of y1 into (3.52) gives

L
[
y2

]
=

4

s
L[1.875x]−

1

s
L

[
3y2

0y1

]
. (3.57)

Consequently

y2 = 3.046875x2. (3.58)

The next higher iterates are obtained using Maple,

y3 = 1.54296875x3,

y4 = −4.678955079x4.
(3.59)

The series solution is therefore

y = 0.5+1.875x+3.046875x2 +1.54296875x3

−4.678955079x4 −13.98919678x5 + · · · . (3.60)

The [4,4] Padé approximant of this approximate solution is

y � 0.5+2.940330021x+9.262070767x2 +13.01811008x3 +9.597056446x4

1+2.130660041x+4.440416382x2 −6.684988403x3 +19.98685852x4
.

(3.61)
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Table 3.4. Error obtained using four iterations of the numerical algorithm.

x Error Relative error

0.05 2.5873×10−7 4.3013×10−7

0.10 1.5733×10−5 2.1885×10−5

0.15 1.6370×10−4 1.9226×10−4

0.20 7.9299×10−4 7.9581×10−4

0.25 2.3856×10−3 2.0763×10−3

0.30 4.8087×10−3 3.6942×10−3

0.35 5.6245×10−3 3.8888×10−3

0.40 2.3004×10−3 1.4601×10−3

Table 3.4 shows that the absolute and relative errors of the approximation
(3.61), using four iterations of the numerical technique, is less than 2%.
Again, as in the previous examples, the Padé approximant (3.61) of the so-
lution (3.60) yields a better approximation of the exact solution for larger
values of x.

Example 3.4. In this last example, the method is illustrated by considering
the damped Duffing’s equation

y ′′+ky ′ = −y3, (3.62)

y(0) = α, y ′(0) = β, (3.63)

where k is a positive constant. Applying Laplace transform to both sides of
(3.62) we obtain

s2L[y]−y(0)s−y ′(0)+k
(
sL[y]−y(0)

)
= −L

[
y3

]
. (3.64)

Simplifying this equation and using the initial conditions (3.63) yields(
s2 +ks

)
L[y] = α(s+k)+β−L

[
y3

]
(3.65)

or

L[y] = α
s+k

s2 +ks
+

β

s2 +ks
−

1

s2 +ks
L

[
y3

]
. (3.66)

Assuming an infinite series solution of the form (2.7) we get

L

[ ∞∑
n=0

yn

]
= α

s+k

s2 +ks
+

β

s2 +ks
−

1

s2 +ks
L

[ ∞∑
n=0

An

]
, (3.67)

where the nonlinear operator f(y) = y3 is decomposed in terms of the
Adomian polynomials which for this case are given in (3.8). Upon using
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the linearity of Laplace transform then matching both sides of (3.67),
results in the iterative algorithm

L
[
y0

]
= α

s+k

s2 +ks
+

β

s2 +ks
, (3.68)

L
[
y1

]
= −

1

s2 +ks
L

[
A0

]
, (3.69)

L
[
y2

]
= −

1

s2 +ks
L

[
A1

]
. (3.70)

In general,

L
[
yn+1

]
= −

1

s2 +ks
L

[
An

]
. (3.71)

Consider the case where α = β = k = 1. Operating with Laplace inverse on
both sides of (3.68) gives

y0 = 2−e−x. (3.72)

Substituting this value of y0 and that of A0 = y3
0 given in (3.8) into (3.69),

we obtain

L
[
y1

]
= −

1

s2 +ks
L

[
y3

0

]
= −

1

s2 +ks
L

[(
2−e−x

)3]
(3.73)

so

L
[
y1

]
=

8/s−12/(s+1)+6/(s+2)−1/(3+s)

s2 +s
. (3.74)

The inverse Laplace transform applied to (3.74) yields

y1 = −8x+
52

3
−12xe−x −

29

2
e−x −3e−2x +

1

6
e−3x. (3.75)

Substituting the value of A1 given in (3.8) into (3.70) implies

L
[
y2

]
= −

1

s2 +ks
L

[
3y2

0y1

]
. (3.76)

Substituting the values of y0 and y1 given in (3.72) and (3.75) into (3.76)
then applying the inverse Laplace transform, we obtain

y2 = 48x2 −304x+
37049

60
−

(
24x2 +430x+

10543

24

)
e−x

−
(
60x+185

)
e−2x +

(
6x+

71

12

)
e−3x +

11

12
e−4x −

1

40
e−5x.

(3.77)
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Table 3.5. Error that results from comparing the solution derived by the
Laplace transform numerical algorithm with four iterations, and the numerical
solution obtained using Maple.

x Error Relative error

0.1 1.6482×10−10 1.5123×10−10

0.2 3.7401×10−10 3.2275×10−10

0.3 3.6991×10−8 3.0661×10−8

0.4 7.8776×10−7 6.3895×10−7

0.5 8.5726×10−6 6.9187×10−6

0.6 6.0690×10−5 4.9478×10−5

0.7 3.1769×10−4 2.6522×10−4

0.8 1.3281×10−3 1.1494×10−3

0.9 4.6628×10−3 4.2292×10−3

1.0 1.4236×10−2 1.3664×10−2

In a similar fashion, higher iterates are obtained using Maple. For example,

y3 = −320x3 +3616x2 −
246667

15
x+

184833613

6300

+

(
32x3 −796x2 −

545719

30
x−

71534779

3600

)
e−x

+

(
84x2 +

1055

3
x+

9103

144

)
e−3x −

(
3

2
x+

29

400

)
e−5x

−

(
360x2 +4308x+

385069

40

)
e−2x +

(
121

3
x+

863

9

)
e−4x

+
19

5040
e−7x −

373

1800
e−6x.

(3.78)

Therefore, the approximate solution is

y = y0 +y1 +y2 +y3 + · · ·

= −
251347

15
x−320x3 −

(
392589

40
+4368x+360x2

)
e−2x

−

(
39

400
+

3

2
x

)
e−5x +

(
84x2 +

1073

3
x+

9979

144

)
e−3x

−

(
73172029

3600
+32x3 +

558979

30
x+820x2

)
e−x +3664x2

+

(
121

3
x+

3485

36

)
e−4x −

373

1800
e−6x +

19

5040
e−7x +

94422779

3150
+ · · · .

(3.79)
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Table 3.5 shows the absolute and relative errors that result from compar-
ing the approximate solution obtained from the Laplace transform decom-
position algorithm using four iterations, and the numerical solution of the
damped Duffing’s equation evaluated using Maple solve commands. The error
is less than 0.001%. In all the previous four examples, it was observed that
increasing the number of iterates will improve the accuracy of the solution.
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