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There are well-known constructions of integrable systems that are chains of
infinitely many copies of the equations of the KP hierarchy “glued” together
with some additional variables, for example, the modified KP hierarchy. An-
other interpretation of the latter, in terms of infinite matrices, is called the
1-Toda lattice hierarchy. One way infinite reduction of this hierarchy has all
the solutions in the form of sequences of expanding Wronskians. We define
another chain of the KP equations, also with solutions of the Wronsksian
type, that is characterized by the property to stabilize with respect to a gra-
dation. Under some constraints imposed, the tau functions of the chain are
the tau functions associated with the Kontsevich integrals.

1. Introduction

This paper was motivated by the following arguments. There are well-known
chains of infinitely many copies of the equations of the KP hierarchy “glued”
together with some variables, like, for example, modified KP (see (2.2a),
(2.2b), and (2.2c) below). The latter is a sequence of dressing operators of
the KP hierarchy {ŵN} along with “gluing” variables {uN}. All these variables
make a large integrable system. The chain (2.2a), (2.2b), and (2.2c) has
another interpretation, in terms of infinite matrices, which is called the
1-Toda lattice hierarchy (see [2, 4, 9]). There exist different reductions of
this chain, for example, modified KdV, or another reduction, a semi-infinite
chain for which all ŵN with negative N are trivial, ŵN = 1, and ŵN with
positive N are PN∂−N where PN is an Nth order differential operator (the
corresponding matrices of the 1-Toda lattice hierarchy also are semi-infinite).
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It can be shown (see Proposition 2.3) that all the solutions are sequences
of well-known Wronskian solutions to KP, each ŵN being represented by
a determinant of Nth order. Every next determinant is obtained from the
preceding one by an extension of the Wronskian when a new function is
added to the existing ones.

There is another situation where one deals with a sequence of Wronskian
solutions of increasing order. This time the Wronskians are not obtained by
a successive extension. The rule is more complicated. We talk about the so-
called Kontsevich integral [1, 7, 8] which has its origin in quantum physics.
This is an integral over the group U(N) which is a function of a matrix,

invariant with respect to the matrix conjugation, that is, a function of
eigenvalues λi of the matrix. The main fact about the Kontsevich integral is
that it is a tau function of the KP hierarchy of the Wronskian type in vari-
ables ti =

∑
k λ−i

k . The dimension of the Wronskian is N. The sequence of
Wronskians has, in a sense, a limit when N → ∞. More precisely, this is a
stable limit. There is some grading and the terms of a fixed weight stabi-
lize when N → ∞: they become independent of N when N is large enough.
The stable limit belongs to the nth reduction of KP (nth GD) and, besides,
satisfies the string equation.

The question we try to answer here is whether the sequence of Kontsevich
tau functions is interesting by itself, not only by its limit. Is it possible to
complete it with “gluing” variables to obtain a chain of related KP equations
similar to (2.2a), (2.2b), and (2.2c)? The answer is positive (see Section 3.1,

(3.2), (3.3), (3.4), and (3.5)). Unfortunately, we do not know a matrix ver-
sion of this chain like that of the 1-Toda lattice hierarchy.

Thus, in this paper we define the “stabilizing” chain of KP, study its so-
lutions, and demonstrate that they are exactly those which are represented
by the Kontsevich integral. In the appendix we briefly show, skipping all the
calculations, the way from the Wronskian solutions to the Kontsevich inte-
gral. This is actually the conversion of Itzykson and Zuber’s [7] reasoning,

and the reader can find the skipped details there.

2. Semi-infinite 1-Toda lattice hierarchy

2.1.

Recall some basic facts about the modified KP and 1-Toda lattice hierarchy
(see [4]). The modified KP hierarchy is a collection of the following objects
(∂k = ∂/∂tk, ∂ = ∂1):

ŵN(∂) = 1+wN1∂−1 +wN2∂−2 + · · · , N ∈ Z (2.1)

and {uN}, N ∈ Z, and the following relations:
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∂+uN

)
ŵN = ŵN+1∂, (2.2a)

∂kŵN = −
(
Lk

N

)
−
ŵN, where LN = ŵN∂ŵ−1

N , (2.2b)

∂kuN =
(
Lk

N+1

)
+

(
∂+uN

)
−

(
∂+uN

)(
Lk

N

)
+
. (2.2c)

Notice that multiplying (2.2c) by (∂ + uN)−1 on the right and taking the
residue we get an equivalent form of this equation

∂kuN = − res
(
∂+uN

)(
Lk

N

)
+

(
∂+uN

)−1
. (2.3)

We construct a both way infinite matrix W with elements

Wij =

{
wi,i−j, j ≤ i,

0, otherwise.
(2.4)

Then the following proposition holds.

Proposition 2.1 (see [4]). The operators {ŵN} satisfy the modified KP,
along with some {uN}, if and only if the matrix W satisfies the discrete
KP (1-Toda lattice hierarchy)

∂kW = −
(
Lk

)
−
W, (2.5)

where L = WΛW−1, Λ is the matrix of the shift (Λ)ij = δi,j−1, and the
subscript “−” symbolizes the strictly lower triangular part of a matrix.

Suppose that we have a special solution such that ŵN = 1 and uN−1 = 0

when N ≤ 0. Let PN = ŵN∂N. Then P0 = 1, (2.2a) implies (∂+uN)PN =

PN+1 and therefore PN is an Nth-order differential monic operator when
N > 0. Then ŵN = 1+wN1∂−1 + · · ·+wNN∂−N. The matrix W is a direct
sum of two semi-infinite blocks, one is the unity and the other is (Wij)

with i and j ≥ 0. We show that all the solutions are simply the well-known
Wronskian solutions of KP.

Lemma 2.2. Let ŵN be a solution of the semi-infinite chain of (2.2a),
(2.2b), and (2.2c) with N = 0,1,2, . . . and PN = ŵN∂N. There exists a
sequence of linearly independent functions y0,y1, . . . such that PNyi = 0

when i = 0, . . . ,N−1 and (∂k −∂k)yi = 0 for all k and i.

Proof. Suppose the yi’s are already constructed for i < N−1 (if N = 1, noth-
ing is supposed). Then PN−1yi = 0 and PNyi = 0 for i = 0, . . . ,N−2 since
(∂ + uN−1)PN−1 = PN. The kernel of the operator PN is N-dimensional,
therefore there is one more function yN−1 independent of y0, . . . ,yN−2 such
that PNyN−1 = 0.
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First of all, we prove that if a function, in this case yN−1 but this is a
general fact, belongs to the kernel of PN then so does (∂k −∂k)yN−1. We
have

0 = ∂k

(
PNyN−1

)
=

(
∂kPN

)
yN−1 +PN

(
∂kyN−1

)
= −

(
ŵN∂kŵ−1

N

)
−
ŵN∂NyN−1 +PN

(
∂kyN

)
= −ŵN∂N∂kyN−1 +

(
Lk

N

)
+
PNyN−1 +PN

(
∂kyN−1

)
.

(2.6)

The middle term of the last expression vanishes since PNyN−1 = 0 and
(Lk

N)+ is a differential operator. Thus, PN(∂k − ∂k)yN−1 = 0, and (∂k −

∂k)yN−1 is in kerPN. Now,(
∂k −∂k

)
yN−1 =

N−1∑
i=0

Akiyi, Ali = 0. (2.7)

The coefficients Aki do not depend on t1. We have

(
∂l −∂l

)(
∂k −∂k

)
yN−1 = Ak,N−1

N−1∑
i=0

Aliyi −

N−1∑
i=0

(
∂lAki

)
yi,

(
∂k −∂k

)(
∂l −∂l

)
yN−1 = Al,N−1

N−1∑
i=0

Akiyi −

N−1∑
i=0

(
∂kAli

)
yi.

(2.8)

The operators (∂k −∂k) and (∂l −∂l) commute, hence

N−1∑
i=0

(
∂l +Al,N−1

)
Aki ·yi =

N−1∑
i=0

(
∂k +Ak,N−1

)
Ali ·yi (2.9)

and, by virtue of the linear independence of yi as functions of t1,(
∂l +Al,N−1

)
Aki =

(
∂k +Ak,N−1

)
Ali. (2.10)

This is the compatibility condition of the equations(
∂k +Ak,N−1

)
mi = Aki. (2.11)

We can find mi, with mN−1 = 1, and then

(
∂k −∂k

)
yN−1 =

N−1∑
i=0

(
∂k +Ak,N−1

)
mi ·yi. (2.12)

Let ỹN−1 =
∑N−1

0 miyi. It is easy to see that(
∂k −∂k

)
ỹN−1 = Ak,N−1ỹN−1. (2.13)
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Now, if we solve the system

∂kφN−1 = φN−1Ak,N−1, (2.14)

consistent by virtue of (2.10), where i = N − 1, then y∗
N−1 = ỹN−1φN−1

will satisfy the equation (
∂k −∂k

)
y∗

N−1 = 0. (2.15)

�

Proposition 2.3. The general construction of the solutions to the semi-
infinite 1-Toda hierarchy, or, equivalently, the chain (2.2a), (2.2b), and
(2.2c) is the following: let {yi} be a sequence of functions of the variables
t1 = x,t2, . . . having the property (∂k −∂k)yi = 0. Then

ŵN =
1

WN

∣∣∣∣∣∣∣∣∣
y0 · · · yN−1 1

y ′
0 · · · y ′

N−1 ∂
...

...
...

...
y

(N)
0 · · · y

(N)
N−1 ∂N

∣∣∣∣∣∣∣∣∣ ·∂
−N, (2.16)

where WN = W(y0, . . . ,yN−1) is the Wronskian and uN = −∂ ln(WN+1/

WN).

Proof. In one way, the proposition is almost proved by the preceding analy-
sis. It only remains to notice that PN = ŵN∂N, where ŵN is given by (2.16),
is the monic differential operator with the kernel spanned by y0, . . . ,yN−1,

that (∂+uN)PNyN = 0 and PNyN = WN+1/WN.
The converse follows from the fact that ŵN given by (2.16), as it is well

known, is a dressing operator of the KP hierarchy, the operators (∂+uN)PN,

where uN = − ln(WN+1/WN) and PN+1, have the same kernel spanned by
y0, . . . ,yN and, therefore, coincide. �

2.2.

The property (∂k −∂k)yi = 0 implies

yi

(
t1 −

1

z
,t2 −

1

2z2
, t3 −

1

3z3
, . . .

)
=

(
1−

1

z
∂

)
yi

(
t1, t2, t3, . . .

)
(2.17)

or yi(t−[z−1]) = (1−∂/z)yi(t), using the common notation. Indeed,

exp
( ∞∑

1

−
(
kzk

)−1
∂k

)
yi =

(
exp

∞∑
1

−
(
kzk

)−1
∂k

)
yi

= expln
(

1−
1

z
∂

)
yi =

(
1−

1

z
∂

)
yi.

(2.18)
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The Baker, or wave function is ŵ(∂)exp
∑∞

1 tkξk = ŵ(z)exp
∑∞

1 tkzk where

ŵN(z) =
1

WN

∣∣∣∣∣∣∣∣∣∣
y0 · · · yN−1 z−N

y ′
0 · · · y ′

N−1 z−N+1

...
...

...
...

y
(N)
0 · · · y

(N)
(N−1) 1

∣∣∣∣∣∣∣∣∣∣
. (2.19)

Subtracting the second row divided by z from the first one, then the third
divided by z from the second one, and so forth, we obtain zeros in the last
column except the last element which is 1. In the ith row there will be
elements y

(i)
j −z−1y

(i+1)
j = y

(i)
j (t−[z−1]), according to (2.17). Thus,

ŵN(z) =
WN

(
t−

[
z−1

])
WN(t)

(2.20)

which means that WN(t) is the tau function τN(t) corresponding to ŵN(z),

and uN = − ln(τN+1/τN).
What are the functions yi(t) with the property (∂k − ∂k)yi = 0? For

example, exp
∑∞

1 tkαk, linear combinations of several such functions, and
integrals

∫
f(α)exp(

∑∞
1 tkαk)d

∑
(α). Using the Schur polynomials pk(t1,

t2, . . .) defined by exp
∑∞

1 tkαk =
∑∞

0 pk(t)ak, we see that all the above
examples have a form yi(t) =

∑
cikpk(t). Conversely, any series of this

form has the property (∂k −∂k)yi = 0 since the Schur polynomials have it,
as it is easy to see. Apparently, this is, in a sense, the most general form of
such functions.

3. Stabilizing chain

Definition 3.1. The stabilizing chain is a collection of the following objects:

ŵN(∂) = 1+wN1∂−1 + · · ·+wNN∂−N

= PN(∂) ·∂−N, N = 0,1,2,3, . . . ,
(3.1)

and uN, vN+1, N = 0,1,2,3, . . . , and the following relations:(
∂+uN

) ·ŵN =
(
∂+vN+1

) ·ŵN+1, (3.2)

∂kŵN = −
(
Lk

N

)
−
ŵN, where LN = ŵN∂ŵ−1

N , (3.3)

∂kuN = − res
((

∂+uN

)(
Lk

N

)
+

(
∂+uN

)−1)
, (3.4)

∂kvN+1 = − res
((

∂+vN+1

)(
Lk

N+1

)
+

(
∂+vN+1

)−1)
. (3.5)



L. A. Dickey 181

Equations (3.4) and (3.5) can also be written as

∂kuN = resLk
N − res

((
∂+uN

)
Lk

N

(
∂+uN

)−1)
,

∂kvN+1 = resLk
N+1 − res

((
∂+vN+1

)
Lk

N+1

(
∂+vN+1

)−1)
,

(3.6)

where

res
((

∂+uN

)
Lk

N

(
∂+uN

)−1)
= res

((
∂+vN+1

)
Lk

N+1

(
∂+vN+1

)−1)
(3.7)

by virtue of (3.2).
It can happen that starting from some term uN = vN+1 and all ŵN are

equal, the chain stabilizes. Then wNN = 0. Also, it can happen that the
chain contains constant segments and after that again begins to change.
These segments can be just skipped. We assume that all wNN �= 0. Neverthe-
less, some tendency to stabilization remains, as we will see below. A grading
will be introduced so that all quantities will be sums of terms of different
weights. We will see that terms of a given weight stabilize, the greater is
the weight the later the stabilization occurs. The stabilization is actually
the most important feature of this chain allowing one to consider the sta-
ble limits when N tends to ∞. This is used, for example, in the Kontsevich
integral.

The chain is well defined if one proves that

(1) the right-hand side of (3.3) is a pseudodifferential operator (ΨDO)
of the form

∑N
1 aj∂

−i,

(2) vector fields ∂k defined by (3.3), (3.4), and (3.5) respect the relation
(3.2),

(3) vector fields ∂k commute.

Equation (3.3) defines a copy of the KP hierarchy for each n. It is clear
that the operator in the right-hand side is negative. Rewriting it as ∂kŵN =

−ŵN∂k + (Lk
N)+ŵN, one can see that it contains only powers ∂−i with

i ≤ N. Thus, (1) is proven.
Now, one has to prove that

∂k

((
∂+uN

)
ŵN −

(
∂+vN+1

)
ŵN+1

)
= 0 (3.8)

if (3.2) holds. We have

∂k

((
∂+uN

)
ŵN −

(
∂+vN+1

)
ŵN+1

)
=

(
resLk

N − res
((

∂+uN

)
Lk

N

(
∂+uN

)−1))
ŵN

−
(
resLk

N+1 − res
((

∂+vN+1

)
Lk

N+1

(
∂+vN+1

)−1))
ŵN+1

−
(
∂+uN

)(
Lk

N

)
−
ŵN +

(
∂+vN+1

)(
Lk

N+1

)
−
ŵN+1.

(3.9)
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The last two terms are transformed as

−
(
∂+uN

)(
Lk

N

)
−
ŵN

= −
((

∂+uN

)
Lk

N

)
−
ŵN − res

(
Lk

N

)
ŵN

= −
((

∂+uN

)
Lk

N

(
∂+uN

)−1(
∂+uN

))
−
ŵN − res

(
Lk

N

)
ŵN

= −
((

∂+uN

)
Lk

N

(
∂+uN

)−1)
−

(
∂+uN

)
ŵN − res

(
Lk

N

)
ŵN

+ res
((

∂+uN

)
Lk

N

(
∂+uN

)−1)
ŵN.

(3.10)

Similarly,(
∂+vN+1

)(
Lk

N+1

)
−
ŵN+1

=
((

∂+vN+1

)
Lk

N+1

(
∂+vN+1

)−1)
−

(
∂+vN+1

)
ŵN+1

+ res
(
Lk

N+1

)
ŵN+1 − res

((
∂+vN+1

)
Lk

N+1

(
∂+vN+1

)−1)
ŵN+1.

(3.11)

Taking into account (3.2) and(
∂+vN+1

)
Lk

N+1

(
∂+vN+1

)−1
=

(
∂+uN

)
Lk

N

(
∂+uN

)−1
, (3.12)

the sum of all the terms is zero.
Before we prove (3), the relations (3.4) and (3.5) will be presented in a

different form.

Lemma 3.2. The following remarkable formula holds(
∂−

w ′

w

)−1

=

∞∑
0

∂−k−1 w(k)

w
, (3.13)

where w is a function.

Proof. We multiply the right-hand side of (3.13) by (∂−w ′/w):

∞∑
0

∂−k−1 w(k)

w

(
∂−

w ′

w

)

=

∞∑
0

∂−k w(k)

w
−

∞∑
0

∂−k−1

(
w(k)

w

) ′
−

∞∑
0

∂−k−1 w(k)w ′

w2

=

∞∑
0

∂−k w(k)

w
−

∞∑
0

∂−k−1 w(k+1)

w
= 1.

(3.14)

�
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Corollary 3.3. For any polynomial P(∂), the following holds:

res∂k

(
∂−

w ′

w

)−1

=
w(k)

w
,

resP(∂) ·
(

∂−
w ′

w

)−1

=
P(∂)w

w
.

(3.15)

Notice that (3.2) implies that (∂ + vN+1)wN+1,N+1 = 0 where
(∂ + vN+1)wN+1,N+1 is understood as a result of the action of the oper-
ator (∂+vN+1) on the function wN+1,N+1 (not a product!). Indeed, this is
the coefficient in ∂−N−1 of the expression in the right-hand side while the
left-hand side does not contain this term. Thus,

vN+1 = −
w ′

N+1,N+1

wN+1,N+1
= −∂ lnwN+1,N+1. (3.16)

Now,

∂kvN+1 = − res
((

∂−
w ′

N+1,N+1

wN+1,N+1

)(
Lk

N+1

)
+

(
∂−

w ′
N+1,N+1

wN+1,N+1

)−1)

= −

(
∂−w ′

N+1,N+1/wN+1,N+1

)(
Lk

N+1

)
+
wN+1,N+1

wN+1,N+1

= −∂

(
Lk

N+1

)
+
wN+1,N+1

wN+1,N+1
.

(3.17)

Subtracting (3.6), we have

∂k

(
uN −vN+1

)
= resLk

N − resLk
N+1. (3.18)

These two equations are equivalent to (3.4) and (3.5).
An alternative way to get (3.17) is the following: equation (3.3) implies

∂kŵN+1 = −ŵN+1∂k +(Lk
N+1)+ŵN+1 and

∂kwN+1,N+1 = −
(
Lk

N+1

)
+
wN+1,N+1. (3.19)

Then (3.17) easily follows from (3.16).

Proof of the commutativity of {∂k}. They commute in their action on all
ŵN as KP vector fields. Therefore (3.16) yields ∂k∂lvN+1 = ∂l∂kvN+1.
Finally,
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∂l∂k

(
uN −vN+1

)
= res

([(
Ll

N

)
+
,Lk

N

]
−

[(
Ll

N+1

)
+
,Lk

N+1

])
= − res

([(
Ll

N

)
−
,Lk

N

]
−

[(
Ll

N+1

)
−
,Lk

N+1

])
= − res

([(
Ll

N

)
−
,
(
Lk

N

)
+

]
−

[(
Ll

N+1

)
−
,
(
Lk

N+1

)
+

])
= − res

([
Ll

N,
(
Lk

N

)
+

]
−

[
Ll

N+1,
(
Lk

N+1

)
+

])
= − res

([(
Lk

N

)
+
,Ll

N

]
−

[(
Lk

N+1

)
+
,Ll

N+1

])
= ∂k∂l

(
uN −vN+1

)
(3.20)

whence ∂l∂kuN = ∂k∂luN. �

4. Solutions to the chain

4.1.

Let y0N, . . . ,yN−1N be a basis of the kernel of the differential operator PN =

ŵN∂N such that PNyiN = 0.

Lemma 4.1. Passing, if needed, to linear combinations of yiN with coef-
ficients depending only on t2, t3, . . . , one can always achieve

∂kyiN = ∂kyiN, (4.1)

yiN = y ′
i,N+1, i = 0, . . . ,N−1. (4.2)

(The relation (4.4) is what makes this chain different from the one con-
sidered in Section 3 (modified KP) where it was yiN = yi,N+1 instead.)

Proof. Suppose yiN, where i = 0, . . . ,N − 1, are already constructed. Let
y0,N+1, . . . ,yN,N+1 be a basis of the kernel of the operator PN+1 such that
PN+1yi,N+1 = 0. The functions y ′

0,N+1, . . . ,y ′
N,N+1 which belong to the ker-

nel of (∂+uN)PN are linearly independent, otherwise there would be a linear
combination of yi,N+1 belonging to the kernel of PN+1 which is constant
(with respect to t1 = x) while we know that PN+11 = wN+1,N+1 �= 0 by as-
sumption. Hence, at least one of these functions does not belong to kerPN,

let it be y ′
N,N+1 such that PNy ′

N,N+1 �= 0. Since all PNy ′
i,N+1 belong to

the 1-dimensional kernel of ∂+uN, there must be constants ai such that
PN(y ′

i,N+1 − aiy
′
N,N+1) = 0. (When we speak about constants, we mean

constants with respect to t1 = x depending, maybe, on higher times.) Thus
(yi,N+1−aiyN,N+1) ′ form a basis of the kernel of PN. There exist their lin-
ear combinations (y

(1)
i,N+1) ′ coinciding with yiN: (y

(1)
i,N+1) ′ = yiN where i =

0, . . . ,N−1. This yields ∂(∂k −∂k)y
(1)
i,N+1 = 0 and (∂k −∂k)y

(1)
i,N+1 = cki =

constant. As in Lemma 2.2, we can prove that (∂k −∂k)y
(1)
i,N+1 ∈ kerPN+1,
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therefore cki = 0 since constants do not belong to the kernel. It remains to
consider yN,N+1. Since (∂k−∂k)yN,N+1 =

∑
Aiyi,N+1, the same reasoning

as in Lemma 2.2 will do the rest. �

Proposition 4.2. All solutions to the chain (3.2), (3.3), (3.4), and (3.5)
have the following structure. Let yiN, where N = 1,2, . . . and i = 0, . . . ,N−

1, be arbitrary functions of variables t1 = x,t2, . . . satisfying the relations

∂kyiN = ∂kyiN, (4.3)

yiN = y ′
i,N+1, i = 0, . . . ,N−1. (4.4)

Then

ŵN =
1

WN

∣∣∣∣∣∣∣∣∣
y0N · · · yN−1,N 1

y ′
0N · · · y ′

N−1,N ∂
...

...
...

...
y

(N)
0N · · · y

(N)
N−1,N ∂N

∣∣∣∣∣∣∣∣∣ ·∂
−N, (4.5)

where WN = WN(y0N, . . .yN−1,N) is the Wronskian. Besides,

uN = −∂ ln
1

WN

∣∣∣∣∣∣∣∣∣
y0N · · · yN−1N yN,N

y ′
0N · · · y ′

N−1,N y ′
N,N

...
...

...
...

y
(N)
0N · · · y

(N)
N−1,N y

(N)
N,N

∣∣∣∣∣∣∣∣∣ , (4.6)

where yN,N = y ′
N,N+1 by definition and

vN+1 = −∂ ln
1

WN+1

∣∣∣∣∣∣∣∣∣
y0N . . . yN−1,N yN,N

y ′
0N · · · y ′

N−1,N y ′
N,N

...
...

...
...

y
(N)
0N · · · y

(N)
N−1,N y

(N)
N,N

∣∣∣∣∣∣∣∣∣ . (4.7)

Proof. In one way, the proposition follows from Lemma 4.1. Indeed, PN =

ŵN∂N given by (4.5) is the unique differential monic operator having the
kernel spanned by y0N, . . . ,yN−1N, the latter always can be assumed to be
satisfying (4.3) and (4.4). Further, uN = −∂ lnPN∂yN,N+1 and vN+1,N+1 =

−∂ lnPN+11 which easily yields (4.6) and (4.7).
Conversely, one must prove that if {yiN} have the properties (4.3) and

(4.4), then (4.5), (4.6), and (4.7) present a solution to the chain (3.2),
(3.3), (3.4), and (3.5).
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Indeed, KP equations (3.3) can be obtained in a standard way: differenti-
ating ŵN∂NyiN = 0 with respect to tk, one gets(

∂kŵN

)
∂NyiN +ŵN∂N∂kyiN = 0 (4.8)

or (
∂kŵN

)
∂NyiN +

(
Lk

N

)
−
ŵN∂NyiN = −

(
Lk

N

)
+
ŵN∂NyiN (4.9)

The operator (Lk
N)−ŵN∂N has an order less than N. On the other hand,

this is a differential operator since it is equal to ŵN∂N − (Lk
N)+ŵN∂N =

PN −(Lk
N)+PN. Thus, the differential operator (∂kŵN)∂N +(Lk

N)−ŵN∂N of
order less than N has an N-dimensional kernel and must vanish.

The operators (∂+uN)PN∂ and (∂+ vN+1)PN+1 have the same kernels
spanned by y0,N+1, . . . ,yN,N+1,1, therefore they coincide. We have (3.2).

From ∂kŵN = −ŵN∂k +(Lk
N)+ŵN, we have ∂kwNN = (Lk

N)+wNN and

∂kvN+1 = −∂

[(
Lk

N

)
+
wNN

wNN

]
. (4.10)

Finally, applying the operator ∂k to (3.2) and equating terms of zero
degree in ∂, we obtain ∂kuN − resLk

N = ∂kvN+1 − resLk
N+1. The last two

equations are equivalent to (3.4) and (3.5) which completes the proof. �

Tau functions are τN = WN.

4.2. Solutions in the form of series in Schur polynomials: stabilization

Recall that the Schur polynomials are defined by

exp

( ∞∑
1

tkzk

)
=

∞∑
0

pk(t)zk. (4.11)

A grading can be introduced being prescribed that the variable ti has the
weight i, the weight of z is −1. Then the polynomial pk(t) is of weight k. It
is easy to verify that the Schur polynomials have the properties

∂ipk = pk−i = ∂ipk,

pk(t)−ζ−1∂pk(t) = pk

(
t1 −

ζ−1

1
, . . . , tr −

ζ−r

r
, . . .

)
,

(4.12)

which can be obtained from definition (4.11).
Let

yiN =

∞∑
m=0

c(i)
m pm+N−i, i = 0, . . . ,N−1 (4.13)

with some coefficients c
(i)
m being c

(i)
0 = 1. Then (4.3) and (4.4) of Proposition

4.2 hold and (4.5), (4.6), and (4.7) define solutions for any sets of coeffi-
cients c

(i)
m . In particular, up to a nonimportant sign,



L. A. Dickey 187

τN =

∣∣∣∣∣∣∣∣∣∣∣

y
(N−1)
0N · · · y0N

y
(N−1)
1N · · · y1N

...
...

...
y

(N−1)
N−1,N · · · yN−1,N

∣∣∣∣∣∣∣∣∣∣∣
. (4.14)

Equation (4.13) implies

τN =
∑

m0,...,mN−1

c(0)
m0

· · ·c(N−1)
mN−1

∣∣∣∣∣∣∣∣∣
pm0

· · · pm0+N−1

pm1−1 · · · pm1+N−2

...
...

...
pmN−1−(N−1) · · · pmN−1

∣∣∣∣∣∣∣∣∣ (4.15)

(it is assumed that p with negative subscripts vanish).

Proposition 4.3 (Itzykson and Zuber). The tau functions (4.15) have the
stabilization property: terms of a weight l do not depend on N when
N > l.

Proof. The diagonal terms of the determinant are pm0
,pm1

, . . . ,pmN−1
. All

the terms of the determinant are of equal weights, namely, m0 +m1 + · · ·+
mN−1 = l. We consider a determinant of weight l and prove that all mi with
i ≥ l vanish unless the determinant vanishes. Suppose that there is some
i ≥ l such that mi �= 0. The elements of the determinant which are located
in the ith column above pmi

have the following subscripts: m0 + i,m1 +

i−1, . . . ,mi−1 +1. Together with mi, there are i+1 nonzero integers with
a sum

m0 +m1 + · · ·+mi−1 +mi +

i∑
j=1

j ≤ l+

i∑
j=1

j < i+1+

i∑
j=1

j =

i+1∑
j=1

j, (4.16)

that is, less than the sum of the first i + 1 integers. This implies that at
least two of them coincide. Then the corresponding rows coincide, and the
determinant vanishes.

Thus, if a determinant does not vanish, then, starting from the lth row,

all the diagonal elements are equal to p0 = 1, and all the elements to the
left of the diagonal vanish. The determinant of weight l reduces to a minor
of lth order in the upper left corner, and the terms of weight l are

∑
m0+···+ml−1=l

c(0)
m0

· · ·c(l−1)
ml−1

∣∣∣∣∣∣∣∣∣
pm0

· · · pm0+l−1

pm1−1 · · · pm1+l−2

...
...

...
pml−1−(l−1) · · · pml−1

∣∣∣∣∣∣∣∣∣ (4.17)

that does not depend on N. �
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Appendix

From the stabilizing chain to the Kontsevich integral

A.1.

It is well known that the so-called Kontsevich integral which originates in
quantum field theory is a tau function of the type (4.15) with some special
coefficients c

(i)
m . We briefly sketch here the way from the general solution

(4.15) to the Kontsevich integral if two additional requirements are imposed:

the stable limit of τN must belong to an nth restriction of KP hierarchy
(the nth GD) and satisfy the string equation. All the skipped details of
calculations can be found in Itzykson and Zuber [7] on which we base our
presentation. The only difference is that we do this in reverse order: not
from matrix integrals to tau functions (4.15) but vice versa. It is interesting
to see what kind of reasoning and motivation could lead one from integrable
systems to matrix integrals of the type studied by Kontsevich and to make
sure that nothing essential is lost.

First, we need to make the stable limit of τN belonging to the nth re-
striction of KP which is equivalent to the independence of the nth time,
tn.

Usually, when one wishes to make a tau function (4.14) independent of
tn, one requires that ∂nyiN = αiNyiN where αiN are some numbers. Then
yiN = exp(αiNtn)yiN(0) where yiN(0) does not depend on tn, and τN =

exp(a0N + · · ·+aN1,N)tn ·τN(0) where τN(0) does not depend on tn. The
exponential factor can be dropped since a tau function is determined up to
a multiplication by an exponential of any linear combination of the time
variables.

Now, in the problem we are talking about, we do not necessarily wish
to make all τN independent of tn, only their stable limit. Then it suffices
instead of the “horizontal quasi-periodicity” ∂nyiN = y

(n)
iN = αinyiN to

require the “vertical periodicity” ∂nyiN = yi+n,N. In terms of the series
(4.13), this means that

c(i+n)
m = c(i)

m . (A.1)

The proof is in [7]. The idea is clear: when a row which is not one of the
n last rows is differentiated, then the resulting determinant has two equal
rows. If we consider only terms of a fixed weight, then they depend only on
a minor of a fixed size in the upper left corner for all N large enough, and
these term vanish though the whole determinant does not.

A.2.

Considering the determinant in (4.15), we can recognize primitive characters
of the group GL(n) or U(n) where
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ti =
∑

k

1

i
εi

k (A.2)

and εk are the eigenvalues of a matrix for which this character is evaluated
(see [11]); it is supposed that m0 ≥ m1 ≥ ·· · ≥ mN−1. The latter can always
be achieved by a permutation and relabeling of the indices.

It is not easy to understand why τ-functions happen to be related to char-
acters (a good explanation of this fact can lead to new profound theories).
However, we can extract lessons from this relationship. First of all, the τ-
function is given as an expansion in a series in characters. Hence it can be
considered as a function on the unitary or the general linear group invariant
with respect to the conjugation. In the end we will have an explicit formula
giving this function which is the Kontsevich integral.

Secondly, the benefit of the usage of variables εk instead of ti is obvious:
the elaborated techniques of the theory of characters can be applied to the
τ-function as well. We will use also an inverse matrix with the eigenvalues
λi = ε−1

i . Thus, we have

ti =
∑

k

1

i
λ−i

k . (A.3)

This change of variables is called the Miwa transformation.
It is easy to show that

pl(t) =
∑

l1+···+lN=l

εl1

1 εl2

2 · · ·εlN

N . (A.4)

This is the Newton formula expressing complete symmetric functions of vari-
ables εk in terms of sums of their powers, ti.

Introduce a notation∣∣g0(λ), . . . ,gN−1(λ)
∣∣ = det

(
gj

(
λi

))
. (A.5)

Then it can be proven that

τN =

∣∣f0(λ), f1(λ)λ,f2(λ)λ2, . . . , fN−1(λ)λN−1
∣∣∣∣1,λ,λ2, . . . ,λN−1

∣∣ , (A.6)

where fi(λ) =
∑∞

0 c
(i)
m λ−m being fi = fi+n.

A.3.

Up to this point there were no restrictions imposed on the coefficients c
(k)
m

except the periodicity (A.1). Now we try to satisfy the string equation (cf.
[3, 5, 10]). The string equation is closely related to the so-called additional
symmetries of the KP hierarchy (each equation of the hierarchy provides
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a symmetry for all other equations, they are the main symmetries, while
an additional symmetry is not contained in the hierarchy itself). The string
equation is equivalent to the fact that τ does not depend on the additional
variable t∗−n+1,1. However, it is known that the derivative ∂∗

−n+1,1 is defined
not uniquely: there is still a possibility for gauge transformations and for a
shift of variables ti �→ ti +ai.

First of all, the operator ∂∗
−n+1,1 acts on τ, as the operator

W
(2)
−n =

∑
i+j=n

ijtitj −2

∞∑
1

ti+n∂i +(n−1)ntn +C. (A.7)

This has to be expressed in terms of new variables, λ’s or ε’s. The last two
terms are not important: an arbitrary linear term in ti and a constant can be
added, this is precisely a gauge transformation. The result is

W
(2)
−n =

∑
i,j>0;i+j=n

∑
r

1

λi
r

∑
s

1

λ
j
s

−2
∑

k

1

λn−1
k

∂

∂λk
. (A.8)

If a possibility of a shift ti �→ ti +ai is taking into account, then

τN =

(∣∣f0(λ), f1(λ)λ,f2(λ)λ2, . . . , fN−1(λ)λN−1
∣∣∏

i exp
∑

j ajλ
j
i

)
≤N−1∣∣1,λ,λ2, . . . ,λN−1

∣∣ ,

(A.9)
where the subscript ≤ N−1 means taking powers of λi not larger than N−1.

Skipping all calculations, the string equation implies the following recur-
rent system of equations for fk:

λkfk = Dkf0, k = 0,1, . . . ,n−1, (A.10)

where

D =
∑

j

ajjλ
j−n −

n−1

2

1

λn
+

1

λn−1

∂

∂λ
. (A.11)

If we recall that f0 = fn, then for the first term we have

Dnf0 = λnf0 (A.12)

or (∑
j

ajjλ
j−n −

n−1

2

1

λn
+

1

λn−1

∂

∂λ

)n

f0 = λnf0, (A.13)

which must hold identically in λ, can be satisfied by some f0 =
∑∞

0 c
(0)
m λ−m

if and only if
∑

j ajjλ
j−n = λ, that is,

∑
j ajλ

j = λn+1/(n+1).
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It is possible to perform some scaling transformation λ �→ aλ, D �→ a−1D.
This is not so important, but just in order that our formulas coincide with
those in [7] we take a = n1/(n+1). Then

D = λ+
n−1

2nλn
+

1

nλn−1

∂

∂λ

= λ(n−1)/2 exp
(

−
n

n+1
λn+1

)
∂

∂λn
exp

(
n

n+1
λn+1

)
λ−(n−1)/2.

(A.14)

The function g0 = exp(nλn+1/(n+1))λ−(n−1)/2f0 satisfies the equation(
∂

∂λn

)n

g0 = λng0; (A.15)

which, being written in the variable µ = λn, is a generalization of the Airy
equation (the latter is a special case with n = 2). A solution can be found
by the Laplace method. The solution is

f0 = λ(n−1)/2 exp
(

−
n

n+1
λn+1

)∫
exp

(
λnm−

mn+1

n+1

)
dm. (A.16)

It is easy to see that

Dkf0 = λ(n−1)/2 exp
(

−
n

n+1
λn+1

)∫
mk exp

(
λnm−

mn+1

n+1

)
dm.

(A.17)
The τ-function is

τN = iN(N+1)/2
∏
k

λ
(n−1)/2
k exp

(
−

∑
k

n

n+1
λn+1

k

)

×
∫
· · ·

∫
dm1 · · ·dmN

∏
r>s

mr −ms

λr −λs
exp

∑
k

(
iλn

kmk −

(
imk

)n+1

n+1

)
.

(A.18)

We do not discuss here the problems of the choice of the contours of inte-
gration and of the convergence.

A.4.

In a sense, the problem is already solved, the solution is explicitly written.
However, we remember the above remark that it is natural to consider a τ-
function as a function on a matrix group invariant under conjugation, λk

being eigenvalues of a matrix, since originally it was written as a series in
characters of the group. If we want to restrict ourselves to real values of the
time variables ti, that is, real λk, then the function is restricted to matrices
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with real eigenvalues, for example, Hermitian. Our intention now is to write
the formula (A.18) more directly in terms of matrices themselves, not of
their eigenvalues.

The theory of representations has a tool for that, the Harish-Chandra for-
mula [6]. Let Φ(X) be a function of Hermitian matrices X, invariant under
conjugations, that is, depending only on eigenvalues of X. We consider inte-
grals over the space of Hermitian matrices (h.m.)

∫
h.m. Φ(X)exp(− itr XY)dX

where Y is a Hermitian matrix with eigenvalues µk, and dX =
∏

i,j dXij. If
X = UMU−1 where U is unitary and M = diagm1, . . . ,mN then the func-
tion can be partly integrated, with respect to the “angle” variables U and
only integral over diagonal matrices M remains∫

h.m.
Φ(X)exp

(
itrXY

)
dX

= (2πi)N(N−1)

∫
· · ·

∫
dm1 · · ·dmN

∏
r>s

mr −ms

µr −µs
Φ(M)exp

(
i
∑

mkµk

)
.

(A.19)

Using these techniques, one can show that

τN = const

∫
exp

(
tr

(
−n.l.(Z+Λ)n+1/(n+1)

))
dZ∫

exp
(
tr

(
−quad.(Z+Λ)n+1/(n+1)

))
dZ

, (A.20)

where n.l.(Z + Λ)n+1 symbolizes all terms of degree higher than 1 in the
expansion of (Z+Λ)n+1 in powers of Z while quad.(Z+Λ)n+1 stands for
the quadratic term; Λ is a matrix with eigenvalues λk.

The expression (A.20) is called the Kontsevich integral (more precisely,
its generalization from n = 2 to any n).
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