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Consider the Lie algebras Ls
r,t : [K1,K2] = sK3, [K3,K1] = rK1, [K3,K2] =

−rK2, [K3,K4] = 0, [K4,K1] = −tK1, and [K4,K2] = tK2, subject to the
physical conditions, K3 and K4 are real diagonal operators represent-
ing energy, K2 = K†

1, and the Hamiltonian H = ω1K3 + (ω1 + ω2)K4 +
λ(t)(K1e

−iφ +K2e
iφ) is a Hermitian operator. Matrix representations are

discussed and faithful representations of least degree for Ls
r,t satisfying

the physical requirements are given for appropriate values of r,s, t ∈ R.

1. Introduction

Introducing an algebraic method to solve certain types of linear par-
tial differential equations, Steinberg [6] exploited the Lie-algebraic de-
composition formulas of Baker, Campbell, Hausdorff, and Zassenhaus
(cf. [7]) and their matrix realization. A faithful matrix representation of
low degree is required. In [2, 3, 4], the faithful matrix representations
of least degree were discussed for the Lie algebra Ls

r generated by K+,
K−, and K0 satisfying the commutation relations: [K0,K±] = ±rK± and
[K+,K−] = sK0 subject to the physical properties K− =K†

+ († for Hermit-
ian conjugation), K0 is a real diagonal operator, and (K+ +K−) is real.
The Lie algebra Ls

r was introduced as a generalization of the coupled
quantized harmonic oscillators [5] namely, the model of light amplifier
L−2

1 , and the model of two-level optical atom L2
1, whose Hamiltonian

model H =K0 +λ(K+ +K−), λ is the coupling parameter. Note that, L1
2 is

exactly the Lie algebra sl(2).
In this paper, Ls

r,t is considered to be the Lie algebra generated by K1,
K2, K3, and K4, satisfying the commutation relations: [K1,K2] = sK3,
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[K3,K1] = rK1, [K3,K2] = −rK2, [K3,K4] = 0, [K4,K1] = −tK1, [K4,K2] =
tK2, subject to the physical conditions, K3 and K4 are real diagonal op-
erators representing energy, K2 =K†

1, and the Hamiltonian H = ω1K3 +
(ω1 +ω2)K4 + λ(t)(K1e

−iφ +K2e
iφ) is a Hermitian operator. The Lie alge-

bra Ls
r,t is introduced as a generalization of the Tavis-Cummings model

namely, L1
2,1 in [1]. Obviously, the subalgebra of Ls

r,t generated by K1,
K2, and K3 in respective with K+, K−, and K0 is a generalization of Ls

r,
when dropping the physical condition (K+ +K−) must be real. That con-
dition forced the representation matrices of K+ and K− to be real, [2, 3, 4].
Faithful matrix representations of least degree are discussed for Ls

r,t for
appropriate values of r,s, t ∈ R.

Unless otherwise stated, Im is the identity matrix of degree m, O is the
zero matrix of appropriate size, N = {1,2, . . . ,n} and A = [aij], B = [bij],
C = [δijcij], and D = [δijdij] are n × n real matrices, where the matrices
X = A + iB, Y = AT − iBT , C, and D are representation matrices for K1,
K2, K3, and K4, respectively; i =

√−1. All representations for Ls
r,t under

consideration are supposed to satisfy the above-mentioned physical re-
quirements.

Lemma 1.1. The Lie algebra Ls
r,t can be defined by

[
K1,K2

]
= sK3,

[
K3,K1

]
= rK1,

[
K4,K1

]
= −tK1, (1.1)

where K3 and K4 are real diagonal operators and K2 =K†
1 .

Proof. Indeed −rK2 = −(rK1)† = −[K3,K1]† = [K3,K2] and similarly, for
the relation [K4,K2] = tK2. Since K3 and K4 are diagonal, they commute.
The Hermiticity of the Hamiltonian follows since ω1,ω2,λ(t) ∈ R. �

As a necessity of Lemma 1.1 we have the following lemma.

Lemma 1.2. The matrices A, B, C, and D satisfy the following:
(i) [A,BT] is a symmetric matrix,
(ii) [A,AT] + [B,BT] = sC,
(iii) [C,A] = rA, [C,B] = rB,
(iv) [D,A] = −tA, [D,B] = −tB.

Lemma 1.3. Let L, M, and K be n×n matrices such that [L,M] = aK, a �= 0,
then trace(K) = 0.

Lemma 1.4. Let p,q ∈ N, and σ = (pq) be a transposition. The representation
obtained by applying σ to the rows as well as to the columns of X, Y , C, and D
is a conjugate representation for Ls

r,t and satisfies the physical requirements.
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Proof. Let P be the elementary matrix obtained by applying σ to the rows
of In. Since P = P−1 = PT = P †, then the proof of the lemma follows. �

Since [C,X] = rX, then for all i, j ∈ N we have,

aij

(
cii − cjj − r

)
= 0, bij

(
cii − cjj − r

)
= 0. (1.2)

Similarly, from Lemma 1.2(iv),

aij

(
dii −djj + t

)
= 0, bij

(
dii −djj + t

)
= 0. (1.3)

If xij �= 0, then from (1.2) and (1.3)

cii − cjj = r, djj −dii = t. (1.4)

Since [X,Y ] = sC, then for each i ∈ N we have,

scii =
n∑
l=1

(∣∣xil

∣∣2 − ∣∣xli

∣∣2
)
=

n∑
l=1

(
a2
il −a2

li + b2
il − b2

li

)
. (1.5)

Lemma 1.5. If t2 + r2 �= 0, then

(1) xii = 0, for all i ∈ N,
(2) if xij �= 0 then xji = 0, for all i, j ∈ N.

Proof. If r �= 0, then from (1.2) we have, for each i ∈ N, that xii = 0. Also,
if xij �= 0, then cjj − cii − r = −2r, thus xji = 0. Similarly, when t �= 0. �

Lemma 1.6. If s �= 0, then

(1) trace(C) = 0,
(2) if xij �= 0 then, for i, j ∈ N

r =
1
s

[
n∑
l=1

(∣∣xil

∣∣2 − ∣∣xli

∣∣2 − ∣∣xjl

∣∣2 +
∣∣xlj

∣∣2
)]

. (1.6)

Proof. Since [X,Y ] = sC then from Lemma 1.3, trace(C) = 0. The proof of
(2), follows from (1.4) and (1.5). �

We build the representation matrices starting with C.

Remark 1.7. Using Lemma 1.4, C can be rearranged into k diagonal blo-
cks, the ith diagonal block consists of the ki scalar matrices, {ciImi,0 ,(ci −
r)Imi,1 , . . . ,[ci − r(ki − 1)]Imi,(ki−1)}, where mi,j is the repetitions of (ci − rj)
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in the diagonal of C; for i = 1,2, . . . ,k and j = 0,1, . . . ,ki − 1. Thus,

C = diag
{
c1Im1,0 ,

(
c1 − r

)
Im1,1 , . . . ,

[
c1 − r

(
k1 − 1

)]
Im1,(k1−1) , . . . ,

ciImi,0 ,
(
ci − r

)
Imi,1 , . . . ,

[
ci − r

(
ki − 1

)]
Imi,(ki−1) , . . . ,

ckImk,0 ,
(
ck − r

)
Imk,1 , . . . ,

[
ck − r

(
kk − 1

)]
Imk,(kk−1)

}
,

(1.7)

where

ci �= cj , whenever i �= j, for i, j = 1,2, . . . ,k, (1.8)[
ci − rj

]− ci+1 �= r, for j = 0, . . . ,ki − 1; i = 1,2, . . . ,k − 1. (1.9)

The ith diagonal block of C is called the ci-block and ki is its length.
Any diagonal entry c of C such that c = ci − rl, for l ≥ 0 then 0 ≤ l ≤ ki −
1 for some i = 1, . . . ,k, that is, c belongs to the ci-block. If ci − l1r = cj −
l2r, 0 ≤ l1 ≤ ki − 1, 0 ≤ l2 ≤ kj − 1, then ci and cj are in the same block,
violating (1.9).

We use the notations given in Remark 1.7.

2. Faithful representations for Ls
r,t where rs �= 0

Lemma 2.1. The matrices A and B can be partitioned into submatrices of the
same size corresponding to those of C. The nonzero submatrices of A and B are
all off-diagonal submatrices.

Proof. From (1.2), the diagonal submatrices of A and B are square zero
submatrices of orders m1,0, . . . ,mk,(kk−1), in respective to those of C. Let
cii, cjj , and cll; i, j, l ∈ N, be from different diagonal submatrices of C,
and suppose that aij �= 0 and ail �= 0, then from (1.2), cll = cjj contradict-
ing (1.8). Similarly, if aji and ali are from different submatrices in A they
cannot be both nonzero. In view of (1.2), only the off-diagonal subma-
trices of A may be nonzero. Thus we have, A = [Aij] where Aij =O, for
j �= i+ 1. And similarly for B. �

Lemma 2.2. For k > 1, if ki = 1, for some i = 1,2, . . . ,k, then Ls
r,t has a repre-

sentation of degree n −mi,0. Moreover, if the entries in the ith row and the ith
column of X are all zeros, then Ls

r,t has a representation of degree n− 1.

Proof. We use Lemma 1.4 so that the ci-block becomes the first block
of the main diagonal of C. Since for all j ∈ N, 1 ≤ i ≤ m1,0, |cii − cjj | �= r,
otherwise ki > 1, then from (1.2) the representation is fully reducible
since, A =

[ 0 0
0 A′

]
, B =

[ 0 0
0 B′

]
, C =

[
C′

1 0
0 C′

2

]
, and D =

[
D′

1 0
0 D′

2

]
. The matrices
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X′ =A′ + iB′, Y ′ =X′†, C′
2, and D′

2 are all of degree n−mi,0 and satisfy the
lemma. Similar argument holds when the entries in the ith row and the
ith column of X are all zeros. �

So, it can be assumed that if k > 1 then ki > 1; i = 1, . . . ,k. And for X �=
O, if the entries of the ith row of X are all zeros, then those of the ith
column are not all zeros, and vice versa, in such cases, we get from (1.5)
that scii �= 0.

Theorem 2.3. If rs < 0, then X = Y = C =O.

Proof. If k = 1 and k1 = 1, then from (1.2) X = Y =O. If X =O, then from
(1.5) C = O. Suppose that X �= O, there are only two cases to consider
namely, the case where k = 1 and k1 > 1, and the case where k > 1. In
both cases k1 > 1, from Lemma 2.1 the first m1,0 columns of X are zero
columns, and from Lemma 2.2 there must be an x1,j �= 0 for some m1,0 <
j ≤ (m1,0 +m1,1). Thus from (1.5),

sc11 = sc1 =
n∑
l=1

(∣∣x1l
∣∣2 − 0

)
> 0. (2.1)

Let α =m1,0 +m1,1 + · · · +m1,(k1−2). If k > 1, we get from (1.9), [c1 − r(k1 −
1)]− c2 �= r, thus from (1.2), the rows α + 1,α+ 2, . . . ,α+m1,(k1−1) are zero
rows of X. If k = 1 and k1 > 1, we get from Lemma 2.1 that the men-
tioned rows are zero rows of X, being the last rows of X. In both cases,
from Lemma 2.2 there must be an xi,α+1 �= 0 for some [α−m1,(k1−2)] < i ≤ α.
From (1.5),

scα+1,α+1 = s
[
c1 − r

(
k1 − 1

)]
=

n∑
l=1

(
0− ∣∣xl,α+1

∣∣2
)
< 0. (2.2)

If s > 0, then c1 > 0 by (2.1), since r < 0, then [c1 − r(k1 − 1)] > 0, violat-
ing (2.2). Similarly, if s < 0, we get from (2.1), [c1 − r(k1 − 1)] < 0, violat-
ing (2.2). �

We conclude this section by introducing the 2 × 2 representation ma-
trices X, Y , C, and D of K1, K2, K3, and K4, respectively, for rs > 0, t ∈ R

X =

[
0 a± i

√
rs/2−a2

0 0

]
, Y =

[
0 0

a∓ i
√
rs/2−a2 0

]
,

C =
[
r/2 0

0 −r/2

]
, D =

[
b 0
0 b+ t

]
,

(2.3)
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for any a,b ∈ R such that |a| ≤
√
rs/2 and for the linear independency

of C and D, take b �= −t/2. These representations are faithful. The 2 × 2
representation matrices X, Y , C, and D generalize those given in [1].

Clearly, the vector space spanned by X, Y , and C is sl(2,C), as a vector
space. The representation matrices of Ls

r , in [2], are for the special cases,
a2 = rs/2.

3. Faithful representations for Ls
r,t where rst = 0

The case where rs �= 0 and t = 0 was considered in the previous section.
So, if s �= 0 we only need to consider the case where r = 0 and t is any real
number.

3.1. For s �= 0, r = 0, and t ∈ R

Since r = 0 then any ci-block of the matrix C has length ki = 1. So, we
have C = diag(c1Im1 , . . . , ckImk) where ci �= cj whenever i �= j; i, j = 1, . . . ,k.

Remark 3.1. If X commutes with Y =X†, then X is a normal matrix, and
there exists a unitary matrix U such that X =U†ZU for some complex
diagonal matrix Z. If U commutes with C and D, then the diagonal ma-
trices Z, Z̄, C, and D are representation matrices for K1, K2, K3, and K4,
respectively, and satisfy the physical requirements. We take U = In when
X is diagonal.

Lemma 3.2. If C = diag(c1Im1 , . . . , ckImk) for different ci’s, then the represen-
tation is fully reducible into representations of degrees m1, . . . ,mk.

Proof. The matrix D is diagonal and from (1.2), xij = xji = yij = yji = 0,
whenever cii �= cjj ; i, j ∈ N. �

Lemma 3.3. Let K = [Kij] be a partitioned matrix which is normal whose di-
agonal blocks are k square matrices. If Kij =O whenever j �= i+ 1 (or j �= i− 1);
i, j = 1, . . . ,k. Then K =O.

Proof. Let K = [kij] be an n×n matrix, then for each i ∈ N,

n∑
l=1

∣∣kil∣∣2 =
n∑
l=1

∣∣kli∣∣2
. (3.1)

Let the diagonal blocks of K be of degrees i1, . . . , ik, respectively. If Kij =O
whenever j �= i+ 1; i, j = 1, . . . ,k, then the first i1 rows of K are zeros, thus
from (3.1) the first i1 columns of K are zeros. Continuing like that in less
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than k steps, it can be shown that K =O. Hence the proof of the lemma
follows. �

Theorem 3.4. The matrix C =O, in any representation of Ls
0,t. If st �= 0, then

X = Y =O.

Proof. Suppose C �= O, we use Lemma 1.4 so that c1 �= 0, from (1.5) and
Lemma 3.2, m1sc1 =

∑m1
i=1 scii =

∑m1
i=1

∑m1
l=1(|xil|2 − |xli|2) = 0, but m1sc1 �= 0.

Then C =O. Thus from Lemma 1.1, X is a normal matrix. If t �= 0, we use
Lemma 1.4, so that

D = diag
{
d1Im′

1,0
,
(
d1 + t

)
Im′

1,1
, . . . ,

[
d1 + t

(
k′

1 − 1
)]
Im′

1,(k′1−1)
, . . . ,diIm′

i,0
,(

di + t
)
Im′

i,1
, . . . ,

[
di + t

(
k′
i − 1

)]
Im′

i,(k′
i
−1)
, . . . ,dk′Im′

k′ ,0
,

(
dk′ + t

)
Im′

k′ ,1
, . . . ,

[
dk′ + t

(
k′
k′ − 1

)]
Im′

k′ ,(k′
k′ −1)

}
,

(3.2)

where m′
i,j is the repetitions of (di + tj) in the diagonal of D; for i = 1, . . . ,k′

and j = 0, . . . ,k′
i − 1 such that

di �= dj, whenever i �= j, for i, j = 1,2, . . . ,k′,

di+1 −
[
di + tj

] �= t, for j = 0, . . . ,k′
i − 1; i = 1,2, . . . ,k′ − 1.

(3.3)

From (1.3), X can be partitioned into submatrices of the same sizes cor-
responding to those of D, whose nonzero submatrices are off-diagonal
submatrices. Then by Lemma 3.3 X = Y =O. �

If t = 0 then from Lemma 1.1, the generators commute and such a case
can be considered as a special case of L0

0,0 of Section 3.3, with C =O.

3.2. For s = 0 and r2 + t2 �= 0

From (1.5) as s = 0, then (3.1) holds. If the ith row (or column) of X
consists entirely of zeros, the ith column (or row) also, consists entirely
of zeros and both can be omitted by the following lemma whose proof is
analogous to that of Lemma 2.2. So, if X �=O, it can be considered that X
has no zero row or zero column.

Lemma 3.5. If X has m zero rows (or columns), where 0 ≤m < n, then Ls
r,t has

a representation of degree n−m.
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Theorem 3.6. If s = 0 and r2 + t2 �= 0, Ls
r,t has no faithful representations. In

any representation, X = Y =O.

Proof. If r �= 0, arrange C as in Remark 1.7 otherwise, let D as in the proof
of Theorem 3.4. In view of Lemma 1.5, X can be partitioned into subma-
trices of the same sizes corresponding to those of C when r �= 0 or to
those of D otherwise. The nonzero submatrices of X are all off diago-
nal submatrices. As s = 0 then X is normal and from Lemma 3.3, we get
X = Y =O. �

3.3. For s = r = t = 0

Although physically is not applicable, but for the sake of completeness,
we consider the case when K1,K2,K3, and K4 are commutant operators.

Theorem 3.7. The representations of L0
0,0 are conjugate to representations

where K1, K2, K3, and K4 are represented by diagonal matrices.

Proof. Let X =U†ZU for a unitary matrix U and a complex diagonal ma-
trix Z. We claim that U commutes with C and D, then the theorem holds
by using Remark 3.1. We induce on n, the degree of the representation
and prove the cases when X is not diagonal.

For n = 2: if X is not diagonal then from (1.4), both C and D are scalar
matrices and both commute with U.

For n = 3: if the diagonal elements of C (or D) are all different, then X
must be diagonal. If X has two nonzero elements xij and xlm, from (1.4),
both are nondiagonal elements where xlm is not the xji, then C and D are
scalar matrices and both commute with U. Otherwise, we use Lemma
1.4, so that X =

[X′ O
O g

]
, thus from (1.2) and (1.3) C =

[
cI2 O
O a

]
and D =[

dI2 O
O b

]
, for some a,b,c,d ∈ R; g ∈ C, where X′ is not a diagonal matrix.

That requires X′ to be a normal matrix. So, there exists a unitary matrix
U′ such that X′ =U

′†MU′, for some complex diagonal matrix M. Obvi-
ously, U′ commutes with cI2 and dI2. Let U =

[
U′ O
O 1

]
, and Z = diag(M,g)

then U commutes with C and D.
Assume that the theorem is true for n < m.
For n =m: if both C and D are scalar matrices, then U commutes with

C and D. If either C or D is not a scalar matrix, C say, then we use
Lemma 1.4 to rearrange C so that C = diag(c1Im1 , . . . , ckImk) for different
c′is, from (1.2) X = diag(X1, . . . ,Xk) where Xi is a square matrix of order
mi < m. Also, D can be considered as D = diag(D1, . . . ,Dk) where Di is a
diagonal matrix of degree mi. Hence, the representation is fully reducible
into representations of degrees mi, i = 1, . . . ,k. Since X is normal then Xi

is normal for i = 1, . . . ,k. Thus there exists a unitary matrix Ui such that
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Xi =U†
i ZiUi for some complex diagonal matrix Zi, i = 1, . . . ,k. From the

induction Ui commutes with ciImi and Di. Let U = diag(U1, . . . ,Uk) and
Z = diag(Z1, . . . ,Zk), then U commutes with C and D. �

Theorem 3.8. The Lie algebra L0
0,0 has faithful representations of degree 4 as

the least degree.

Proof. Any linearly independent diagonal matrices Z, Z̄, C, and D, of
degree 4, with C and D are real, are representation matrices for K1, K2,
K3, and K4, respectively, of a faithful representation. �

We conclude the paper by mentioning the cases where Ls
r,t has faithful

matrix representations satisfying the physical requirements.

Summary 3.9. It is assumed that all representations of Ls
r,t must satisfy the

physical requirements.

(1) For rs > 0, t ∈ R, Ls
r,t has faithful representations of degree 2 as the

least degree.
(2) For r = s = t = 0, L0

0,0 has faithful representation of degree 4 as the
least degree where the representation matrices are linearly independent
diagonal matrices, with C and D are real matrices.
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