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We consider a mixed problem with Dirichlet and integral conditions for
a second-order hyperbolic equation with the Bessel operator. The exis-
tence, uniqueness, and continuous dependence of a strongly generalized
solution are proved. The proof is based on an a priori estimate estab-
lished in weighted Sobolev spaces and on the density of the range of
the operator corresponding to the abstract formulation of the considered
problem.

1. Introduction

In the recent years, hyperbolic equations with integral condition(s) have
received considerable attention. The physical significance of these con-
ditions (mean, total mass, moments, etc.) has served as a fundamental
reason for the increasing interest carried to this type of problems. For
instance, many processes in porous media can be described by second-
order hyperbolic equations with an integral condition [14, 15]. The pres-
ence of an integral term in boundary conditions can greatly complicate
the application of standard functional or numerical methods, owing to
the fact that the elliptic differential operator with integral condition is
no longer positive definite in the usual function spaces, which poses the
main source of difficulty. What returns the adaptation of these methods
to this type of problems is a subject of topicality. Therefore, the investi-
gation of these problems requires a separate study at every time.

In this paper, we are concerned with a boundary value problem with
an integral condition for a second-order hyperbolic equation with the
Bessel operator. It can be a part in the contribution of the development
of the energy-integral method for solving such problems.
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The precise statement of the problem is as follows: let b,T > 0, Ω =
(0,b), I = (0,T), and Q = {(x,t) ∈ R

2 : x ∈ Ω, t ∈ I}. Find a function θ =
θ(x,t) satisfying the equation

Lθ =
∂2θ

∂t2
− 1
x

∂

∂x

(
x
∂θ

∂x

)
= h(x,t), (1.1a)

the initial conditions

�0θ = θ(x,0) = θ0(x), (1.1b)

�1θ =
∂θ(x,0)

∂t
= θ1(x), (1.1c)

the Dirichlet condition

θ(b, t) = µ(t), (1.1d)

and the integral condition

1
b

∫
Ω
θ(x,t)dx =m(t). (1.1e)

If θ = θ(x,t) is the ground-water level at point x ∈Ω at time t, then m(t)
is the mean value of θ(x,t) at time t.

The regular case of this problem has been treated in [1] by using
Fourier’s method to prove the existence and uniqueness of a classical
solution. Similar equation with Neumann weighted integral conditions
has been studied in [12]. Mixed problems for second-order hyperbolic
equations, when in (1.1a) instead of the Bessel operator we have the op-
erator (∂/∂x)(a(x,t)(∂u/∂x)) with Neumann integral conditions, are in-
vestigated in [3, 4, 7, 8]. As for hyperbolic equations with only integral
conditions, they have been studied in [3, 7, 13, 15, 16]. Concerning prob-
lems with integral conditions for other equations, we refer the reader, for
instance, to [2, 5, 6] and the references therein.

In this paper, following the method presented, for instance, in [6],
we prove that problem (1.1) possesses a unique strongly generalized so-
lution, in weighted Sobolev spaces, that depends continuously on the
right-hand side of (1.1a), the initial conditions (1.1b) and (1.1c), and the
boundary conditions (1.1d) and (1.1e).

2. Notation, assumptions, and some auxiliary inequalities

First, we assume the following:
(A1) µ,m ∈ C2(I);
(A2) the compatibility conditions
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θ0(b) = µ(0),
1
b

∫
Ω
θ0(x)dx =m(0),

θ1(b) = µ′(0),
1
b

∫
Ω
θ1(x)dx =m′(0).

(2.1)

Then, we reduce problem (1.1) to an equivalent problem with homoge-
neous boundary conditions by introducing a new unknown function u
defined by u(x,t) = θ(x,t)−U(x,t) with

U(x,t) =
(
2m(t)−µ(t)

)
+

2x
b

(
µ(t)−m(t)

)
. (2.2)

Therefore, problem (1.1) can be formulated as follows. Find a function
u = u(x,t) satisfying

Lu =
∂2u

∂t2
− 1
x

∂

∂x

(
x
∂u

∂x

)
= f(x,t), (2.3a)

�0u = u(x,0) = u0(x), (2.3b)

�1u =
∂u(x,0)

∂t
= u1(x), (2.3c)

u(b, t) = 0, (2.3d)∫
Ω
u(x,t)dx = 0, (2.3e)

with the compatibility conditions

ui(b) = 0,
∫
Ω
ui(x)dx = 0, (i = 0,1), (2.4)

where f(x,t)=h(x,t)−LU, u0(x) = θ0(x)− �0U, and u1(x) = θ1(x)− �1U.
We now introduce appropriate function spaces. Let L2(Ω) be the usual

space of square integrable functions and let L2
ρ(Ω) be the weighted L2-

space with finite norm

‖u‖2
L2
ρ(Ω)

=
∫
Ω
ρu2dx (2.5)

and with associated inner product

(u,v)L2
ρ(Ω) =

∫
Ω
ρuvdx. (2.6)
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We denote by V 1
σ (Ω) the Hilbert space obtained by endowing C1(Ω) with

the norm

‖u‖2
V 1
σ (Ω)

=
∫
Ω

(
x2u2 +x

(
∂u

∂x

)2)
dx (2.7)

and the associated inner product

(u,v)V 1
σ (Ω) =

∫
Ω
x2uvdx +

∫
Ω
x
∂u

∂x

∂v

∂x
dx. (2.8)

Let B1
2(I) be the space first introduced by the author in [2, 3, 4, 5] as the

completion of the space C0(I) of real continuous functions with compact
support in I with respect to the inner product

(u,v)Bm
2 (I) =

∫
I

�m
t u�m

t vdt, (2.9)

where

�m
t u =

∫ t

0

(t− τ)m−1

(m− 1)!
u(x,τ)dτ, (2.10)

for every fixed t ∈ I. The corresponding norm is

‖u‖Bm
2 (I) =

√
(u,u)Bm

2 (I). (2.11)

We also use the standard function spaces C(I,H) and L2(I,H) of contin-
uous and L2-Bochner integrable mappings from I onto a Banach space
H, respectively (see [9]). Let Bm

2 (I,H) be the space of functions from I
into H which is a Bouziani space for the measure dt. It is a Hilbert space
for the finite norm

‖u‖Bm
2 (I,H) =

(∫
I

(∥∥�m
t u
∥∥
H

)2
dt

)1/2

. (2.12)

This is the case, for instance, when H = L2(Ω), H = L2
ρ(Ω) (with ρ = x or

ρ = x2), or H = V 1
σ (Ω).

Problem (2.3) can be viewed as the problem of solving the operator
equation

Lu = F, (2.13)
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where F =(f,u0,u1) and L is the operator given by

Lu =
(Lu,�0u,�1u

)
. (2.14)

We consider L as an unbounded operator with the domain D(L) con-
sisting of all functions u belonging to L2(I,L2

x(Ω)) for which ∂pu/∂tp,
∂pu/∂xp (p = 1,2), ∂2u/∂t∂x ∈ L2(I,L2

x(Ω)) and satisfying conditions
(2.3d) and (2.3e). Let B be the Banach space obtained by the closure of
D(L) in the norm

‖u‖B =

(
‖u‖2

C(I,V 1
σ (Ω))

+
∥∥∥∥∂u∂t

∥∥∥∥
2

C(I,L2
x(Ω))

)1/2

, (2.15)

while F is the Hilbert space L2(I,L2
x(Ω)) × V 1

σ (Ω) × L2
x(Ω) consisting of

vector-valued functions F = (f,u0,u1) for which the norm

‖F‖F =
(
‖f‖2

L2(I,L2
x(Ω))

+
∥∥u0
∥∥2
V 1
σ (Ω) +

∥∥u1
∥∥2
L2
x(Ω)

)1/2

(2.16)

is finite. The associated inner product is

(F,W)F = (f,ω)L2(I,L2
x(Ω)) +

(
u0,ω0

)
V 1
σ (Ω) +

(
u1,ω1

)
L2
x(Ω). (2.17)

The elements u are continuous functions on I with values in V 1
σ (Ω) and

have derivatives ∂u/∂t which are continuous on I with values in L2
x(Ω).

Hence, the mappings

�0 : B � u −→ �0u = u|t=0 ∈ V 1
σ (Ω),

�1 : B � u −→ �1u =
∂u

∂t

∣∣∣∣
t=0

∈ L2
x(Ω)

(2.18)

are defined and continuous on B.
Throughout the paper, we use the following operators:

�tu =
∫ t

0
u(·, s)ds, �∗

t u =
∫T

t

u(·, s)ds,

I∗
t−τu =�∗

t u−�∗
τu, �∗

xu =
∫b

x

u(ξ, ·)dξ.
(2.19)
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It is easy to check that the following result holds:

− ∂

∂t
I∗
t−τu = − ∂

∂t
�∗

t u =
∂

∂t
�tu = − ∂

∂x
�∗

xu = u,

I∗
0u = 0, I∗

−τu =�τu, �0u = 0, �∗
bu = 0,

(2.20)

for all t,τ ∈ [0,T] and x ∈ [0,b].
However, the following known inequalities are frequently used. We

list them here for convenience.
(1) The Schwarz inequality. For g,h ∈ L2(0,T), we have

(∫
I

g(t)h(t)dt
)2

≤
(∫

I

g2(t)dt
)
·
(∫

I

h2(t)dt
)
. (2.21)

(2) The Cauchy inequality. For any real a, b, and ε > 0, we have

ab ≤ ε

2
a2 +

1
2ε

b2. (2.22)

(3) The Gronwall lemma [10, page 56] and [11, Lemma 7.1]. If fi (where
i = 1,2) are nonnegative functions on I, f1 is integrable on I, and f2 is
bounded nondecreasing in I, and c is a positive constant, then

f1(τ) ≤ ecτf2(τ) (2.23)

is a direct consequence of the inequality

f1(τ) ≤ c

∫ τ

0
f1(s)ds+ f2(τ). (2.24)

(4) Moreover, we have

∫T

0

(�∗
t u
)2
dt ≤ T2

2

∫T

0
u2dt,

∫T

0

(I∗
t−τu
)2
dt ≤ 2T2

∫T

0
u2dt,∫

Ω

(�∗
xu
)2
dx ≤ 4

∫
Ω
x2u2dx.

(2.25)

3. Uniqueness and continuous dependence

First we establish an a priori estimate from which we conclude the un-
iqueness and continuous dependence of the solution with respect to the
right-hand side of (2.3a) and on the initial conditions (2.3b) and (2.3c).
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Theorem 3.1. For any function u belonging to D(L), the following estimate
holds:

‖u‖B ≤ c‖Lu‖F, (3.1)

where

c =
√

1+ 2bexp
(max

(
10T2 + 5T + 4,1+ b

)
T

2

)
. (3.2)

Proof. Taking the scalar product in L2(Ω× (0, τ)), with 0 ≤ τ ≤ T , of (2.3a)
and the integrodifferential operator

Mu = x2I∗
t−τu+xI∗

t−τ
(�∗

xu
)
+x

∂u

∂t
, (3.3)

we have∫ τ

0

∫
Ω
LuMudxdt

=
∫ τ

0

∫
Ω
x2 ∂

2u

∂t2
I∗
t−τudxdt+

∫ τ

0

∫
Ω
x
∂2u

∂t2
I∗
t−τ
(�∗

xu
)
dxdt

+
∫ τ

0

∫
Ω
x
∂2u

∂t2
∂u

∂t
dxdt−

∫ τ

0

∫
Ω
x

∂

∂x

(
x
∂u

∂x

)
I∗
t−τudxdt

−
∫ τ

0

∫
Ω

∂

∂x

(
x
∂u

∂x

)
I∗
t−τ
(�∗

xu
)
dxdt−

∫ τ

0

∫
Ω

∂

∂x

(
x
∂u

∂x

)
∂u

∂t
dxdt.

(3.4)

Integrating by parts each term of equality (3.4), we obtain

∫ τ

0

∫
Ω
x2 ∂

2u

∂t2
I∗
t−τudxdt

=
∫
Ω
x2 ∂u

∂t
I∗
t−τu
∣∣τ

0dx +
∫ τ

0

∫
Ω
x2 ∂u

∂t
udxdt

= −
∫
Ω
x2u1�τudx +

1
2

∫
Ω
x2u2(x,τ)dx − 1

2

∫
Ω
x2u2

0(x)dx,∫ τ

0

∫
Ω
x
∂2u

∂t2
I∗
t−τ
(�∗

xu
)
dxdt

=
∫
Ω
x
∂u

∂t
I∗
t−τ
(�∗

xu
)∣∣τ

0dx +
∫ τ

0

∫
Ω
x
∂u

∂t
�∗

xudxdt

= −
∫
Ω
xu1�τ

(�∗
xu
)
dx +

∫ τ

0

∫
Ω
x
∂u

∂t
�∗

xudxdt,
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∫ τ

0

∫
Ω
x
∂2u

∂t2
∂u

∂t
dxdt

=
1
2

∫
Ω
x

(
∂u(x,τ)

∂t

)2

dx − 1
2

∫
Ω
xu2

1(x)dx,

−
∫ τ

0

∫
Ω
x

∂

∂x

(
x
∂u

∂x

)
I∗
t−τudxdt

= −
∫ τ

0
x2 ∂u

∂x
I∗
t−τu
∣∣b

0dt+
∫ τ

0

∫
Ω
x2 ∂u

∂x
I∗
t−τ

(
∂u

∂x

)
dxdt

+
∫ τ

0

∫
Ω
x
∂u

∂x
I∗
t−τudxdt

= −1
2

∫
Ω
x2
(
I∗
t−τ

(
∂u

∂x

))2∣∣∣∣
τ

0
dx +

∫ τ

0

∫
Ω
x
∂u

∂x
I∗
t−τudxdt

=
1
2

∫
Ω
x2
(
�τ

(
∂u

∂x

))2

dx +
∫ τ

0

∫
Ω
x
∂u

∂x
I∗
t−τudxdt,

−
∫ τ

0

∫
Ω

∂

∂x

(
x
∂u

∂x

)
I∗
t−τ
(�∗

xu
)
dxdt

= −
∫ τ

0
x
∂u

∂x
I∗
t−τ
(�∗

xu
)∣∣b

0dt−
∫ τ

0

∫
Ω
x
∂u

∂x
I∗
t−τudxdt

= −
∫ τ

0

∫
Ω
x
∂u

∂x
I∗
t−τudxdt,

−
∫ τ

0

∫
Ω

∂

∂x

(
x
∂u

∂x

)
∂u

∂t
dxdt

= −
∫ τ

0
x
∂u

∂x

∂u

∂t

∣∣∣∣
b

0
dt+

∫ τ

0

∫
Ω
x
∂u

∂x

∂2u

∂t∂x
dxdt

=
1
2

∫
Ω
x

(
∂u(x,τ)

∂x

)2

dx − 1
2

∫
Ω
x
(
u′

0(x)
)2
dx.

(3.5)

Substituting (3.5) into (3.4), we obtain

∫
Ω
x2
(
�τ

∂u

∂x

)2

dx +
∫
Ω

(
x2u2(x,τ) +x

(
∂u(x,τ)

∂x

)2

+x
(
∂u(x,τ)

∂t

)2
)
dx

= 2
∫ τ

0

∫
Ω
LuMudxdt+

∫
Ω

(
x2u2

0(x) +x
(
u′

0(x)
)2 +xu2

1(x)
)
dx

+ 2
∫
Ω
x2u1�τudx + 2

∫
Ω
xu1�τ

(�∗
xu
)
dx − 2

∫ τ

0

∫
Ω
x
∂u

∂t
�∗

xudxdt.

(3.6)
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By virtue of the Cauchy inequality and inequalities (2.25), the first and
the last terms on the right-hand side of (3.6) are estimated as follows:

2
∫ τ

0

∫
Ω
LuMudxdt

≤ (1+ 2b)
∫ τ

0

∫
Ω
xf2dxdt

+ 10T2
∫ τ

0

∫
Ω
x2u2dxdt+

∫ τ

0

∫
Ω
x

(
∂u

∂t

)2

dxdt,

− 2
∫ τ

0

∫
Ω
x
∂u

∂t
�∗

xudxdt

≤ b

∫ τ

0

∫
Ω
x

(
∂u

∂t

)2

dxdt+ 4
∫ τ

0

∫
Ω
x2u2dxdt.

(3.7)

As for the third and fourth integrals on the right-hand side of (3.6), we
use on top of that the Schwarz inequality to get

2
∫
Ω
x2u1�τudx ≤

∫
Ω
x2u2

1dx +
∫
Ω
x2(�τu

)2
dx

≤ b

∫
Ω
xu2

1dx + T

∫ τ

0

∫
Ω
x2u2dxdt,

2
∫
Ω
xu1�τ

(�∗
xu
)
dx ≤

∫
Ω
x2u2

1dx +
∫
Ω

(�τ

(�∗
xu
))2

dx

≤ b

∫
Ω
xu2

1dx + T

∫ τ

0

∫
Ω

(�∗
xu
)2
dxdt

≤ b

∫
Ω
xu2

1dx + 4T
∫ τ

0

∫
Ω
x2u2dxdt.

(3.8)

Inserting (3.7) and (3.8) into (3.6) and omitting the first term on the left-
hand side of the obtained inequality, we get

∫
Ω

(
x2u2(x,τ) +x

(
∂u(x,τ)

∂x

)2

+x

(
∂u(x,τ)

∂t

)2
)
dx

≤ (1+ 2b)
∫ τ

0

∫
Ω
xf2dxdt+

∫
Ω

(
x2u2

0(x) +x
(
u′

0(x)
)2 +xu2

1(x)
)
dx

+ 2b
∫
Ω
xu2

1(x)dx +
(
10T2 + 5T + 4

)∫ τ

0

∫
Ω
x2u2dxdt

+ (1+ b)
∫ τ

0

∫
Ω
x

(
∂u

∂t

)2

dxdt,

(3.9)
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from which we have

∥∥u(·, τ)∥∥2
V 1
σ (Ω) +

∥∥∥∥∂u(·, τ)∂t

∥∥∥∥
2

L2
x(Ω)

≤ (1+ 2b)
(∫ τ

0

∥∥f(·, t)∥∥2
L2
x(Ω)dt+

∥∥u0
∥∥2
V 1
σ (Ω) +

∥∥u1
∥∥2
L2
x(Ω)

)

+max
(
10T2 + 5T + 4,1+ b

)

×
∫ τ

0

(∥∥u(·, t)∥∥2
V 1
σ (Ω) +

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

L2
x(Ω)

)
dt.

(3.10)

According to Gronwall’s lemma, by putting

f1(τ) =
∥∥u(·, τ)∥∥2

V 1
σ (Ω) +

∥∥∥∥∂u(·, τ)∂t

∥∥∥∥
2

L2
x(Ω)

,

f2(τ) =
∫ τ

0

∥∥f(·, t)∥∥2
L2
x(Ω)dt+

∥∥u0
∥∥2
V 1
σ (Ω) +

∥∥u1
∥∥2
L2
x(Ω),

(3.11)

we obtain

∥∥u(·, τ)∥∥2
V 1
σ (Ω) +

∥∥∥∥∂u(·, τ)∂t

∥∥∥∥
2

L2
x(Ω)

≤ c1

(
‖f‖2

L2(I,L2
x(Ω))

+
∥∥u0
∥∥2
V 1
σ (Ω) +

∥∥u1
∥∥2
L2
x(Ω)

)
,

(3.12)

where

c1 = (1+ 2b)exp
(

max
(
10T2 + 5T + 4,1+ b

)
T
)
. (3.13)

Since the right-hand side of the obtained inequality is independent of τ ,
we take the supremum on the left-hand side with respect to τ from 0 to
T . Hence, estimate (3.1) holds with c = c1/2

1 . �

Since we have no information concerning R(L) except that R(L) ⊂ F,
we must extend L so that estimate (3.1) holds for the extension and its
range is the whole space. To this end, we establish the following propo-
sition.
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Proposition 3.2. The operator L from B into F has a closure.

Proof. The proof is analogous to that in [8, Proposition 1]. �

We denote by L the closure of L.

Definition 3.3. A solution of the equation

Lu =
(
f,u0,u1

)
(3.14)

is called a strongly generalized solution of problem (2.3).

Since points of the graph of L are limits of sequences of points of the
graph of L, we extend (3.1) by taking the limits as follows.

Corollary 3.4. For any function u ∈D(L), the following estimate holds:

‖u‖B ≤ c
∥∥Lu∥∥F, (3.15)

where c is the constant in Theorem 3.1.

Corollary 3.4 asserts that the operator L is injective and that the linear

operator L
−1

is continuous from the range R(L) of L onto B, from which
we have the following corollary.

Corollary 3.5. If a strongly generalized solution exists, it is unique and de-
pends continuously on F = (f,u0,u1).

Corollary 3.6. The range R(L) of the operator L is closed in F and equals to
the closure R(L) of R(L), that is, R(L) = R(L).

4. Existence of the solution

Now, we are in a position to state the main result.

Theorem 4.1. Problem (2.3) possesses a unique strongly generalized solution
verifying

u ∈ C
(
I,V 1

σ (Ω)
)
,

∂u

∂t
∈ C
(
I,L2

x(Ω)
)
.

(4.1)
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Moreover, u and ∂u/∂t depend continuously on the right-hand side of (2.3a)
and on the initial conditions (2.3b) and (2.3c), that is,

‖u‖C(I,V 1
σ (Ω)) ≤ c

(
‖f‖L2(I,L2

x(Ω)) +
∥∥u0
∥∥
V 1
σ (Ω) +

∥∥u1
∥∥
L2
x(Ω)

)
,∥∥∥∥∂u∂t

∥∥∥∥
C(I,L2

x(Ω))
≤ c
(
‖f‖L2(I,L2

x(Ω)) +
∥∥u0
∥∥
V 1
σ (Ω) +

∥∥u1
∥∥
L2
x(Ω)

)
.

(4.2)

Proof. According to Corollary 3.6, we deduce that to prove the existence
of the strongly generalized solution, it suffices to show that R(L) is ev-
erywhere dense in F; in other words, L is injective. To this end, we firstly
establish the density in a special case.

Proposition 4.2. If

(Lu,ω)L2(I,L2
x(Ω)) = 0, (4.3)

for all u ∈ D0(L) = {u/u ∈ D(L) : �iu = 0 (i = 0,1)} and for some ω ∈ L2(I,
L2
x(Ω)), then ω vanishes almost everywhere in Q.

Proof. From (4.3), we have

(
∂2u

∂t2
,ω

)
L2(I,L2

x(Ω))
=
(

∂

∂x

(
x
∂u

∂x

)
,ω

)
L2(I,L2(Ω))

. (4.4)

As equality (4.3) holds for any function u ∈D0(L), we can express it in a
special form. First, we set

u =�t

(
(t− τ)z

)
, (4.5)

where z,x(∂z/∂x),(∂/∂x)(x(∂z/∂x)),(∂/∂x)(x(∂�tz/∂x))∈L2(I,L2(Ω));
further z satisfies (2.3d), (2.3e), and the following condition:

z ∈
[
x − b

T2
et/T ,

x − b

T2
e−t/T

]
. (4.6)

Thus, we obtain

(z,ω)L2(I,L2
x(Ω)) =

(
∂

∂x

(
x
∂�t

(
(t− τ)z

)
∂x

)
,ω

)
L2(I,L2(Ω))

=
(

∂

∂x

(
x
∂z

∂x

)
,�∗

t

(
(τ − t)ω

))
L2(I,L2(Ω))

.

(4.7)
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Since the left-hand side of (4.7) is a continuous linear functional of z,
hence �∗

tω,�∗
t ((τ − t)ω) ∈ L2(I,L2(Ω)) such that

∂�∗
t

(
(τ − t)ω

)
∂x

,
∂

∂x

(
x
∂�∗

t

(
(τ − t)ω

)
∂x

)
∈ L2(Q), �∗

t

(
(τ − t)ω

)|x=b = 0.

(4.8)

From above, we introduce the function

ω = (T − t)2z (4.9)

and replace it in (4.7); we get

∫
Q

x(T − t)2z2dxdt =
∫
Q

(T − t)2 ∂

∂x

(
x
∂�t

(
(t− τ)z

)
∂x

)
zdxdt. (4.10)

Integrating by parts the right-hand side of (4.10), we obtain

∫
Q

(T − t)2 ∂

∂x

(
x
∂�t

(
(t− τ)z

)
∂x

)
zdxdt

=
∫T

0
(T − t)2x

∂�t

(
(t− τ)z

)
∂x

z

∣∣∣∣
b

0
dt

−
∫
Q

(T − t)2x
∂�t

(
(t− τ)z

)
∂x

∂z

∂x
dxdt

= −
∫
Ω
(T − t)2x

∂�t

(
(t− τ)z

)
∂x

∂�tz

∂x

∣∣∣∣
T

0
dx

+
∫
Q

(T − t)2x

(
∂�tz

∂x

)2

dxdt

− 2
∫
Q

(T − t)x
∂�t

(
(t− τ)z

)
∂x

∂�tz

∂x
dxdt

=
∫
Q

(T − t)2x

(
∂�tz

∂x

)2

dxdt

−
∫
Ω
(T − t)x

(
∂�t

(
(t− τ)z

)
∂x

)2∣∣∣∣∣
T

0

dx

−
∫
Q

x

(
∂�t

(
(t− τ)z

)
∂x

)2

dxdt

=
∫
Q

(T − t)2x

(
∂�tz

∂x

)2

dxdt−
∫
Q

x

(
∂�t

(
(t− τ)z

)
∂x

)2

dxdt.

(4.11)
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Substituting (4.11) into (4.10) and estimating from above the right-hand
side, we obtain

∫
Q

x(T − t)2z2dxdt ≤ T2
∥∥∥∥∂z∂x

∥∥∥∥
2

B1
2(I,L

2
x(Ω))

−
∥∥∥∥∂z∂x

∥∥∥∥
2

B2
2(I,L

2
x(Ω))

. (4.12)

Thanks to condition (4.6), we deduce that the right-hand side is less than
zero. Consequently, we have

∫
Q

x(T − t)2z2dxdt ≤ 0, (4.13)

from which we conclude that ω vanishes almost everywhere in Q. �

Now consider the general case. Since F is a Hilbert space, the density
of R(L) in F is equivalent to the property that orthogonality of a vector
W = (ω,ω0,ω1) ∈ F to the range R(L), namely, the integral identity

(Lu,W)F = (Lu,ω)L2(I,L2
x(Ω)) +

(
�0u,ω0

)
V 1
σ (Ω) +

(
�1u,ω1

)
L2
x(Ω) = 0,

(4.14)

implies W ≡ 0. Putting u ∈D0(L) in (4.14), we obtain

(Lu,ω)L2(I,L2
x(Ω)) = 0, u ∈D0(L). (4.15)

Hence, Proposition 4.2 implies that ω ≡ 0. Thus, (4.14) takes the form

(
�0u,ω0

)
V 1
σ (Ω) +

(
�1u,ω1

)
L2
x(Ω) = 0. (4.16)

As �0, �1 are independent and the sets R(�0), R(�1) are everywhere dense
in the spaces V 1

σ (Ω) and L2
x(Ω), respectively, then relation (4.16) implies

that ω0 ≡ 0 and ω1 ≡ 0. Hence, W ≡ 0, and thus R(L) = F. �

5. Conclusion

In this paper, we proved the existence and uniqueness of a strongly gen-
eralized solution, in weighted spaces, of problem (2.3) in the sense of
Definition 3.3. The weight here appears, on the one hand, because of a
singular coefficient of the equation, and on the other hand, comes to
place for the annihilation of inconvenient terms during integration by
parts. Besides, u and ∂u/∂t depend continuously upon the right-hand
side of (2.3a) and on the initial conditions (2.3b) and (2.3c). Note that
the strongly generalized solution is also a weak solution [10].
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The used method is one of the most efficient functional analysis meth-
ods for solving linear PDE with nonlocal boundary conditions, the so-
called energy-integral method or a priori estimates method. That is due
to the fact that we construct for each problem suitable multiplicators,
which provides the a priori estimate, from which it is possible to estab-
lish the solvability of the problem. However, the great flexibility of the
method has its own disadvantage: the major difficulty of the choice of the
adequate multiplicators to the considered problems, which is the crucial
step of the establishment of the a priori estimate.
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