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A formulation of the dynamics of a collection of connected simple 1-
dimensional Cosserat continua and rigid bodies is presented in terms of
sections of an SO(3) fibration over a 1-dimensional net. A large class of
junction conditions is considered in a unified framework. All the equa-
tions of motion and junction conditions are derived as extrema of a con-
strained variational principle on the net and are analysed perturbatively
for structures with Kirchhoff constitutive properties. The whole discus-
sion is based on the notion of a Cosserat net and its contractions obtained
by taking certain limits that transform Cosserat elements to rigid struc-
tures. Generalisations are briefly discussed within this framework.

1. Introduction

Branched structures abound both in engineering and the natural world.
A large class involves elastic members that can be approximated by inter-
connected 1-dimensional rods or strings. These include man-made as-
semblies such as bridges, oil rigs, antennae, and micromachines and
biodynamic structures such as arterial pathways, trees, cobwebs, and
macromolecules. In these, tube-like members may be directly connected
together at nodes in space or to the boundaries of fixed or movable rigid
bodies of arbitrary shape [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 18, 20, 21]. The
elastodynamics of slender structures is a mature branch of mathemati-
cal physics [2] and is being increasingly recognised as a useful tool in
Engineering and Biology. The simple Cosserat description of an isolated
slender member offers a particularly concise and self-contained elastic
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model that can accommodate bending, shear, flexure, and torsion dis-
placements of any size and can incorporate media of arbitrary constitu-
tive complexity [5, 17]. The equations of motion can be readily discre-
tised and in many cases, where explicit details of cross-sectional stresses
are not required, provide distinct computational advantages over more
complex finite element modelling techniques.

In this paper, we are concerned with a general description of inter-
connected simple 1-dimensional Cosserat structures of arbitrary elastic
type. These 1-dimensional Cosserat structures will be called Cosserat el-
ements. The interconnections or junctions studied herein are one of the
following types:

(i) the ends of two or more Cosserat elements are connected to each
other at a single point. At this point, each element maintains a
fixed angle relative to the others;

(ii) the ends of two or more Cosserat elements are connected to an
idealised material point, which may possess mass, rotary inertia,
or both. Again at this point, each element maintains a fixed angle
relative to the others;

(iii) the ends of two or more Cosserat elements are connected to a sin-
gle extended material rigid body. This means that the endpoint
of an element is not necessarily coincident either with the cen-
troid of the rigid body or any of the other elements connected to
it. The ends of the elements maintain a fixed angle relative to any
frame fixed within the rigid body.

It can be seen that the first case is a specialisation of the second which
in turn is a specialisation of the third. The first case accommodates ele-
ments with sharp bends and those with sudden changes in their physical
properties (density, stiffness, cross-section, etc.). In the same mathemat-
ical framework, we consider a single endpoint of a Cosserat element as
either free or connected to a point mass or an extended rigid body. Al-
though not considered in the paper, we can consider fixing this endpoint
at a particular point in space by letting the mass of the point mass at the
end of that Cosserat element tend to infinity. We can further fix the di-
rection of the element at that point by letting the diagonal components
of the moment of inertia tensor in the rigid body frame tend to infinity.
By letting one or two diagonal components tend to infinity but not the
others, we can constrain the endpoint of the element to rotate in certain
directions. There are other possible junction conditions, some of which
will be discussed in the conclusion.

The entire system of Cosserat elements, point masses, and extended
rigid bodies in space will be called a Cosserat net. The equations of mo-
tion for a Cosserat net are second-order partial differential equations in
two independent variables t and s. In the standard Cosserat theory for a
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Figure 1.1. A net for a simple model of a suspension bridge, with 6
nodes labelled ν1, . . . ,ν6 and seven lines labelled λ1, . . . ,λ7.

single Cosserat element, the spatial variable s typically runs from 0 to L,
the stress-free length of the element. For Cosserat nets, the spatial vari-
able s labels points belonging to a topological space Y which we refer to
as a net. To construct Y, consider a set of compact intervals of the real
line. Identify certain endpoints to create a junction, repeating this pro-
cess to generate an arbitrary number of junctions. The net is connected if
the resulting topological space is connected. The junctions and remain-
ing endpoints are collectively called nodes and the intervals that connect
these nodes are then termed lines. For an example, see Figure 1.1. Such a
net is also called a 1-dimensional variety or a graph and here replaces the
smooth “body manifold” for smooth 3-dimensional elastic bodies. In a
more general setting, one could reformulate our definition of a net in the
language of a “varifold” [1]. In a net, the independent variable s labels
both an internal point of any line as well as any node.

As well as the topology of the net Y, the geometric data for the
Cosserat net also contains a set of matrices and column vectors. For each
node ν and line λ, which has an endpoint at ν, there is a rotation matrix
X(ν,λ) ∈ SO(3) and a column vector ξd(ν,λ) ∈ R

3.
There are several dependent variables. These include the position in

space of a point s on an element at time t given by r(t,s), the directors
d1(t,s), d2(t,s), and d3(t,s) describing the internal state of the element,
and a local angular velocity w(t,s). The directors form a frame field on
Y and are generally chosen to be orthonormal with respect to the Eu-
clidean metric on R

3. In this paper, we do not assume that the tangent
r ′ to the instantaneous space-curve r(t,s) is always parallel to d3. Such
dependent variables are all continuous in s on each line but in general
are discontinuous at each node. All such variables are assumed to be
continuous and differentiable in t.

If ν is a node in the net and λ is one of the lines connected to ν, then
we use the symbol rλ(t,ν) to be the position of the endpoint of the line λ
at node ν. If ν includes a rigid body, the symbol r(t,ν) (without the sub-
script) is the position of the centroid of the rigid body. (See Figure 1.2.)
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Figure 1.2. The map r(t,s) for an extended rigid junction. The node
ν has three lines λ1, λ2, and λ3 attached to it. The net on the left is
mapped into the Cosserat net on the right.

If ν is a point junction, then r(t,ν) = rλ(t,ν) for all lines λ which con-
nect to ν. If all the junctions are point junctions, then r(t,s) is a contin-
uous function of s. If ν represents an extended junction, then there will
be a difference between r(t,ν) and rλ(t,ν) which is given by the vector
ξ(t,ν,λ) such that

rλ(t,ν) = r(t,ν) + ξ(t,ν,λ), (1.1)

where

ξ(t,ν,λ) =
3∑
i=1

ξdi (ν,λ)di(t,ν), (1.2)

so the components ξdi (ν,λ) are independent of t.
The directors are in general discontinuous at the nodes. (See Figure

1.3.) We write dj |λ(t,ν) as the value of the jth director at the endpoint of
line λ at ν (the vertical bar is used simply to distinguish subscripts). Fur-
thermore, dj(t,ν) is the jth member of a rigid body frame at ν. If there is
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Figure 1.3. The images [d1(t,s),d2(t,s),d3(t,s)] for an extended
rigid junction. The node ν has three lines attached λ1, λ2, and λ3 and
[d1(t,ν), d2(t,ν), d3(t,ν)] is a frame for the rigid body attached at
its centroid. The director frame [d1|λ1(t,ν),d2|λ1(t,ν),d3|λ1(t,ν)] is the
limit at the contact point of the frame along the element labelled by
line λ1. The vectors [e1, e2, e3] constitute a fixed global inertial refer-
ence frame in space.

no rigid body at ν, it is still necessary to define the frame d1(t,ν), d2(t,ν),
and d3(t,ν), which can be done by setting dj(t,ν) = dj |λ(t,ν), where λ has
an endpoint at ν. The discontinuities in the frame are defined by

3∑
k=1

Xkj(ν,λ)dk(t,ν) = dj |λ(t,ν), (1.3)

where X(ν,λ) is the time independent rotation matrix introduced above.
This constraint comes from the statement that the Cosserat elements
maintain a fixed angle relative to the frame of the rigid body or point
mass. In Section 2.3, it is shown how this condition can be reformulated
in terms of an associated rotation matrix A(t,s) that is continuous in both
s and t on R×Y.

The position r and frame {dj} associated with an interior point on
a line λ within the net at time t are given by the Cosserat equations of
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motion. In nondimensional form, these are given by

µr̈ = n′ + f,(
I(w)

)· =m′ +κr ′ ×n+ l,
(1.4)

where µ and I are the rescaled mass and rotary inertia variables of λ and
f , l denote the external force and torque, n and m denote the contact force
and torque which are given by material constitutive relations, and κ is
a dimensionless rescaling parameter. The dot and prime denote differ-
entiation with respect to t and s, respectively. The equations describing
the position and orientation of an idealised massive point particle with
rotary inertia at node ν and time t are given by

Mνr̈(t,ν) = F(t,ν)−
∑
λ

Ω(ν,λ)nλ(t,ν), (1.5)

(
Iνw(t,ν)

)· = L(t,ν)−
∑
λ

Ω(ν,λ)mλ(t,ν), (1.6)

where the sum is over all lines λ terminating at ν.
Here, Mν, Iν, F(t,ν), and L(t,ν) are, respectively, the mass, moment

of inertia, external force, and torque applied to node ν, and nλ(t,ν) and
mλ(t,ν) are the limit of the contact force and torque at node ν along the
line λ. The symbol Ω(ν,λ) = ±1 depends on an arbitrarily specified orien-
tation assigned to line λ. (With the convention Ω(ν,λ) = 0 if neither end
of line λ is at node ν, the sums above can be extended to all lines in the
net). If ν is an extended rigid junction, then (1.6) is generalised to

(
Iνw(t,ν)

)· = L(t,ν)−
∑
λ

Ω(ν,λ)
(
mλ(t,ν) +κξ(t,ν,λ)×nλ(t,ν)

)
. (1.7)

In the case that the number of lines at the junction ν is one so that ν is
the endpoint of some line λ, then the junction condition (1.1) and (1.3)
and the equations of motions of the junction (1.5) and (1.7) reduce to the
case of a single Cosserat element attached to a massive extended body.
Such structures were studied in some detail by Simo et al. [16].

In Section 2, we give the mathematical background for this paper. This
includes the divergence theorem and Euler-Lagrange equations for a net,
a discussion of reference configurations, and the introduction of the ma-
trix A mentioned above.

Variational derivations of the equations of motion for elastic struc-
tures and especially Cosserat elements are well established, see, for ex-
ample, [15] and references therein. Section 3 follows the Lagrangian ap-
proach to derive the equations of motion for a Cosserat net with point
junction conditions (1.5), (1.6) and hyperelastic elements. This serves
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largely to establish the variational notation and tools for the more in-
tricate derivation of the equations of motion for hyperelastic nets that in-
clude extended junctions carried out in Section 4. The variational
method relies on maintaining geometric constraints during the variation
and the extensive use of a global field of SO(3) matrices and their deriva-
tives on the net. The efficacy of using such group elements in variational
calculations has been stressed by a number of authors [15, 19]. We be-
lieve that their implementation in the context of Cosserat nets is new
for both the computation of variational derivatives and the linearisation
of the equations of motion about static stress-free configurations. After
expressing equations in nondimensional form in Section 5, this linearisa-
tion is carried out in Section 6 where the junction conditions are analysed
in order to reduce the system to an eigenproblem for normal modes.

Although our variational formulation is ideally suited to an analysis
of the nonlinear stability [19] of a Cosserat net, we do not pursue this
here since the choice of appropriate norms is beyond the scope of this
article. However, the linear stability analysis about stress-free configu-
rations offers valuable information that can be exploited in numerical
modelling schemes where discretisation of the partial differential equa-
tions of the net can be discretised in a basis of normal modes. Indeed,
practical applications of our linearised analysis has led to the develop-
ment of the Maple computer program LINCOSS [11] which can be used
to estimate the mode spectrum and associated eigenmodes of (in princi-
ple arbitrary) Cosserat nets containing rigid extended structures.

Finally, in Section 7, we show that by making the stiffness of any
Cosserat element in a net tend to infinity, one can generate a new net
where such an element is replaced by an extended rigid body node.

2. Mathematical background

2.1. The structure of nets

As mentioned in the introduction, the net Y consists of a set of nodes
which will be written as N(Y) = {ν1,ν2, . . . ,νNnodes}. These are connected
via a set of lines, written as L(Y) = {λ1,λ2, . . . ,λNlines}. To simplify nota-
tion, two types of net are not discussed: the first is a single loop with
no nodes on it and the second is any net containing a loop with a single
node on it.

The space Y is given an orientation. Thus for each line λ ∈ L(Y), one
associates a direction. This choice of direction is arbitrary. A coordinate
system on Y is a bijective map from each line onto a closed interval of
the real line such that the orientation arrow for each line indicates the
direction of an increasing coordinate. The symbol sλ is used to represent
the coordinate on the line λ.
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The boundary of Y is given by the set of ordered pairs

∂Y=
{
(ν,λ)∈N(Y)×L(Y) | node ν is at one of the ends of line λ

}
. (2.1)

Thus the number of ordered pairs in the set ∂Y is twice the number of
lines. For example, the boundary of the “bridge” given in Figure 1.1 con-
sists of the ordered pairs

∂Y =
{(

ν1,λ1
)
,
(
ν2,λ1

)
,
(
ν2,λ2

)
,
(
ν2,λ6

)
,
(
ν3,λ2

)
,
(
ν3,λ3

)
,
(
ν3,λ5

)
,(

ν4,λ3
)
,
(
ν4,λ4

)
,
(
ν4,λ7

)
,
(
ν5,λ4

)
,
(
ν6,λ5

)
,
(
ν6,λ6

)
,
(
ν6,λ7

)}
.
(2.2)

The boundary inherits an orientation from Y. This is the map

Ω : N(Y)×L(Y) �−→ {−1,0,+1};

Ω(ν,λ) =



+1 if (ν,λ) ∈ ∂Y and arrow on λ points towards ν,
−1 if (ν,λ) ∈ ∂Y and arrow on λ points away from ν,

0 if (ν,λ) �∈ ∂Y.
(2.3)

Given a function f : Y �→ R, we define a set of restricted functions

fλ = f |line λ. (2.4)

If each fλ is continuous, then f is said to be line continuous. In this case,
the limit

fλ(ν) = lim
s→ν

fλ(s) (2.5)

exists. For f to be continuous, requires that f is line continuous and that

f(ν) = fλ(ν) (2.6)

is independent of λ. If f is not continuous at ν, it is useful in some cases
to define f(ν) which, in general, will not satisfy (2.6).

We can differentiate f to give f ′, where

f ′|line λ =
(
fλ
)′
. (2.7)

We note that, in general, if f is continuous, then f ′ need only to be line
continuous. The one form df is given by df |line λ = f ′

λ dsλ. This is only
defined in the interior of Y (i.e., excluding the nodes).
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As mentioned in the introduction, there are two independent vari-
ables in the dynamics of Cosserat nets. As above, differentiation with re-
spect to s will be denoted with a prime, and differentiation with respect
to t by a dot. Thus ∂r/∂s = r ′, ∂r/∂t = ṙ, and so forth.

In the Cosserat theory of nets, presented here, all the dependent vari-
ables r(t,s), A(t,s), w(t,s), n(t,s), and m(t,s), etc. are line continuous in
their spatial variable s, and continuous in the temporal variable t. Fur-
thermore, certain dependent variables A(t,s) and w(t,s) are continuous
in both s and t on Y.

The above formalism readily extends the divergence theorem on man-
ifolds to 1-dimensional varieties.

Lemma 2.1. Let f : Y �→ R be line continuous. Then

∫
Y
df =

∫
∂Y

f, (2.8)

where ∫
Y
df =

∑
λ∈L(Y)

∫
line λ

dfλ,

∫
∂Y

f =
∑

(ν,λ)∈∂Y

fλ(ν)Ω(ν,λ). (2.9)

Proof. If line λ connects ν0 and ν1 with the arrow pointing from ν0 to ν1,
then∫

line λ

dfλ =
∫

line λ

dfλ
dsλ

dsλ = fλ
(
ν1
)− fλ

(
ν0
)
=
∑

ν∈N(Y)

Ω(ν,λ)fλ(ν). (2.10)

Since Ω(ν0,λ) = −1, Ω(ν1,λ) = 1, and Ω(ν0,λ) = 0 otherwise. Summing
over all lines gives

∑
λ∈L(Y)

∫
line λ

dfλ =
∑

λ∈L(Y)

∑
ν∈N(Y)

Ω(ν,λ)fλ(ν). (2.11)

However, since Ω(ν,λ) = 0 if (ν,λ) �∈ ∂Y, then we can change the sum on
the left-hand side to complete the proof. �

Euler-Lagrange equations for varieties

In section 3, we derive the Cosserat net equations from a single action.
Although this is a standard application of the variational principle with
Lagrange multipliers to handle the constraints, the proof is quite long. In
order to show the origin of junction conditions from an action principle
on varieties, we execute the process here for a simpler Lagrangian.
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Consider the following action functional on a general 1-dimensional
variety Y:

S = S(x,x′) =
∫

Y
L(s,x,x′)ds+

∑
ν∈N(Y)

Lnode(ν,x), (2.12)

where L : Y×R×R �→ R is line continuous, Lnode : N(Y)×R �→ R is con-
tinuous, and x : Y �→ R is continuous. The fact that L is not defined at ν
is not important since it does not affect the integration.

Varying S with respect to x and x′ gives

δS =
∫

Y

(
∂L
∂x

δx +
∂L
∂x′ δx

′
)
ds+

∑
ν∈N(Y)

∂Lnode

∂x
δx. (2.13)

Integrating by parts and using (2.8) gives

δS =
∫

Y

(
∂L
∂x

− d

ds

∂L
∂x′

)
δxds+

∫
∂Y

∂L
∂x′ δx+

∑
ν∈N(Y)

∂Lnode

∂x
δx. (2.14)

Letting δx have support only on the interior of Y gives the standard
Euler-Lagrange equations. By writing the integral

∫
∂Y using (2.9), the

natural junction conditions at ν ∈N(Y) follow as

∂Lnode

∂x
+
∑
λ

(
∂L
∂x′

)
λ

(ν)Ω(ν,λ) = 0. (2.15)

The sum
∑

λ may be considered to be over all λ or just those which have
an end at node ν. These are equivalent since Ω(ν,λ) = 0 otherwise. The
expression (∂L/∂x′)λ(ν) means evaluate ∂L/∂x′ as a function on Y and
then take its limit as s→ ν along line λ.

2.2. Vectors, frames, and matrices

In this section, essential notational constructions are presented. One has
to be careful in distinguishing between the manifold M = R

3, which is
the physical space in which the motion of Y takes place, and the space
C = R

3 of column-3 vectors with entries which represent the components
of the vectors with respect to the different orthonormal bases employed.

Throughout this paper, the following conventions are used:

(i) vectors (belonging to M or TM) are written as unbold lowercase
letters with an underscore, for example, r and w. Since M is flat,
and TxM∼=M for any point x ∈M;
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(ii)
(1

1

)
tensors on M are written as bold capital letters with an un-

derscore, for example, I and J;
(iii) column-3 vectors are written as bold lowercase letters, for exam-

ple, x and y;
(iv) 3 × 3 matrices are written as bold capital letters, for example, A

and D;
(v) matrices and column vectors with an e superscript, for example,

Te and xe, are the components of the corresponding tensors and
vectors (T and x) in the fixed frame e1, e2, e3. See below;

(vi) matrices and column vectors with a d superscript, for example,
Td and xd, are the components of the corresponding tensors and
vectors (Td and xd) in the local director frame d1,d2,d3. See be-
low;

(vii) in Section 5, objects with inverted hats (·̌) on carry dimensions
based on mass, time, and length;

(viii) in Section 6, objects with hats (·̂) or tildes (·̃) are perturbations;
(ix) in Section 7, objects with tildes (·̃) will be explained there.

There are two preferred orthonormal frame fields on M. The first is
a fixed (global Euclidean-parallel) basis {e1, e2, e3}. The other is called a
local director basis. Restricted to Y, it is written {d1,d2,d3}, depends on
both time t and s, and is identified with a Cosserat director frame for
elements in the net. At each point in space and at time t, these two bases
are related by a local rotation tensor D(t,s),

di = D
(
ei
)
, ei = D−1(di

)
. (2.16)

The components of a general vector x ∈M, with respect to the fixed
and director basis, are written as column vectors

xe =


x · e1

x · e2
x · e3


 = x · eiei, xd =


x ·d1

x ·d2
x ·d3


 = x ·diei. (2.17)

The superscript e and d are used to distinguish between the two
frames. Here, {ei} is the natural basis of C = R

3 given by

e1 =


1

0
0


 , e2 =


0

1
0


 , e3 =


0

0
1


 . (2.18)
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Thus xe and xd are related by the matrix D ∈ SO(3) with entries Dij =
ei ·dj ,

xe = Dxd, xd = DTxe. (2.19)

In M,
(1

1

)
tensors, in these bases, become 3× 3 matrices with entries

Te
ij = ei ·T

(
ej
)
, Td

ij = di ·T
(
dj

)
. (2.20)

Thus

Te = DTdDT , Td = DTTeD. (2.21)

The Lie algebra so(3) of antisymmetric 3× 3 matrices is isomorphic to
C = R

3 as a vector space and given by the map

Λ : C �−→ so(3) Λ


x1

x2

x3


 =


 0 −x3 x2

x3 0 −x1

−x2 x1 0


 . (2.22)

We list, without proof, the basic results

Λ(x)y = x× y,
[
Λ(x),Λ(y)

]
=Λ(x× y),

Tr
(
Λ(x)Λ(y)

)
= −2x · y, Λ(x)Λ(y) = yxT − x · y13,

(x×y)× z = (x · z)y− (y · z)x, Λ(Dx) = DΛ(x)DT ,

xyT −yxT =Λ(y× x),

(2.23)

where 13 is the unit 3× 3 matrix. The last equation in (2.23) follows from
the identity Dx×Dy = D(x×y).

2.3. Directors and reference configurations

With respect to s, the matrix D(t,s) is line continuous and Dλ(t,ν) is the
limit of D at ν along λ. We set D(t,ν) to be the matrix describing the
rigid body frame at ν. As mentioned in the introduction, there is a set
of rotation matrices X(ν,λ) ∈ SO(3) for each line λ such that (1.3) holds.
This is equivalent to

Dλ(t,ν) = D(t,ν)X(ν,λ). (2.24)

Differentiating the matrix D(t,s) with respect to t and s gives the an-
gular velocity w and angular strain uD, respectively. These are given in
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the fixed basis by

Λ
(
we) = ḊDT , Λ

(
ue
D

)
= D′DT , (2.25)

respectively. Note that (2.23) implies that the angular velocity and angu-
lar strain in the director basis are given by Λ(wd) = DTḊ and Λ(ud

D) =
DTD′ since

Λ
(
wd) =Λ

(
DTwe) = DTΛ

(
we)D = DTḊDTD = DTḊ. (2.26)

Given a Cosserat element in the net corresponding to a line λ, the
Cosserat equations for most physical constitutive relations and no ex-
ternal forces and torques admit a stress-free static solution, given by
rλ(t,s) = r0λ(s) and Dλ(t,s) = D0λ(s) modulo Euclidean translations and
rotations. This is used to define u0λ for the line λ via

Λ
(
ud

0λ

)
= DT

0λD′
0λ. (2.27)

Given u0λ for all the lines λ, we construct the line continuous vector u0.
Clearly, ud

0 = ud
0 (s) is independent of time. The relative angular strain

usually appears in the constitutive relations, for example, as in the Kirch-
hoff constitutive relations given in Section 3.1. Note that in general there
does not exist a stress-free static solution for the entire Cosserat net due
to the existence of loops (see below). Also note that the constitutive re-
lations for a general Cosserat element may admit a continuum of stress-
free solutions, for example, the string, or, for nonlinear constitutive re-
lations, several discreet stress-free solutions. In such case, one simply
chooses a particular stress-free solution.

We define the relative angular strain to be

ustrain = uD −u0 (2.28)

so that if a solution given by D(t,s) = D0(s) exists, then it is relative an-
gular strain free.

It is convenient to introduce a line continuous matrix called the reference
configuration,

C : Y �−→ SO(3), (2.29)
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and node matrices C(ν) such that

Cλ(ν) = C(ν)X(ν,λ) (2.30)

at each node ν and define a change of variables from D to A by

A(t,s) = D(t,s)C(s)T . (2.31)

It is easy to show that A is continuous on Y and Aλ(t,ν) = A(t,ν). By writ-
ing D as D(t,s) = A(t,ν)C(s) with C independent of time, the dynamics
of the director fields is encoded into the matrix A which is continuous
on Y. It also proves to be a useful tool for analysing perturbations about
the static solution, as in Section 6.

In terms of C and A, one has

w =wA, uD = uA +uC, (2.32)

where (2.25) and Λ(we
A) = ȦAT , Λ(ue

A) = A′AT , and Λ(ue
C) = AC′CTAT .

The proof of (2.32) is trivial. Note that ud
C given by Λ(ud

C) = CTC′ is inde-
pendent of time. The relative angular strain may be written as

ustrain = uA +uC −u0. (2.33)

Given X, there is an infinite number of choices for C. For example, one
choice, which is always available, is to use the initial director fields in Y,
setting C(s) = D(0, s) in which case A(0, s) = 13.

Another particular useful choice for C which, if it exists, has a physi-
cal interpretation, is given by uC = u0. This is called the strain-free reference
configuration since it implies ustrain = uA. Clearly, this is given by the solu-
tions of the ODE C′(s) = C(s)Λ(ud

0 (s)) subject to the junction conditions
(2.30). Such a solution, if it exists, is unique up to a fixed rotation.

It is not always possible to construct such a C. For example, consider
three straight elements each with ud

0 = 0. Attach them at right angles to
each other in a bent triangle. This requires bending the elements. The
elements must bend since otherwise they will form a triangle with three
right angles. Hence, such a configuration cannot be stress-free.

Although the existence of a strain-free reference configuration is not
always guaranteed, we do have the following two observations.
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Lemma 2.2. If there exists a relative angular strain-free configuration (ustrain =
0), then there exists a strain-free reference configuration (uC = u0).

Proof. Simply, note that if D0 is a relative angular strain-free configura-
tion, then setting C = D0 gives

Λ
(
ud
C

)
= CTC′ = DT

0 D′
0 =Λ

(
ud
D

)
=Λ
(
ud

0

)
. (2.34)

�

We note that this is not true in the reverse; the existence of a strain-free
reference configuration does not imply a relative angular strain-free con-
figuration. For example, consider a single straight element forced into a
loop with the two ends joined at 180◦. This is not strain free but has a
strain-free reference configuration given by C = 13.

Lemma 2.3. If the net is simply connected (no loops) and the endpoints are not
constrained, then there exists a strain-free reference configuration.

Proof. We can integrate the differential equation C′ = CΛ(ud
0 ) along each

line and construct C globally using (2.30). �

If there exists a stress-free static solution of Cosserat equations with
the appropriate junction conditions given by r(t,s) = r0(s) and D(t,s) =
D0(s), then by Lemma 2.2 there exists a strain-free reference configura-
tion C(s) = D0(s). The class of stress-free solutions given by Euclidean
rotations and translations may be expressed by A(t,s) = A0 and re(t,s) =
A0re0(s) + tk1 +k0, where A0 is a constant matrix and k0 and k1 are con-
stant column vectors. This description will be used for the perturbations
in Section 6.

3. Cosserat equations for nets with point junctions

In this section, we consider nets containing only point junctions. The
configuration of such a net is described by the two maps

r : R×Y �−→M = R
3, A : R×Y �−→ SO(3),

r : (t,s) �−→ r(t,s), A : (t,s) �−→ A(t,s).
(3.1)

In the proceeding section, it is shown that A is continuous in s. This
implies that the local angular velocity vector w(t,s) is continuous on
Y. Since all junctions here are point junctions, then r is also continuous
in s. Since all maps are assumed differentiable in time, the dependent
variables ṙ, r̈, and w are all continuous.



202 The dynamics of Cosserat nets

The nondimensional Cosserat equations for an interior point s on a
line λ within the net at a time t are

µr̈ = n′ + f, (3.2)
(
I(w)

)· =m′ +κr ′ ×n+ l, (3.3)

where µ is mass-density parameter and I is given in the director basis as

Id =




I11 I12 0
I12 I22 0
0 0 I33


 (3.4)

with I33 = I22 + I11. In general, µ and the components of Id are dependent
on s. The contact force and torque acting on elements of the net are de-
noted by n and m, respectively, and external forces and torques are f and
l, respectively. The junction conditions are given by

Mνr̈(t,ν) = F(t,ν)−
∑
λ

Ω(ν,λ)nλ(t,ν), (3.5)

(
Iνw(t,ν)

)· = L(t,ν)−
∑
λ

Ω(ν,λ)mλ(t,ν). (3.6)

Theorem 3.1. If the contact forces and torques are hyperelastic and the external
forces and torques are conservative, then (3.2), (3.3), (3.5), and (3.6) follow as
stationary points of the action functional

S =
∫

R×Y

(
1
2
µṙ · ṙ + 1

2
κ−1w · I(w)−V(vd,ud

D

)−ϕ(r,A)
)
dtds

+
∑

ν∈N(Y)

∫
R

(
1
2
Mνṙ · ṙ + 1

2
κ−1w · Iν(w)−ϕν(r,A)

)
dt

(3.7)

under constrained variations which preserve (2.25) and vd = DT re ′, where the
external forces and torques are derived from the potentials ϕ and ϕν,

fe = − ∂ϕ

∂re
, le = 2κΛ−1

(
∂ϕ

∂A
AT

)
,

Fe = −∂ϕν

∂re
, Le = 2κΛ−1

(
∂ϕν

∂A
AT

)
,

(3.8)
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and the contact forces and torques are derived from the hyperelastic potential V

nd =
∂V
∂vd

, md = κ−1 ∂V
∂ud

D

. (3.9)

When differentiating a scalar by a column vector or matrix, we use
the notation

∂ϕ

∂x
=

∂ϕ

∂xi
ei ,

∂ϕ

∂A
=

∂ϕ

∂Aij
eieTj . (3.10)

Before proving this theorem, some preliminary variations with respect
to A are derived.

Lemma 3.2. If A is varied alone by the operator δ such that δC = 0, δId = 0,
δwe = 0, δα = 0, and δβ = 0, then

δ
(
α ·Λ−1(ȦAT)) = (α · δa)· − (α̇+α×Λ−1(ȦAT)) · δa, (3.11)

δ
(
β ·Λ−1(DTD′)) = (Dβ · δa)′ − (Dβ)′ · δa, (3.12)

δ
(
we · Iewe) = Iewe ×we · δa, (3.13)

δϕ(A) = 2Λ−1
(
∂ϕ

∂A
AT

)
· δa, (3.14)

where Λ(δa) = δAAT , D = AC, and Ie = DIdDT .

Proof. Since δAAT +AδAT = 0 and A′AT +AAT ′ = 0,

δ
(
α ·Λ−1(ȦAT))

= α ·Λ−1(δȦAT)+α ·Λ−1(ȦδAT)
=
(
α ·Λ−1(δAAT))· − α̇ ·Λ−1(δAAT)−α ·Λ−1(δAȦT)+α ·Λ−1(ȦδAT)

= (α · δa)· − α̇ · δa−α ·Λ−1(Λ(δa)AȦT)−α ·Λ−1(ȦATΛ(δa)
)

= (α · δa)· − α̇ · δa+α ·Λ−1(Λ(δa)Λ
(
Λ−1(ȦAT))−Λ

(
Λ−1(ȦAT))Λ(δa)

)
= (α · δa)· − α̇ · δa+α · δa×Λ−1(ȦAT).

(3.15)
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Since δD = δAC, Λ(δa) = δDDT . Furthermore, δDDT + DδDT = 0 and
D′DT +DDT ′ = 0, so

δ
(
β ·Λ−1(DTD′))

= β ·Λ−1(DT(δD)′
)
+β ·Λ−1(δDTD′)

=
(
β ·Λ−1(DTδD

))′ −β′ ·Λ−1(DTδD
)

−β ·Λ−1(DT ′δD
)
+β ·Λ−1(δDTD′)

=
(
Dβ ·Λ−1(DDTδDDT))′ −Dβ′ ·Λ−1(DDTδDDT)
−Dβ ·Λ−1(DDT ′δDDT)+Dβ ·Λ−1(DδDTD′DT)

=
(
Dβ ·Λ−1Λ(δa)

)′ −Dβ′ ·Λ−1Λ(δa)

−Dβ ·Λ−1(DDT ′δDDT)+Dβ ·Λ−1(DδDTD′DT)
= (Dβ · δa)′ −Dβ′ · δa+Dβ ·Λ−1(D′DTδDDT)
−Dβ ·Λ−1(δDDTD′DT)

= (Dβ · δa)′ −Dβ′ · δa+Dβ ·Λ−1(Λ(Λ−1(D′DT))Λ(δa)

−Λ(δa)Λ
(
Λ−1(D′DT)))

= (Dβ · δa)′ −Dβ′ · δa+Dβ ·Λ−1(D′DT)× δa

= (Dβ · δa)′ − (Dβ′ +Λ−1(D′DT)×Dβ
) · δa

= (Dβ · δa)′ − (Dβ′ +D′β) · δa.

(3.16)

Hence (3.12) is obtained. For (3.13),

δ
(
we · Iewe) = 1

2
(
we · δDIdDTwe +we ·DIdδDTwe)

=
1
2
((

we × δa
) · Iewe +wea · Ie(we × δa

))
= Iewe ×we · δa.

(3.17)

For (3.14), note first that Λ(x)ijΛ(y)ij = 2x ·y. Thus

δϕ(A) =
∂ϕ

∂Aij
δAij =

∂ϕ

∂Aij
Λ(δa)ikAkj

=Λ
(
Λ−1
(
∂ϕ

∂A
AT

))
ik

Λ(δa)ik

(3.18)

and the result follows. �
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Proof of Theorem 3.1. To effect the required variations, we differentiate
with respect to the components of vectors and use the fixed frame for
re, ṙe,re ′,we and the director frame for ud

D,v
d. Using the Lagrange multi-

pliers α,β,γ , and αN for the constraints, the action functional to be var-
ied is given by

S =S(re, ṙe,re ′,A,Ȧ,A′,we,ud
D,v

d,α,β,γ ,αN)
=
∫

R×Y

(
1
2
µṙe · ṙe + 1

2
κ−1we · Ie(we)−V(vd,ud

D

)−ϕ
(
re,A

)
+α · (we −Λ−1(ḊDT))+β · (ud

D −Λ−1(DTD′))
+ γ · (vd −DT re ′

))
dtds

+
∑

ν∈N(Y)

∫
R

(
1
2
Mṙe · ṙe + 1

2
κ−1we · Ieν

(
we)−ϕν

(
re,A

)

+αN · (we −Λ−1(ḊDT)))dt.

(3.19)

After applying the divergence theorem to the total variation, one has

δS =
∫

R×Y

((
− ∂ϕ

∂re
− r̈e + (Dγ)′

)
· δre

+
(

2Λ−1
(
∂ϕ

∂A
AT

)
+κ−1Iewe ×we

+ α̇+α×Λ−1(ȦAT)+ (Dβ)′ −Dγ × re ′
)
· δa

+
(
κ−1Iewe +α

) · δwe +
(
− ∂V
∂ud

D

+β

)
· δud

D

+
(
− ∂V
∂vd

+ γ

)
· δvd + δα · (we −Λ−1(ḊDT))

+ δβ · (ud
D −Λ−1(DTD′))+ δγ · (vd −DT re ′

))
dtds

+
∫

R×∂Y

(
−Dγ · δre −Dβ · δa

)
dt

+
∑

ν∈N(Y)

∫
R

((
− ∂ϕν

∂re
−Mν r̈e

)
· δre
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+
(

2Λ−1
(
∂ϕν

∂A
AT

)
+κ−1Ieνwe ×we

+ α̇N +αN ×we

)
· δa+

(
κ−1Ieνwe +αN) · δwe

+ δαN · (we −Λ−1(ḊDT)))dt.
(3.20)

As well as generating the constraints we = Λ−1(ḊDT), ud
D = Λ−1(DTD′),

and vd = DT re ′, the Lagrange multipliers evaluate to α = −κ−1Iewe, αN =
−κ−1Ieνwe, β = ∂V/∂ud

D =κ−1md, and γ =∂V/∂vd =nd. Substituting these
into the coefficient of δre gives (3.2). Substituting these into the coeffi-
cient of δa gives

2Λ−1
(
∂ϕ

∂A
AT

)
−κ−1(Iewe)· +κ−1(Dmd)′ −Dnd × re ′ = 0, (3.21)

hence (3.3). The junction conditions (3.5) and (3.6) follow by decompos-
ing
∫
∂Y as in Section 2.1. �

3.1. Kirchhoff constitutive relations

For a net composed of rods, wires, or slender beams undergoing small
displacements from a reference configuration, the Kirchhoff constitutive
relations provide an adequate description of elastic properties in terms
of a few elastic moduli. The contact forces and torques are then given as

n = K
(
v −d3

)
, m = J

(
uD −u0

)
(3.22)

with v = r ′,

Jd = RJ


I11 I12 0

I12 I22 0
0 0 χI33


 , Kd = RK(s)


χ 0 0

0 χ 0
0 0 1


 , (3.23)

RJ =
Eρ0

E0ρ
, RK(s) =

EA(s)
E0A0

, χ =
G

E
. (3.24)

Here, E and G are the Young’s and shear moduli of elasticity, ρ is the
density, and A(s) is the cross sectional area of the slender elastic com-
ponents of the net. The quantities E0, A0, and ρ0 are rescaling constants,
defined in Section 5.
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These constitutive relations follow from the hyperelastic potential

V(vd,ud
D

)
=

1
2
(
vd − e3

)TKd(vd − e3
)
+

1
2
(
ud
D −ud

0

)T Jd
(
ud
D −ud

0

)
. (3.25)

4. Cosserat nets with extended junctions

In this section, the variational approach is generalised to Cosserat nets
containing extended junctions. As before the configuration of such a
Cosserat net is encoded into the maps

r : R×Y �−→ R
3, A : R×Y �−→ SO(3),

r : (t,s) �−→ r(t,s), A : (t,s) �−→ A(t,s),
(4.1)

with the map A is continuous, so that w(t,s) is continuous. However,
as mentioned in the introduction, with extended junctions, the map r is
only line continuous with the discontinuities at the nodes given by (1.1)

rλ(t,ν) = r(t,ν) + ξ(t,ν,λ), (4.2)

where ξd(ν,λ) is independent of t. The dynamic equations for this
Cosserat net are (3.2) and (3.3) together with the junction conditions

Mνr̈(t,ν) = F(t,ν)−
∑
λ

Ω(ν,λ)nλ(t,ν), (4.3)

(
Iνw(t,ν)

)· = L(t,ν)−
∑
λ

Ω(ν,λ)
(
mλ(t,ν) +κξ(t,ν,λ)×nλ(t,ν)

)
. (4.4)

Here, F(t,ν) is the total external force on the rigid body at node ν and
L(t,ν) the total external torque on node ν about the centre of mass r(t,ν).
For example, if one is given the external forces and torques at the line
ends, say, Fλ(t,ν) and Lλ(t,ν), respectively, then

F(t,ν) =
∑
λ

Fλ(t,ν),

L(t,ν) =
∑
λ

Lλ(t,ν) + ξ(t,ν,λ)×Fλ(t,ν).
(4.5)

Once the motion and rotation of the centroid r(t,ν), and A(t,ν) are cal-
culated, one can use (4.2) to derive the motions of the endpoints rλ(t,ν).
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Theorem 4.1. If the constitutive relations are hyperelastic and the external
forces and torques are conservative, then (4.3) and (4.4) can be derived from the
variations of the action

S =
∫

R×Y

(
1
2
ṙλ · ṙλ +

1
2
κ−1w · I(w)−V(vd

λ,u
d
D

)−ϕ
(
rλ,A

))
dtds

+
∑

ν∈N(Y)

∫
R

(
1
2
Mνṙν · ṙν +

1
2
κ−1w · Iν(w)−ϕν

(
rν,A

))
dt,

(4.6)

that maintain the constraints (2.25), vd=DT re ′, and (4.2), where rν(t)=r(t,ν).
The external forces and torques and contact forces and torques are given by (3.8)
and (3.9).

Proof. The proof of this theorem is an extension to the proof of Theorem
3.1. As well as the Lagrange multipliers α,β,γ ,αN , we introduce another
θν,λ for the constraint (4.2) and write ξdν,λ = ξd(ν,λ). Thus the complete
action becomes

S = S(reλ, ṙeλ,re′λ ,reν, ṙeν,re′ν ,A,Ȧ,A′,we,ud
D,v

d,α,β,γ ,αN,θν,λ

)
=
∫

R×Y

(
1
2

ṙeλ · ṙeλ +
1
2
κ−1we · Ie(we)−V(vd,ud

D

)−ϕ
(
reλ,A

)
+α · (we −Λ−1(ḊDT))+β · (ud

D −Λ−1(DTD′))
+ γ · (vd −DT re ′

))
dtds

+
∑

ν∈N(Y)

∫
R

(
1
2
Mṙe · ṙe + 1

2
κ−1we · Ieν

(
we)−ϕν

(
re,A

)

+αN · (we −Λ−1(ḊDT)))dt
+
∑

(ν,λ)∈∂Y

∫
R

θν,λ ·
(
reλ − reν −Aξdν,λ

)
dt.

(4.7)

Applying the divergence theorem to the total variation yields

δS =
∫

R×Y

((
− ∂ϕ

∂re
λ

− r̈eλ + (Dγ)′
)
· δreλ

+
(

2Λ−1
(
∂ϕ

∂A
AT

)
+κ−1Iewe ×we + α̇

+α×Λ−1(ȦAT)+ (Dβ)′ −Dγ × reλ
′
)
· δa
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+
(
κ−1Iewe +α

) · δwe +
(
− ∂V
∂ud

D

+β

)
· δud

D

+
(
− ∂V
∂vd

+ γ

)
· δvd + δα · (we −Λ−1(ḊDT))

+ δβ · (ud
D −Λ−1(DTD′))+ δγ · (vd −DT reλ

′))dtds
+
∫

R×∂Y

(−Dγ · δreλ −Dβ · δa
)
dt

+
∑

ν∈N(Y)

∫
R

((
− ∂ϕν

∂reν
−Mν r̈eν

)
· δreν

+
(

2Λ−1
(
∂ϕν

∂A
AT

)
+κ−1Ieνwe ×we+α̇N+αN ×we

)
·δa

+
(
κ−1Ieνwe +αN) · δwe + δαN · (we −Λ−1(ḊDT)))dt

+
∑

(ν,λ)∈∂Y

∫
R

δθν,λ ·
(
reλ − reν −Aξdν,λ

)
+θν,λ ·

(
δreλ − δreν − δAξdν,λ

)
dt.

(4.8)

From the δre
λ

variation at node ν, one obtains the multiplier

θν,λ = Ω(ν,λ)Dγ = Ω(ν,λ)Dnd
λ = Ω(ν,λ)ne

λ(ν). (4.9)

The δreν variation therefore gives

−Mν r̈eν −
∂ϕν

∂reν
−
∑
λ

θν,λ = 0, (4.10)

hence (4.3) follows.
The δa variation gives

0 =
∑
λ

Ω(ν,λ)(−Dβ) + 2Λ−1
(
∂ϕν

∂A
AT

)
+κ−1Ieνwe ×we + α̇N +αN ×we

−
∑
λ

ξdν,λ ×θν,λ

= Le − (Iewe)· −∑
λ

Ω(ν,λ)
(
me +κξdν,λ ×ne),

(4.11)
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Table 5.1

Quantity Symbol Dimensions

Reference time T0 (time)
Reference length L0 (length)
Reference area A0 (length)2

Reference density ρ0 (mass)(length)−3

Reference torque G0 (mass)(length)2(time)−2

Table 5.2

Quantity Symbol = Definition Dimensions

Reference Young’s modulus E0 = L2
0T

−2
0 ρ0 (mass)(length)−1(time)−2

Scaling factor κ = E0A0L0/G0 1
Scale free mass per length µ(s) = ρA(s)/ρ0A0 1
Scaling factor RJ = Eρ0/E0ρ 1
Scaling factor RK(s) = EA(s)/E0A0 1

where we have used

θν,λ · δAξdν,λ = θν,λ ·Λ(δa)Aξdν,λ = θν,λ · δa× ξdν,λ = ξdν,λ ×θν,λ · δa (4.12)

and hence (4.4). �

5. Nondimensionalisation

To recover the fully dimensioned form of the Cosserat net equations
with Kirchhoff constitutive relations, one needs to effect a number of
rescalings.

Reference scalars with dimensions are chosen as shown in Table 5.1.
These are used to define the quantities shown in Table 5.2.

The following variables are rescaled according to

ť = tT0, v̌ = v, Ǩ = KE0A0,

š = sL0, w̌ =w/T0, M̌ν =Mνρ0A0L0,

ř = r L0, f̌ = f E0A0/L0, Ǐν = Iν T
2
0G0,

ň = nE0A0, ľ = lG0/L0, F̌ = FE0A0,

m̌ =mG0, Ǐ = IT2
0G0/L0, Ľ = LG0,

ǔD = uD/L0, J̌ = JG0L0, ξ̌ = ξL0.

(5.1)
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Thus for any line λ labelling an element of the net with stress-free length
LPhys, the material coordinate s runs from smin

λ
to smax

λ
in the chosen orien-

tation where smax
λ

− smin
λ

= LPhys/L0. Note that κ is no more than a conve-
nient rescaling parameter and does not necessarily give any information
about the relative flexibility of any element. Such information is encoded
in the other parameters.

In terms of variables with physical dimensions, the general Cosserat
net equations become

ρA
(
∂ť
)2
ř = ∂šň+ f̌ , ∂ť(Ǐw̌) = ∂šm̌+ v̌ × ň+ ľ,

ň = Ǩ
(
v̌ −d3

)
, m̌ = J̌

(
ǔ− ǔ0

)
, M̌ν∂

2
ť
ř = F̌ −

∑
λ

Ω(ν,λ)ňλ,

∂ť
(
Ǐνw̌
)
= Ľ−

∑
λ

Ω(ν,λ)
(
m̌λ(t,ν) + ξ̌(t,ν,λ)× ňλ(t,ν)

) (5.2)

with

Ǐ =


Ǐ11 Ǐ12 0

Ǐ12 Ǐ22 0
0 0 Ǐ33


 ,

J̌ =


EǏ11/ρ EǏ12/ρ 0

EǏ12/ρ EǏ22/ρ 0
0 0 GǏ33/ρ


 ,

Ǩ =


GA 0 0

0 GA 0
0 0 EA


 .

(5.3)

6. Linearised Cosserat nets

In this section, equations for linearised perturbations of a Cosserat net
about a static strain-free solution are derived and the resulting system
is reduced to an algebraic eigenproblem for its normal modes. We as-
sume that the Cosserat net has Kirchhoff constitutive relations and a
static stress-free solution given by r(t,s) = r0(s) and D(t,s) = D0(s). Let
C(s) = D0(s) be the strain-free reference configuration. Let ε be a small
perturbation parameter, and set

r(t,s) = r0(s) + εr̂(t,s), A(t,s) = 13 + εΛ
(
âe(t,s)

)
, (6.1)

where âe are the components of the vector â in the fixed basis. This vector
represents the direction of the rotation of the unperturbed frame to give
a perturbed frame.
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The components of r̂ and â with respect to the ei and di frames are
given, as usual by (2.17), so that

r̂e = Cr̂d +O(ε), âe = Câd +O(ε). (6.2)

Note that r̂d represents the perturbed r in the di frame, not the perturba-
tion of rd which is given by

rd = CT re0 + ε
(
CT r̂e −CT âe ×CT re0

)
. (6.3)

Theorem 6.1. The equations for the above perturbation are given by

µ ¨̂r = uD ×K
(
r̂ ′ − â× c3

)
+K
(
r̂ ′′ −uD × r̂ ′ − â′ × c3 +

(
uD × â

)× c3

)
, (6.4)

I( ¨̂a) = uD × J(â′) + J
(
â′′ −uD × â

)
+κc3 ×K

(
r̂ ′ − â× c3

)
, (6.5)

where c3 = r0 and re0 = Ce3.

Proof. Since ne = ACKd(CTAT(re ′)− e3),

ne = ne
0 + εn̂e

=
(
1+ εΛ

(
âe
))

CKd(CT(1− εΛ
(
âe
))(

re0
′ + εr̂e ′

)− e3
)
.

(6.6)

Since r0(s) and D0(s) = C(s) yield a static stress-free solution, then ne
0 = 0

and so re0 = Ce3 and

n̂e = CKdCT(r̂e ′ −Λ
(
âe
)
re0

′) = CKdCT(r̂e ′ − âe × ce3
)
. (6.7)

Differentiating gives

n̂e ′ =Λ
(
uc
C

)
CKdCT(r̂e ′ − âe × ce3

)−CKdCTΛ
(
uc
C

)(
r̂e ′ − âe × ce3

)
+CKdCT(r̂e ′′ − âe ′ × ce3 − âe ×Λ

(
uc
C

)
ce3
)

= uc
C ×CKdCT(r̂e ′ − âe × ce3

)
+CKdCT(−uc

C × r̂e ′ + r̂e ′′ − âe ′ × ce3 +
(
uc
C × âe

)× ce3
)
,

(6.8)

where Λ(uc
C) = C′CT . Now, A = 13 +O(ε) hence CKdCT = Ke +O(ε). One

also has

Λ
(
ue
D

)
= D′DT = A′AT +AC′CTAT =Λ

(
uc
C

)
+O(ε), (6.9)
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so

n̂e ′ = ue
D ×Ke(r̂e ′ − âe × ce3

)
+Ke(r̂e ′′ −ue

D × r̂e ′ − âe ′ × ce3 +
(
ue
D × âe

)× ce3
)
.

(6.10)

Hence (6.4) follows. For (6.5), note that Λ(we) = ȦAT = εΛ( ˙̂ae) +O(ε2).
Hence we = ε ˙̂ae +O(ε2). Also Ie = CIdCT +O(ε), hence (Ie)· = 0 +O(ε).
The left-hand side of (3.3) is given by (Iewe)· = εIe( ¨̂ae). For the right-
hand side, we have

re ′ ×ne = εre0 × n̂e +O
(
ε2) = εce3 ×Ke(r̂e ′ − âe × ce3

)
+O
(
ε2). (6.11)

Since we are perturbing about a static strain-free solution C(s) = D0(s),
then Λ(ud

0 ) = D0
TD0

′ = CTC′ = Λ(ud
C), so uC = u0. From (2.32), we have

uD = uA +u0 and from (3.22), m = J(uD −u0) = uA. Now, Λ(ue
A) = A′AT =

εΛ(âe ′)(1 − Λ(âe)) gives ue
A = εâe ′ +O(ε2). Thus me = εJe(âe ′) +O(ε2).

Differentiating yields

me ′ = εuc
C × Je

(
âe ′
)− εJe

(
uc
C × âe ′

)
+ εJe

(
âe ′′
)
+O
(
ε2) (6.12)

and putting this all together gives (6.5). �

For simplicity, assume that the unstrained state of each Cosserat ele-
ment is straight, so that C is constant along each Cosserat element, and
uC = 0. Thus

µ ¨̂r = K
(
r̂ ′′ − â′ × c3

)
,

I( ¨̂a) = J(â′′) +κc3 ×K
(
r̂ ′ − â× c3

)
.

(6.13)

To analyse these equations, suppose there exist mode functions r̃(s) and
ã(s) such that

r̂(t,s) = sin(ωt)r̃(s), â(t,s) = sin(ωt)ã(s). (6.14)

Then

−ω2µr̃ = K
(
r̃ ′′ − ã′ × c3

)
,

−ω2I(ã) = J(ã′′) +κc3 ×K
(
r ′ − â× c3

)
.

(6.15)
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To solve these equations, we express them in the director frame. Using
(6.2) gives

−ω2µr̃d = Kd(r̃d ′′ − ãd ′ × e3
)
,

−ω2Id
(
ãd
)
= Jd
(
ãd ′′
)
+κe3 ×Kd(rd ′ − ãd × e3

)
,

(6.16)

since CTce3 = e3 +O(ε). With Id diagonal, Jd and Kd are also diagonal and
considerable simplification ensues

0 =ω2µr̃d1 +K11
(
r̃d1

′′ − ãd2
′),

0 =ω2µr̃d2 +K22
(
r̃d2

′′ + ãd1
′),

0 =ω2µr̃d3 +K33r̃d3
′′,

0 =ω2I11ãd1 + J11ãd1
′′ −κK22

(
r̃d2

′ + ãd1
)
,

0 =ω2I22ãd2 + J22ãd2
′′ +κK11

(
r̃d1

′ − ãd2
)
,

0 =ω2I33ãd3 + J33ãd3
′′.

(6.17)

For ω2I11 > κK22 and ω2I22 > κK11, these gives

r̃d1 = Bλ
1 cos

(
α1s
)
+Bλ

2 sin
(
α1s
)
+Bλ

3 cos
(
α2s
)
+Bλ

4 sin
(
α2s
)
, (6.18)

r̃d2 = Bλ
5 cos

(
α3s
)
+Bλ

6 sin
(
α3s
)
+Bλ

7 cos
(
α4s
)
+Bλ

8 sin
(
α4s
)
, (6.19)

r̃d3 = Bλ
9 cos

(
α5sλ

)
+Bλ

10 sin
(
α5sλ

)
, (6.20)

ãd1 =
ω2µ−K22α

2
3

K22α3

(
Bλ

5 sin
(
α3s
)−Bλ

6 cos
(
α3s
))

+
ω2µ−K22α

2
4

K22α4

(
Bλ

7 sin
(
α4s
)−Bλ

8 cos
(
α4s
))
,

(6.21)

ãd2 =
ω2µ−K11α

2
1

K11α1

(
Bλ

1 sin
(
α1s
)−Bλ

2 cos
(
α1s
))

+
ω2µ−K11α

2
2

K11α2

(
Bλ

3 sin
(
α2s
)−Bλ

4 cos
(
α2s
))
,

(6.22)

ãd3 = Bλ
11 cos

(
α6sλ

)
+Bλ

12 sin
(
α6sλ

)
, (6.23)
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where

α2
1 =

ω2

2

(
I22

J22
+

µ

K11

)
+
(
ω4

4

(
I22

J22
− µ

K11

)2

+ω2 κµ

J22

)1/2

, (6.24)

α2
2 =

ω2

2

(
I22

J22
+

µ

K11

)
−
(
ω4

4

(
I22

J22
− µ

K11

)2

+ω2 κµ

J22

)1/2

, (6.25)

α2
3 =

ω2

2

(
I11

J11
+

µ

K22

)
+
(
ω4

4

(
I11

J11
− µ

K22

)2

+ω2 κµ

J11

)1/2

, (6.26)

α2
4 =

ω2

2

(
I11

J11
+

µ

K22

)
−
(
ω4

4

(
I11

J11
− µ

K22

)2

+ω2 κµ

J11

)1/2

, (6.27)

α2
5 =

ω2µ

K33
, (6.28)

α2
6 =

ω2I33

J33
. (6.29)

If however I22ω
2 < κK11, then replace (6.18), (6.22), and (6.25) by

r̃d1 = Bλ
1 cos

(
α1s
)
+Bλ

2 sin
(
α1s
)
+Bλ

3 cosh
(
α2s
)
+Bλ

4 sinh
(
α2s
)
,

ãd2 =
ω2µ−K11α

2
1

K11α1

(
Bλ

1 sin
(
α1s
)−Bλ

2 cos
(
α1s
))

+
ω2µ+K11α

2
2

K11α2

(
Bλ

3 sinh
(
α2s
)
+Bλ

4 cosh
(
α2s
))
,

(6.30)

where

α2
2 = −ω2

(
I22

J22
+

µ

K11

)
+
(
ω4

4

(
I22

J22
− µ

K11

)2

+ω2κµ

I22

)1/2

. (6.31)

If I22ω
2 = κK11, then replace (6.18) and (6.22) by

r̃d1 = Bλ
1 cos

(
α1s
)
+Bλ

2 sin
(
α1s
)
+Bλ

3 ,

ãd2 =
ω2µ−K11α

2
1

K11α1

(
Bλ

1 sin
(
α1s
)−Bλ

2 cos
(
α1s
))

+
Bλ

3ω
2µ

K11
s+Bλ

4 .
(6.32)

If I11ω
2 < κK22, then replace (6.19), (6.21), and (6.27) by

r̃d2 = Bλ
5 cos

(
α3s
)
+Bλ

6 sin
(
α3s
)
+Bλ

7 cosh
(
α4s
)
+Bλ

8 sinh
(
α4s
)
,

ãd1 =
ω2µ−K22α

2
3

K22α3

(
Bλ

5 sin
(
α3s
)−Bλ

6 cos
(
α3s
))

+
ω2µ+K22α

2
4

K22α4

(
Bλ

7 sinh
(
α4s
)
+Bλ

8 cosh
(
α4s
))
,

(6.33)
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where

α2
4 = −ω2

(
I11

J11
+

µ

K22

)
+
(
ω4

4

(
I11

J11
− µ

K22

)2

+ω2κµ

I11

)1/2

. (6.34)

If I11ω
2 = κK22, then replace (6.19) and (6.21) by

r̃d2 = Bλ
5 cos

(
α3s
)
+Bλ

6 sin
(
α3s
)
+Bλ

7 ,

ãd1 =
ω2µ−K22α

2
3

K22α3

(
Bλ

5 sin
(
α3s
)−Bλ

6 cos
(
α3s
))

+
Bλ

7ω
2µ

K22
s+Bλ

8 .
(6.35)

It follows that the solution on each line in the net is determined by
twelve coefficients {Bλ

1 , . . . ,B
λ
12} giving a total of 12Nlines coefficients to

be fixed for each mode. Let node ν have Nν
lines lines attached to it. The

continuity of â at ν will give 3(Nν
lines − 1) linear equations. Equation (4.2)

becomes

r̃eλ(ν) = r̃e(ν) + ãe(ν)× ξd(ν,λ) (6.36)

and writing it in the form

r̃eλ1
(ν)− r̃eλ2

(ν) = ãe(ν)× (ξd(ν,λ1
)− ξd

(
ν,λ2

))
(6.37)

gives rise to a further 3(Nν
lines − 1) linear equations. The dynamic equa-

tions (4.3) and (4.4) become

ω2Mν

(
r̃eλ1

− ãe × ξd
(
ν,λ1

))
+
∑
λ

Ω(ν,λ)Ke
λ

(
r̃e′λ − ãe × ceλ3

)
= 0

ω2Ieν
(
ãe
)
+
∑
λ

Ω(ν,λ)
(
Jeλ
(
ãe′λ
)
+κξd

(
ν,λ1

)×Ke
λ

(
r̃e′λ − ãe × ceλ3

))
= 0

(6.38)

and will give a further two vector equations. Thus each node will specify
6Nν

lines equations. It is easy to show that
∑

νN
ν
lines = 2Nlines, hence in total

there are 12Nlines linear equations in 12Nlines unknowns. These can be
written as the matrix equation

M(ω)B = 0, (6.39)

where M(ω) is a 12Nlines × 12Nlines matrix and B is a 12Nlines column
vector containing the unknown coefficients.
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Clearly, if M(ω) is invertible, then B = 0. The (eigen) solutions follow
from solutions of detM(ω) = 0 with corresponding eigenvectors giving
the associated mode shapes.

As stated in the introduction, these equations have been encoded into
a Maple computer program LINCOSS [11] which can be used to esti-
mate the mode spectrum and associated eigenmodes of (in principle ar-
bitrary) Cosserat nets containing rigid extended structures.

7. Rigid bodies as limits of Cosserat elements

In this section, we show that, by letting the Young and shear moduli
E,G→∞ of a Kirchhoff-Cosserat element, element becomes a rigid body.
Then the element and the two nodes it connects can be replaced by a
single extended node, thereby generating a new contracted Cosserat net.

Theorem 7.1. Let line λc connect the distinct nodes νa and νb in the net Y.
Let the Cosserat element represented by the line λc have Kirchhoff constitutive
relations, and let E,G→∞. If the total energy of any solution of the Cosserat
equations is to remain finite in this limit, then this Cosserat element becomes a
rigid body. A new contracted net Ỹ exists, obtained by collapsing the nodes νa
and νb and the line λc into a single node νc, such that the junction conditions
(2.24), (4.2), (4.3), and (4.4) at νc are satisfied.

Proof. Let sc be the coordinate running along the line λc which takes
values sa ≤ sc ≤ sb. Let the endpoints of line λc be at νa and νb where the
orientation points form νa to νb.
Configuration space. We construct the new net Ỹ as follows: the nodes
of Ỹ consist of all the nodes of Y excluding {νa,νb} and including νc.
That is, N(Y ′) = {νc}∪N(Y)− {νa,νb}. The lines of Ỹ are all the lines in Y
excluding λc, that is, L(Y ′) =L(Y)− {λc}. If ν is a node in Y not equal to
νa and νb, then it has the same connections in Ỹ. If λ is connected to νa
or νb in Y, then λ is connected to νc in Ỹ. See Figure 7.1.

The configuration of the new Cosserat net is encoded into the maps

r̃ : R×Y �−→ R
3, D̃ : R×Y �−→ SO(3),

r̃ : (t,s) �−→ r(t,s), D̃ : (t,s) �−→ D̃(t,s).
(7.1)

So we have not yet chosen a reference configuration. If s is on a line other
than λc or at a node other than νa or νb, then we define

r̃(t,s) = r(t,s), D̃(t,s) = D(t,s). (7.2)
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Line λ5
Line λ4

Line λ7
Line λ6

Line λ3
r(t, νb)

r̃(t, νc)
O

r(t, νa)

Line λ2

ξ(t, νa, λ2)ξ(t, νa, λ1)

Line λ1

ξ̃(t, νc, λ1)
ξ(t, νa, λc)

R(t, νa)
Rλc

(t, νa)

R(t, sc)

r̃, D̃

r,D

ν2
λ2

λ1
ν1

ν3 = νa
λ3 = λc

ν4 = νb

λ5
λ4

λ7
λ6ν6 ν7

ν8

ν5

Y

ν2ν1
λ1

λ2

ν9 = νc

λ5

ν8

λ7

λ6ν6 ν7

ν5

λ4
Ỹ

Figure 7.1. A Cosserat net with a rigid element at λ3 = λc. Two al-
ternative nets are shown: Y (where the element is considered at the
image of the line λ3) and the contacted net Ỹ (where the element and
the rigid bodies at nodes νa and νb are replaced by a single rigid body
at νc). The dashed line represents the domain of an equivalent rigid
body at νc.

For the new node νc ∈ Ỹ, then r̃(t,νc) will be the position of the centroid
of the rigid body combining νa, νb, and the line λc. We will be free to
choose D̃(t,νc).
Energy considerations. The energy of this Cosserat element is defined by

E =
∫sb

sa

(
1
2
µṙ · ṙ + 1

2
κ−1w · I(w) +

1
2
(
r ′ −d3

) ·K(r ′ −d3

)
+

1
2
(
uD −u0

) · J(uD −u0

)
+ϕ(r,D̃)

)
dtdsc.

(7.3)

As E,G→∞, then the scaling parameters RK,RJ →∞. It is easy to see,
by looking at (3.23), that the diagonal components of Kd and the diago-
nalized Jd, all become infinite. This is true even if χ→ 0 since, for exam-
ple, Kd

11 = χRK =GA/E0A0 →∞. By looking at the hyperelastic potential
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terms above, in order for E to remain bounded, it requires

uD −u0 = 0, r ′ −d3 = 0 (7.4)

in the limit. The requirement νa �= νb means that both ends of the Cosserat
element not to terminate on the rigid body so there are solutions in which
(7.4) hold.
Proof of discontinuity equation for D̃. Let C be a reference configuration
on Y which restricted to λc obeys C′ = CΛ(ud

0 ), with Cλc(νa) = X(νa,λc).
From (2.30), it follows that C(νa) = 13. From (7.4), we have uA(sc) = 0
and hence A is constant along λc. Thus write Ac(t) = A(t,sc). From the
continuity of A, Ac(t) = A(t,νa) = A(t,νb). Now, D(t,νa) = Ac(t)C(νa), so

Dλc

(
t,νa
)TDλc

(
t,νb
)
= Cλc

(
νa
)TCλc

(
νb
)
= Z, (7.5)

where we observe that the matrix Z depends only on the function ud
0 (sc)

that is independent of the choice of C. Thus

Dλc

(
t,νb
)
= Dλc

(
t,νa
)
X
(
νa,λc

)
ZX
(
νb,λc

)T
. (7.6)

We choose D̃(t,νc) = D(t,νa) then if λ is a line connected to νc,

X̃
(
λ,νc

)
=

{
X
(
λ,νa

)
if λ is connected to νa in Y,

X
(
λc,νa

)
ZX
(
λc,νb

)TX
(
λ,νb

)
if λ is connected to νb in Y.

(7.7)

Thus (2.24) follows for the contracted net Ỹ.
Proof of discontinuity equation in r̃. Let r̃(t,νc) be the centroid of the line
λc and the masses at the endpoints νa and νb. This is given by

M̃νc r̃
(
t,νc
)
=Mνar

(
t,νa
)
+Mνbr

(
t,νb
)
+
∫sb

sa
µ
(
sc
)
r
(
t,sc
)
dsc, (7.8)

where

M̃νc =Mνa +Mνb +
∫sb

sa
µ
(
sc
)
dsc (7.9)

is the mass of the new node νc.
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We can integrate r ′ = d3 to give

reλc
(
t,sc
)
= Ac(t)

∫sc

sa
c3
(
s′c
)
ds′c + reλc

(
t,sa
)
, (7.10)

where c3(sc) = C(sc)e3. Then

re
(
t,νa
)
= −Ac(t)C

(
νa
)
ξd
(
νa,λc

)
+ reλc

(
t,sa
)
,

re
(
t,νb
)
= −Ac(t)C

(
νb
)
ξd
(
νb,λc

)
+
∫sb

sa
c3
(
s′c
)
ds′c + reλc

(
t,sa
)
.

(7.11)

Substituting these into (7.8) and dividing by M̃νc gives

r̃
(
t,νc
)
= Ac(t)

1
M̃νc

(
−MνaC

(
νa
)
ξd
(
νa,λc

)

+Mνb

(
− ξdC

(
νb
)(
νb,λc

)
+
∫sb

sa
c3
(
s′c
)
ds′c

)

+
∫ sb

sa
µ
(
sc
)∫sc

sa
c3
(
s′c
)
ds′cdsc

)
+ reλc

(
t,sa
)
.

(7.12)

Substituting into (7.10) gives

reλc
(
t,sc
)
= Ac(t)Rd

λc

(
sc
)
+ r̃e
(
t,νc
)
, (7.13)

where

Rd
λc

(
sc
)
=
∫sc

sa
c3
(
s′c
)
ds′c

+
1

M̃νc

(
−MνaC

(
νa
)
ξd
(
νa,λc

)

+Mνb

(
−C
(
νb
)
ξd
(
νb,λc

)
+
∫ sb

sa
c3
(
s′c
)
ds′c

)

+
∫ sb

sa
µ
(
s′c
)∫ s′c

sa
c3
(
s′′c
)
ds′′cds

′
c

)
.

(7.14)

Since Rd
λc
(sc) is independent of t, it defines a point on a rigid body with

body frame {dj}. Writing Rd
λc
(s) = Rd

λc
(sc), we extend the definition of Rd

to a function on the subnet of Y given by νa, νb, and λc, where sc is the
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coordinate of the point s, so that Rd
λc
(νa) = Rd

λc
(sa) and Rd

λc
(νb) = Rd

λc
(sb).

Further, define

Rd(s) =




Rd
λc
(s) if s is an interior point in λc,

Rd
λc

(
νa
)−C

(
νa
)
ξd
(
νa,λc

)
if s = νa,

Rd
λc

(
νb
)−C

(
νb
)
ξd
(
νb,λc

)
if s = νb,

(7.15)

so Rd(νa) is the centroid of the rigid body at νa with respect to the cen-
troid of the combined body. As before, define the column vector and
vector

Re(t,s) = Ac(t)Rd(s), R(t,s) = Re(t,s) · ejej . (7.16)

Thus r̃ obeys the discontinuity condition (4.2) at νc with

ξ̃
d(
νc,λ

)
=

{
Rd
(
νa
)
+ ξd
(
νa,λ

)
if λ is connected to νa in Y,

Rd
(
νb
)
+ ξd
(
νb,λ

)
if λ is connected to νb in Y.

(7.17)

Proof of ¨̃r equation. For the rest of this proof, we drop the explicit t in all
arguments. Although the entries in Kd and Jd are infinite, the limits nd =
Kd(vd − e3) and md = Jd(ud

D − u0) are well defined and not necessarily
zero. Differentiating (7.8) twice with respect to t gives

∫sb

sa
µr̈ dsc = M̃νc

¨̃r
(
νc
)−Mνar̈

(
νa
)−Mνb r̈

(
νb
)

=
∫sb

sa

(
n′ + f

(
t,sc
))
dsc

= nλc

(
νb
)−nλc

(
νa
)
+ F̃νc

−Fνa
−Fνb

,

(7.18)

where F̃νc
(t) =

∫
f(t,sc)dsc +Fνa

+Fνb
is the total force along the element

and at its endpoints. The junction equations for r̈ (4.3) may be written as

Mνar̈
(
νa
)
= Fνa

−
∑
λ �=λc

Ω
(
νa,λ

)
nλ

(
t,νa
)
+nλc

(
t,νa
)
,

Mνb r̈
(
νb
)
= Fνb

−
∑
λ �=λc

Ω
(
νb,λ

)
nλ

(
t,νb
)−nλc

(
t,νb
)
.

(7.19)
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Adding these together gives

M̃νc
¨̃r
(
νc
)
= F̃νc

−
∑
λ �=λc

Ω
(
νa,λ

)
nλ

(
t,νa
)−∑

λ �=λc
Ω
(
νb,λ

)
nλ

(
t,νb
)
, (7.20)

the extended rigid node equation (4.3) for node νc in the configuration
space Ỹ.
Proof of Ĩνc(w̃)· equation. Let Ĩνc be the total moment of inertia of the ele-
ment about its centroid, given in the director frame by

Ĩdνc =
∫sb

sa

(
Id
(
sc
)
+κµ

(
sc
)
M
(
Rd(sc)))dsc

+ Idνa +κMνaM
(
Rd(νa))+ Idνb +κMνbM

(
Rd(νb)),

(7.21)

where M(x) is the matrix M(x) = ‖x‖13 − xxT so that M(x)y = x× (y× x).
Similarly, define the

(1
1

)
tensor M(x). In order to integrate (3.3), we need

the following:

∫sb

sa
r ′ ×ndsc =

∫sb

sa
R′ ×ndsc = [R×n]s

b

sa −
∫sb

sa
R×n′dsc

= Rλc

(
νb
)×nλc

(
νb
)−Rλc

(
νa
)

×nλc

(
νa
)−∫sb

sa
R× (µr̈ − f)dsc.

(7.22)

In the last term,
∫sb
sa R× f dsc contributes to the overall torque L̃νc

. Whilst

−
∫sb

sa
µR
(
sc
)× r̈

(
sc
)
dsc

= −
∫sb

sa
µR
(
sc
)× R̈

(
sc
)
dsc −

∫sb

sa
µR
(
sc
)× ¨̃r

(
νc
)
dsc

= −
∫sb

sa
µ
(
M
(
R
(
sc
))
w̃
)·
dsc −

(∫ sb

sa
µR
(
sc
)
dsc

)
× ¨̃r
(
νc
)
,

(7.23)
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since R× R̈ = (R× Ṙ)· = (R× (w̃ ×R))· = (M(R)w̃)· and

Ṙe(t,s) = Ȧc(t)Rd(s) =Λ
(
w̃e(t)

)
Ac(t)Rd(s) = w̃e(t)×Re(t,s). (7.24)

Now,

−
(∫sb

sa
µR
(
sc
)
dsc

)
× ¨̃r
(
νc
)

=
(
MνaR

(
νa
)
+MνbR

(
νb
))× ¨̃r

(
νc
)

=MνaR
(
νa
)× r̈

(
νa
)−MνaR

(
νa
)× R̈

(
νa
)

+MνbR
(
νb
)× r̈

(
νb
)−MνbR

(
νb
)× R̈

(
νb
)

= −Mνa

(
M
(
R
(
νa
))
w̃
)· −Mνb

(
M
(
R
(
νb
))
w̃
)·

+R
(
νa
)×F

(
νa
)−R(νa)×∑

λ

Ω
(
νa,λ

)
nλ

(
t,νa
)

+R
(
νb
)×F

(
νb
)−R(νb)×∑

λ

Ω
(
νb,λ

)
nλ

(
t,νb
)
.

(7.25)

Hence,

∫sb

sa
r ′ ×ndsc

= −
∫sb

sa
µ
(
M
(
R
)
w̃
)·
dsc −Mνa

(
M
(
R
(
νa
))
w̃
)· −Mνb

(
M
(
R
(
νb
))
w̃
)·

+
∫sb

sa
R× f dsc +R

(
νa
)×F

(
νa
)
+R
(
νb
)×F

(
νb
)

+R
(
νa
)×∑

λ �=λc
Ω
(
νa,λ

)
nλ

(
t,νa
)
+R
(
νb
)×∑

λ �=λc
Ω
(
νb,λ

)
nλ

(
t,νb
)
.

(7.26)

Integrating (3.3) along the element gives

(∫ sb

sa
I
(
sc
)
w̃dsc

)·
=
∫ sb

sa
(m′ +κr ′ ×n+ l)dsc

=mλc

(
νb
)−mλc

(
νa
)
+κ

∫ sb

sa
r ′ ×ndsc +

∫sb

sa
ldsc.

(7.27)
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The two junction conditions (4.4) may be written as

(
Iνaw̃

)· = L
(
νa
)−∑

λ �=λc
Ω
(
νa,λ

)(
mλ

(
νa
)
+κξ
(
νa,λ

)×nλ

(
νa
))

+mλc

(
νa
)
+κξ
(
νa,λc

)×nλc

(
νa
)
,

(
Iνaw̃

)· = L
(
νb
)−∑

λ �=λc
Ω
(
νb,λ

)(
mλ

(
νb
)
+κξ
(
νb,λ

)×nλ

(
νb
))

−mλc

(
νb
)−κξ

(
νb,λc

)×nλc

(
νb
)
.

(7.28)

Adding all three equations together gives

(
Ĩνcw̃

)· = L
(
νa
)
+L
(
νb
)
+
∫ sb

sa
ldsc

+κ

∫ sb

sa
R× f dsc +κR

(
νa
)×F

(
νa
)
+κR

(
νb
)×F

(
νb
)

+
∑
λ �=λc

Ω
(
νa,λ

)
mλ

(
νa
)
+
∑
λ �=λc

Ω
(
νb,λ

)
mλ

(
νb
)

+κ
∑
λ �=λc

Ω
(
νa,λ

)
ξ
(
νa,λ

)×nλ

(
νa
)

+κR
(
νa
)×∑

λ �=λc
Ω
(
νa,λ

)
nλ

(
t,νa
)

+κ
∑
λ �=λc

Ω
(
νb,λ

)
ξ
(
νb,λ

)×nλ

(
νb
)

+κR
(
νb
)×∑

λ �=λc
Ω
(
νb,λ

)
nλ

(
t,νb
)

= L̃νc
+
∑
λ �=λc

Ω
(
νa,λ

)
mλ

(
νa
)
+
∑
λ �=λc

Ω
(
νb,λ

)
mλ

(
νb
)

+κ
∑
λ �=λc

Ω
(
νa,λ

)
ξ̃
(
νc,λ

)×nλ

(
νa
)

+κ
∑
λ �=λc

Ω
(
νb,λ

)
ξ̃
(
νb,λ

)×nλ

(
νb
)
,

(7.29)

where L̃νc
is the total torque about the centroid. Hence, (4.4) is satisfied

for νc in Ỹ.
�
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8. Conclusion and discussion

In this paper we have formulated the dynamics of a collection of con-
nected simple 1-dimensional Cosserat structures and rigid bodies in
terms of sections of an SO(3) fibration over a 1-dimensional net. The
junction conditions considered have been restricted to maintain certain
rigidity constraints throughout the dynamic evolution of the Cosserat
net. The equations of motion and junction conditions have been derived
as extrema of a constrained variational principle on the net. The exis-
tence of such an action makes possible approximation schemes for the
determination of the dynamic history of the net given initial conditions,
constitutive data for the members of the net, and the applied external
forces and torques. For perturbations about a stress-free configuration of
a Kirchhoff-Cosserat net, we have outlined a normal mode analysis for
such a history. Limits have been discussed that effect transformations of
Cosserat elements to rigid bodies thereby contracting the Cosserat net.

Although the class of junction considered explicitly here is large, there
is a host of generalisations that can be accommodated within this frame-
work. One may relax certain of the rigidity conditions at various junc-
tions and consider frictional forces and torques where sliding is permit-
ted. Thus one might consider junctions with a universal joint with or
without friction or restoring torques. These could be analysed by allow-
ing A to be discontinuous at such nodes with restoring torques depen-
dent of Aλ(t,ν)A(t,ν)T . (In this paper, this is the identity matrix at each
node corresponding to the prohibition of angular motion at the junc-
tion.) Alternatively, constrained rotary motion at a junction can be con-
sidered by restricting the angular freedom of the direction of contact,
that is, Aλ(t,ν)A(t,ν)T is restricted to some subset of SO(3).

Another generalisation would be to consider the dynamics of nets
with mobile nodes. Examples include the motion of a ring on a wire,
a wire sliding over a fixed or moving point in space, or two wires in
intermittent contact. These and other applications of the Cosserat net
description of connected slender structures will be discussed elsewhere.
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