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The purpose of this paper is to present an algorithm for evaluating Han-
kel transform of the null and the first kind. The result is the exact an-
alytical representation as the series of the Bessel and Struve functions
multiplied by the wavelet coefficients of the input function. Numerical
evaluation of the test function with known analytical Hankel transform
illustrates the proposed algorithm.

The Hankel transform is a very useful instrument in a wide range of
physical problems which have an axial symmetry [5]. The influence of
the Laplacian on a function in a cylindrical coordinates is equal to the
product of the squared parameter of the transformation and the trans-
form of the function
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The Hankel transforms of the null (n = 0) and the first (n = 1) kind are
represented as

Fn(p) =
∫∞

0
f(r)Jn(pr)r dr,

fn(p) =
∫∞

0
F(p)Jn(pr)pdp.

(2)
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Besides, those integrals like (2) are connected with the problems of
geophysics and cosmology, for example, [6, 8].

However, practical calculation of direct and inverse Hankel transform
is connected with two problems. The first problem is based on the fact
that not every transform in the real physical situation has analytical ex-
pression for result of inverse Hankel transform. The second one is the
determination of functions as a set of their values for numerical calcula-
tions. Large bibliography on those issues can be found in [4]. The clas-
sical trapezoidal rule, Cotes rule, and other rules connected with the re-
placement of integrand by sequence of polynoms have high accuracy if
integrand is a smooth function. But f(r)Jn(pr)r (or Fp(p)Jn(pr)p) is a
quick oscillating function if r (or p) is large. There are two general meth-
ods of the effective calculation in this area. The first is the fast Hankel
transform [7]. The specification of that method is transforming the func-
tion to the logarithmical space and fast Fourier transform in that space.
This method needs a smoothing of the function in logs pace. The sec-
ond method is based on the separation of the integrand into product of
slowly varying component and a rapidly oscillating Bessel function [2].
But it needs the smoothness of the slow component for its approximation
by low-order polynoms.

The goal of this paper is to apply wavelet transform with Haar bases
to (2).

The both direct and inverse transforms (2) are symmetric. Consider
only one of them, for example, direct transform. Denote f(r)r as g(r).
Then, the Hankel transform is

F0,1(pr) =
∫∞

0
g(r)J0,1(pr)dr. (3)

The expansion g(r) ∈ L2(R) into wavelet series with the Haar bases is
(see [3])

g(r) =
∞∑
k=0

c0kϕk(r) +
∞∑
j=0

∞∑
k=0

djkψjk(r), (4)

ϕH0k(r) = ϕ
H(r − k), ψHjk(r) = 2j/2ψH

(
2j/2r − k), (5)
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After substituting (4) into (3), one has

F0,1(p) =
∞∑
k=0

c0k

∫∞
0
ϕk(r)J0,1(pr)dr

+
∞∑
j=0

∞∑
k=0

djk

∫∞
0
ψjk(x)J0,1(pr)dr.

(7)

Making use of integrals of [1], we have, as a result,
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(8)

F1(p) =
1
p

{∑
k∈Z
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[
J0(pk)− J0
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+
∞∑
j=0
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k∈Z
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)
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(
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)− J0
(
pk2−j

)]}
,

(9)

where D(ξ) =H0(ξ)J1(ξ)−H1(ξ)J0(ξ) and H0,1 is a Struve function of the
null and the first kind.

The most sufficient result is that (8) and (9) are exact. They can be
used in any analytical expressions. Especially it is useful for Hankel
transform of the first kind because (9) contains only a combination of
Bessel functions, and one can use their properties such as orthogonality,
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known locality of the zeros, and extremums. The coefficients c0k means
average value of g(r) at the range [k,k + 1] is

c0k =
∫k+1

k

g(r)dr. (10)

The detail coefficients are

djk = 2j/2

{∫2−j (k+1/2)

2−j k
g(r)dr −

∫2−j (k+1)

2−j (k+1/2)
g(r)dr

}
. (11)

Formulas (8) and (9) allow us to get a full analytical solution if the
integrals above have close form solution. In the opposite case, the solu-
tion must be numerical but this method provides an effective algorithm
for that. It is obvious that djk decrease very quickly if g(r) is a smooth
function. One can practically use djk > ε, where ε is small. The largest
detail coefficients are concentrated around steps, sharp vertices, and dis-
continues of g(r); and one can appropriate that they are equal to zero in
other areas.

Consider, for example, a function with known analytical Hankel trans-
form ∫∞

0
e−a

2r2
rJ1(pr)r dr =

p

4a4
e−p

2/4a2
. (12)

The approximation and detail coefficients may be calculated analytically
in a closed form

c0k =
√
π erf(r)− 2are−a

2r2

4a3

∣∣∣∣
(k+1)

k

,

djk = 2j/2
√
π erf(r)− 2are−a

2r2

4a3

∣∣∣∣
2−j (k+1/2)

2−j k

− 2j/2
√
π erf(r)− 2are−a

2r2

4a3

∣∣∣∣
2−j (k+1)

2−j (k+1/2)
.

(13)

Thus (9), with the coefficients (13), is the exact representation of the
Hankel transform. Consider the approximate solution. Suppose that the
function (12) is known only in the segment [0,h]. Then there is the series,
instead of (4),

g(r) = c0kϕ0(r) +
J∑
j=0

2J−1∑
k=0

djkψjk(r). (14)
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Figure 1. (a) Original function and (b) Hankel transform.

If J →∞, then (14) is exact for this truncated function. In practice,
one uses only small J , up to 3–4. For example, we can see the original
function (12) (the replacement r to x = r/h is used) and the transform
in Figure 1. One can see that the exact transform (solid line) and the
transform at level J = 3 (dotted line) coincide in this figure. The abso-
lute errors between the exact transform and the approximate transform
at the levels J = 2 (solid line), J = 3 (dashed line), and J = 4 (dotted line)
are represented in Figure 2a. It is oblivious that the error is small in com-
parison with the values of the F1(p). The absolute error at the level J = 3
in a wide range of p is plotted in Figure 2a. One can see that this error
has quasiperiodic oscillations because the function is truncated. But they
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Figure 2. Transform’s error.

decrease with the growth of p (and J) when oscillations in classical fast
Hankel transform [6] increase.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, National Bureau of Standards
Applied Mathematics Series, vol. 55, U.S. Government Printing Office,
Washington, D.C., 1964.



E. B. Postnikov 325

[2] R. Barakat and E. Parshall, Numerical evaluation of the zero-order Hankel trans-
form using Filon quadrature philosophy, Appl. Math. Lett. 9 (1996), no. 5,
21–26.

[3] C. K. Chui, An Introduction to Wavelets, Wavelet Analysis and Its Applica-
tions, vol. 1, Academic Press, Massachusetts, 1992.

[4] D. W. Lozier and F. W. J. Olver, Numerical evaluation of special functions, Math-
ematics of Computation 1943–1993: A Half-Century of Computational
Mathematics (Vancouver, BC, 1993) (W. Gautschi, ed.), Proc. Sympos.
Appl. Math., vol. 48, American Mathematical Society, Rhode Island, 1994,
pp. 79–125.

[5] J. Mathews and R. L. Walker, Mathematical Methods of Physics, W. A. Benjamin,
New York, 1964.

[6] Hamilton A. J. S., Uncorrelated modes of the nonlinear power spectrum, Monthly
Notices Roy. Astronom. Soc. (2000), no. 312, 257–284.

[7] A. E. Siegman, Quasi fast Hankel transform, Optics Lett. 1 (1977), 13–15.
[8] J. Zhao, W. W. M. Dai, S. Kapur, and D. E. Long, Efficient three-dimensional ex-

traction based on static and full-wave layered Green’s functions, Proceedings of
the 35th Conference on Design Automation (San Francisco, Calif, 1998),
ACM Press, New York, 1998, pp. 224–229.

E. B. Postnikov: Theoretical Physics Department, Kursk State Pedagogical Uni-
versity, Radischeva st. 33, Kursk 305000, Russia

E-mail address: postnicov@mail.ru

mailto:postnicov@mail.ru

