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A comprehensive treatment of Rayleigh-Schrödinger perturbation the-
ory for the symmetric matrix eigenvalue problem is furnished with em-
phasis on the degenerate problem. The treatment is simply based upon
the Moore-Penrose pseudoinverse thus distinguishing it from alternative
approaches in the literature. In addition to providing a concise matrix-
theoretic formulation of this procedure, it also provides for the explicit
determination of that stage of the algorithm where each higher-order
eigenvector correction becomes fully determined. The theory is built up
gradually with each successive stage appended with an illustrative ex-
ample.

1. Introduction

In Rayleigh’s investigation of vibrating strings with mild longitudinal
density variation [9], a perturbation procedure was developed based
upon the known analytical solution for a string of constant density. This
technique was subsequently refined by Schrödinger [11] and applied
to problems in quantum mechanics where it has become a mainstay of
mathematical physics.

Mathematically, we have a discretized Laplacian-type operator em-
bodied in a real symmetric matrix A0, which is subjected to a small sym-
metric linear perturbation A =A0 + εA1, due to some physical inhomo-
geneity. The Rayleigh-Schrödinger procedure produces approximations
to the eigenvalues and eigenvectors of A by a sequence of successively
higher-order corrections to the eigenvalues and eigenvectors of A0.
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The difficulty with standard treatments of this procedure [1] is that
the eigenvector corrections are expressed in a form requiring the com-
plete collection of eigenvectors of A0. For large matrices, this is clearly
an undesirable state of affairs. Consideration of the thorny issue of mul-
tiple eigenvalues of A0 [4] only serves to exacerbate this difficulty.

This malady can be remedied by expressing the Rayleigh-Schrödinger
procedure in terms of the Moore-Penrose pseudoinverse [12]. This per-
mits these corrections to be computed knowing only the eigenvectors of
A0 corresponding to the eigenvalues of interest. In point of fact, the pseu-
doinverse need not be explicitly calculated since only pseudoinverse-
vector products are required. In turn, these may be efficiently calculated
by a combination of LU-factorization and orthogonal projections. How-
ever, the formalism of the pseudoinverse provides a concise formulation
of the procedure and permits ready analysis of theoretical properties of
the algorithm.

Since the present paper is only concerned with real symmetric ma-
trices, the existence of a complete set of orthonormal eigenvectors is as-
sured [5, 8, 13]. The much more difficult case for defective matrices has
been considered elsewhere [7]. Moreover, we only consider the compu-
tational aspects of this procedure. Existence of the relevant perturbation
expansions has been rigorously established in [3, 6, 10].

2. Nondegenerate case

Consider the eigenvalue problem

Axi = λixi (i = 1, . . . ,n), (2.1)

where A is a real, symmetric, n × n matrix with distinct eigenvalues λi
(i = 1, . . . ,n) and, consequently, orthogonal eigenvectors xi (i = 1, . . . ,n).
Furthermore,

A(ε) =A0 + εA1, (2.2)

where A0 is likewise real and symmetric but may possess multiple eigen-
values (called degeneracies in the physics literature). Any attempt to
drop the assumption on the eigenstructure of A leads to a Rayleigh-
Schrödinger iteration that never terminates [3, page 92]. In this section,
we consider the nondegenerate case where the unperturbed eigenvalues
λ
(0)
i (i = 1, . . . ,n) are all distinct. Consideration of the degenerate case is

deferred to the next section.
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Under these assumptions, it is shown in [3, 6, 10] that the eigenvalues
and eigenvectors of A possess the respective perturbation expansions

λi(ε) =
∞∑
k=0

εkλ
(k)
i , xi(ε) =

∞∑
k=0

εkx
(k)
i (i = 1, . . . ,n) (2.3)

for sufficiently small ε. Clearly, the zeroth-order terms {λ(0)i ;x(0)
i } (i =

1, . . . ,n) are the eigenpairs of the unperturbed matrix A0. That is,

(
A0 −λ(0)i I

)
x
(0)
i = 0 (i = 1, . . . ,n). (2.4)

The unperturbed mutually orthogonal eigenvectors x
(0)
i (i = 1, . . . ,n) are

assumed to have been normalized to unity.
Substitution of (2.2) and (2.3) into (2.1) yields the recurrence relation

(
A0 −λ(0)i I

)
x
(k)
i = −(A1 −λ(1)i I

)
x
(k−1)
i

+
k−2∑
j=0

λ
(k−j)
i x

(j)
i (k = 1, . . . ,∞; i = 1, . . . ,n).

(2.5)

For fixed i, solvability of (2.5) requires that its right-hand side be or-
thogonal to {x(0)

l
}n
l=1 for all k. Thus, the value of x(j)

i determines λ
(j+1)
i .

Specifically,

λ
(j+1)
i =

〈
x
(0)
i ,A1x

(j)
i

〉
, (2.6)

where we have employed the so-called intermediate normalization that x(k)
i

will be chosen to be orthogonal to x
(0)
i for k = 1, . . . ,∞. This is equivalent

to 〈x(0)
i ,xi(ε)〉 = 1 and this normalization will be used throughout the

remainder of this paper.
A beautiful result due to Dalgarno and Stewart [2], sometimes incor-

rectly attributed to Wigner in the physics literature, says that much more
is true: the value of the eigenvector correction x

(j)
i , in fact, determines the

eigenvalues through λ
(2j+1)
i . Within the present framework, this may be

established by the following constructive procedure which heavily ex-
ploits the symmetry of A0 and A1.
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We commence by observing that

λ
(k)
i =

〈
x
(0)
i ,

(
A1 −λ(1)i I

)
x
(k−1)
i

〉
=
〈
x
(k−1)
i ,

(
A1 −λ(1)i I

)
x
(0)
i

〉
= −〈x(k−1)

i ,
(
A0 −λ(0)i I

)
x
(1)
i

〉
= −〈x(1)

i ,
(
A0 −λ(0)i I

)
x
(k−1)
i

〉
=
〈
x
(1)
i ,

(
A1 −λ(1)i I

)
x
(k−2)
i

〉− k−1∑
l=2

λ
(l)
i

〈
x
(1)
i ,x

(k−1−l)
i

〉
.

(2.7)

Continuing in this fashion, we eventually arrive at, for even k = 2j,

λ
(2j)
i =

〈
x
(j−1)
i ,

(
A1 −λ(1)i I

)
x
(j)
i

〉− j−1∑
µ=2

λ
(µ)
i

j∑
ν=j−µ+1

〈
x
(2j−µ−ν)
i ,x

(ν)
i

〉

−
2j−2∑
µ=j

λ
(µ)
i

2j−µ−1∑
ν=1

〈
x
(2j−µ−ν)
i ,x

(ν)
i

〉
,

(2.8)

while, for odd k = 2j + 1,

λ
(2j+1)
i =

〈
x
(j)
i ,

(
A1 −λ(1)i I

)
x
(j)
i

〉− j−1∑
µ=2

λ
(µ)
i

j∑
ν=j−µ+1

〈
x
(2j−µ−ν+1)
i ,x

(ν)
i

〉

−
2j−1∑
µ=j

λ
(µ)
i

2j−µ∑
ν=1

〈
x
(2j−µ−ν+1)
i ,x

(ν)
i

〉
.

(2.9)

This important pair of equations will henceforth be referred to as the
Dalgarno-Stewart identities.

The eigenfunction corrections are determined recursively from (2.5)
as

x
(k)
i =

(
A0 −λ(0)i I

)†[− (A1 −λ(1)i I
)
x
(k−1)
i +

k−2∑
j=0

λ
(k−j)
i x

(j)
i

]

(k = 1, . . . ,∞; i = 1, . . . ,n),

(2.10)

where (A0 − λ(0)i I)† denotes the Moore-Penrose pseudoinverse [12] of
(A0 −λ(0)i I) and intermediate normalization has been employed.

Example 2.1. Define

A0 =


1 0 0

0 1 0
0 0 2


 , A1 =


1 1 1

1 1 0
1 0 0


 . (2.11)
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Using Matlab’s Symbolic Toolbox, we find that

λ1(ε) = 1− 1
2
ε2 − 1

8
ε3 +

1
4
ε4 +

25
128

ε5 + · · · ,

λ2(ε) = 1+ 2ε− 1
2
ε2 − 7

8
ε3 − 5

4
ε4 − 153

128
ε5 + · · · ,

λ3(ε) = 2+ ε2 + ε3 + ε4 + ε5 + · · · .

(2.12)

Applying the nondegenerate Rayleigh-Schrödinger procedure devel-
oped above to

λ
(0)
3 = 2, x

(0)
3 =


0

0
1


 , (2.13)

we arrive at

λ
(1)
3 =

〈
x
(0)
3 ,A1x

(0)
3

〉
= 0. (2.14)

Solving

(
A0 −λ(0)3 I

)
x
(1)
3 = −(A1 −λ(1)3 I

)
x
(0)
3 (2.15)

produces

x
(1)
3 =


1

0
0


 . (2.16)

In turn, this produces

λ
(2)
3 =

〈
x
(0)
3 ,A1x

(1)
3

〉
= 1, (2.17)

while the Dalgarno-Stewart identities yield

λ
(3)
3 =

〈
x
(1)
3 ,

(
A1 −λ(1)3 I

)
x
(1)
3

〉
= 1. (2.18)

Solving

(
A0 −λ(0)3 I

)
x
(2)
3 = −(A1 −λ(1)3 I

)
x
(1)
3 +λ

(2)
3 x

(0)
3 (2.19)
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produces

x
(2)
3 =


1

1
0


 . (2.20)

Again, the Dalgarno-Stewart identities yield

λ
(4)
3 =

〈
x
(1)
3 ,

(
A1 −λ(1)3 I

)
x
(2)
3

〉−λ(2)3

〈
x
(1)
3 ,x

(1)
3

〉
= 1,

λ
(5)
3 =

〈
x
(2)
3 ,

(
A1 −λ(1)3 I

)
x
(2)
3

〉− 2λ(2)3

〈
x
(2)
3 ,x

(1)
3

〉−λ(3)3

〈
x
(1)
3 ,x

(1)
3

〉
= 1.

(2.21)

3. Degenerate case

When A0 possesses multiple eigenvalues (the so-called degenerate case),
the above straightforward analysis for the nondegenerate case encoun-
ters serious complications. This is a consequence of the fact that, in this
new case, Rellich’s theorem [10, pages 42–45] guarantees the existence of
the perturbation expansions (2.3) only for certain special unperturbed
eigenvectors. These special unperturbed eigenvectors cannot be speci-
fied a priori but must instead emerge from the perturbation procedure
itself.

Furthermore, the higher-order corrections to these special unperturbed
eigenvectors are more stringently constrained than previously since they
must be chosen so that (2.5) is always solvable. That is, they must be cho-
sen so that the right-hand side of (2.5) is always orthogonal to the entire
eigenspace associated with the multiple eigenvalue in question.

Thus, without any loss of generality, suppose that λ
(0)
1 = λ

(0)
2 = · · · =

λ
(0)
m = λ(0) is just such an eigenvalue of multiplicity m with corresponding

known orthonormal eigenvectors x(0)
1 ,x

(0)
2 , . . . ,x

(0)
m . Then, we are required

to determine appropriate linear combinations

y
(0)
i = a

(i)
1 x

(0)
1 +a

(i)
2 x

(0)
2 + · · ·+a

(i)
m x

(0)
m (i = 1, . . . ,m) (3.1)

so that the expansions (2.3) are valid with x
(k)
i replaced by y

(k)
i . In point

of fact, the remainder of this paper will assume that xi has been replaced
by yi in (2.3)–(2.10). Moreover, the higher-order eigenvector corrections
y
(k)
i must be suitably determined. Since we would like {y(0)

i }mi=1 to be
likewise orthonormal, we require that

a
(µ)
1 a

(ν)
1 +a

(µ)
2 a

(ν)
2 + · · ·+a

(µ)
m a

(ν)
m = δµ,ν. (3.2)
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Recall that we have assumed throughout that the perturbed matrix
A(ε) itself has distinct eigenvalues, so that eventually all such degenera-
cies will be fully resolved. What significantly complicates matters is that
it is not known beforehand at what stages portions of the degeneracy
will be resolved.

In order to bring order to a potentially calamitous situation, we will
first begin by considering the case where the degeneracy is fully resolved
at first order. Only then do we move on to study the case where the
degeneracy is completely and simultaneously resolved at second order.
This will pave the way for the treatment of Nth order degeneracy reso-
lution. Finally, we will have laid sufficient groundwork to permit treat-
ment of the most general case of mixed degeneracy where resolution
occurs across several different orders. Each stage in this process will be
concluded with an illustrative example. This seems preferable to pre-
senting an impenetrable collection of opaque formulae.

3.1. First-order degeneracy

We first dispense with the case of first-order degeneracy wherein λ
(1)
i

(i = 1, . . . ,m) are all distinct. In this event, we determine {λ(1)i ;y(0)
i }mi=1 by

insisting that (2.5) be solvable for k = 1 and i = 1, . . . ,m. In order for this
to obtain, it is both necessary and sufficient that, for each fixed i,

〈
x
(0)
µ ,

(
A1 −λ(1)i I

)
y
(0)
i

〉
= 0 (µ = 1, . . . ,m). (3.3)

Inserting (3.1) and invoking the orthonormality of {x(0)
µ }mµ=1, we arrive

at, in matrix form,


〈
x
(0)
1 ,A1x

(0)
1

〉 · · · 〈
x
(0)
1 ,A1x

(0)
m

〉
...

. . .
...〈

x
(0)
m ,A1x

(0)
1

〉 · · · 〈
x
(0)
m ,A1x

(0)
m

〉




a
(i)
1...

a
(i)
m


 = λ

(1)
i



a
(i)
1...

a
(i)
m


 . (3.4)

Thus, each λ
(1)
i is an eigenvalue with corresponding eigenvector [a(i)

1 , . . . ,

a
(i)
m ]T of the matrix M defined by Mµ,ν = 〈x(0)

µ ,M(1)x
(0)
ν 〉 (µ,ν = 1, . . . ,m),

where M(1) :=A1.
By assumption, the symmetric matrix M has m distinct real eigen-

values and hence orthonormal eigenvectors described by (3.2). These,
in turn, may be used in concert with (3.1) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by (2.6) the identities

λ
(1)
i =

〈
y
(0)
i ,A1y

(0)
i

〉
(i = 1, . . . ,m). (3.5)
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Furthermore, the combination of (3.2) and (3.4) yields

〈
y
(0)
i ,A1y

(0)
j

〉
= 0 (i �= j). (3.6)

The remaining eigenvalue corrections λ(k)i (k ≥ 2) may be obtained from
the Dalgarno-Stewart identities.

Whenever (2.5) is solvable, we will express its solution as

y
(k)
i = ŷ

(k)
i + β

(i)
1,ky

(0)
1 + β

(i)
2,ky

(0)
2 + · · ·+ β

(i)
m,ky

(0)
m (i = 1, . . . ,m), (3.7)

where ŷ
(k)
i := (A0 − λ(0)I)†[−(A1 − λ

(1)
i I)y(k−1)

i +
∑k−2

j=0 λ
(k−j)
i y

(j)
i ] has no

components in the {y(0)
j }mj=1 directions. In the light of intermediate nor-

malization, we have β
(i)
i,k = 0 (i = 1, . . . ,m). Furthermore, β(i)j,k (i �= j) are to

be determined from the condition that (2.5) be solvable for k← k + 1 and
i = 1, . . . ,m.

Since, by design, (2.5) is solvable for k = 1, we may proceed recur-
sively. After considerable algebraic manipulation, the end result is

β
(i)
j,k

=

〈
y
(0)
j ,A1ŷ

(k)
i

〉−∑k−1
l=1 λ

(k−l+1)
i β

(i)
j,l

λ
(1)
i −λ

(1)
j

(i �= j). (3.8)

The existence of this formula guarantees that each y
(k)
i is uniquely deter-

mined by enforcing solvability of (2.5) for k← k + 1.

Example 3.1. We resume with Example 2.1 and the first-order degeneracy
between λ

(0)
1 and λ

(0)
2 . With the choice

x
(0)
1 =


1

0
0


 , x

(0)
2 =


0

1
0


 , (3.9)

we have

M =
[

1 1
1 1

]
(3.10)

with eigenpairs

λ
(1)
1 = 0,


a(1)

1

a
(1)
2


 =




1√
2

− 1√
2


 , λ

(1)
2 = 2,


a(2)

1

a
(2)
2


 =




1√
2

1√
2


 . (3.11)
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Availing ourselves of (3.1), the special unperturbed eigenvectors are now
fully determined as

y
(0)
1 =




1√
2

− 1√
2

0



, y

(0)
2 =




1√
2

1√
2

0



. (3.12)

Solving (2.5), for k = 1,

(
A0 −λ(0)I

)
y
(1)
i = −(A1 −λ(1)i I

)
y
(0)
i (i = 1,2), (3.13)

produces

y
(1)
1 =




a
a

− 1√
2


 , y

(1)
2 =




b
−b
− 1√

2


 , (3.14)

where we have invoked intermediate normalization. Observe that, un-
like the nondegenerate case, y(1)

i (i = 1,2) are not yet fully determined.
We next enforce solvability of (2.5) for k = 2:

〈
y
(0)
j ,−(A1 −λ(1)i I

)
y
(1)
i +λ

(2)
i y

(0)
i

〉
= 0 (i �= j), (3.15)

thereby producing

y
(1)
1 =




1

4
√

2
1

4
√

2

− 1√
2



, y

(1)
2 =




− 1

4
√

2
1

4
√

2

− 1√
2



. (3.16)

With y
(1)
i (i = 1,2) now fully determined, the Dalgarno-Stewart iden-

tities yield

λ
(2)
1 =

〈
y
(0)
1 ,A1y

(1)
1

〉
= −1

2
; λ

(3)
1 =

〈
y
(1)
1 ,

(
A1 −λ(1)1 I

)
y
(1)
1

〉
= −1

8
,

λ
(2)
2 =

〈
y
(0)
2 ,A1y

(1)
2

〉
= −1

2
; λ

(3)
2 =

〈
y
(1)
2 ,

(
A1 −λ(1)2 I

)
y
(1)
2

〉
= −7

8
.

(3.17)
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Solving (2.5), for k = 2,

(
A0 −λ(0)I

)
y
(2)
i = −(A1 −λ(1)i I

)
y
(1)
i +λ

(2)
i y

(0)
i (i = 1,2), (3.18)

produces

y
(2)
1 =




c
c

− 1

4
√

2


 , y

(2)
2 =




d
−d
− 7

4
√

2


 , (3.19)

where we have again invoked intermediate normalization. Once again
observe that, unlike the nondegenerate case, y(2)

i (i = 1,2) are not yet
fully determined.

We now enforce solvability of (2.5) for k = 3:

〈
y
(0)
j ,−(A1 −λ(1)i I

)
y
(2)
i +λ

(2)
i y

(1)
i +λ

(3)
i y

(0)
i

〉
= 0 (i �= j), (3.20)

thereby fully determining

y
(2)
1 =




0
0

− 1

4
√

2


 , y

(2)
2 =




− 1

2
√

2
1

2
√

2

− 7

4
√

2



. (3.21)

Subsequent application of the Dalgarno-Stewart identities yields

λ
(4)
1 =

〈
y
(1)
1 ,

(
A1 −λ(1)1 I

)
y
(2)
1

〉−λ(2)1

〈
y
(1)
1 ,y

(1)
1

〉
=

1
4
,

λ
(5)
1 =

〈
y
(2)
1 ,

(
A1 −λ(1)1 I

)
y
(2)
1

〉− 2λ(2)1

〈
y
(2)
1 ,y

(1)
1

〉−λ(3)1

〈
y
(1)
1 ,y

(1)
1

〉
=

25
128

,

λ
(4)
2 =

〈
y
(1)
2 ,

(
A1 −λ(1)2 I

)
y
(2)
2

〉−λ(2)2

〈
y
(1)
2 ,y

(1)
2

〉
= −5

4
,

λ
(5)
2 =

〈
y
(2)
2 ,

(
A1 −λ(1)2 I

)
y
(2)
2

〉− 2λ(2)2

〈
y
(2)
2 ,y

(1)
2

〉−λ(3)2

〈
y
(1)
2 ,y

(1)
2

〉
= −153

128
.

(3.22)

3.2. Second-order degeneracy

We next consider the case of second-order degeneracy which is charac-
terized by the conditions λ

(0)
1 =λ(0)2 = · · · = λ

(0)
m = λ(0) and λ

(1)
1 = λ

(1)
2 = · · · =

λ
(1)
m = λ(1), while λ

(2)
i (i = 1, . . . ,m) are all distinct. Thus, even though λ(1)
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is obtained as the only eigenvalue of (3.4), {y(0)
i }mi=1 are still indetermi-

nate after enforcing solvability of (2.5) for k = 1.
Hence, we will determine {λ(2)i ;y(0)

i }mi=1 by insisting that (2.5) be solv-
able for k = 2 and i = 1, . . . ,m. This requirement is equivalent to the con-
dition that, for each fixed i,

〈
x
(0)
µ ,−(A1 −λ(1)I

)
y
(1)
i +λ

(2)
i y

(0)
i

〉
= 0 (µ = 1, . . . ,m). (3.23)

Inserting (3.1) as well as (3.7) with k = 1 and invoking the orthonor-
mality of {x(0)

µ }mµ=1, we arrive at, in matrix form,



〈
x
(0)
1 ,M(2)x

(0)
1

〉 · · · 〈
x
(0)
1 ,M(2)x

(0)
m

〉
...

. . .
...〈

x
(0)
m ,M(2)x

(0)
1

〉 · · · 〈
x
(0)
m ,M(2)x

(0)
m

〉




a
(i)
1...

a
(i)
m


 = λ

(2)
i



a
(i)
1...

a
(i)
m


 , (3.24)

where M(2) := −(A1 − λ(1)I)(A0 − λ(0)I)†(A1 − λ(1)I). Thus, each λ
(2)
i is an

eigenvalue with corresponding eigenvector [a(i)
1 , . . . ,a

(i)
m ]T of the matrix

M defined by Mµ,ν = 〈x(0)
µ ,M(2)x

(0)
ν 〉 (µ,ν = 1, . . . ,m).

By assumption, the symmetric matrix M has m distinct real eigen-
values and hence orthonormal eigenvectors described by (3.2). These,
in turn, may be used in concert with (3.1) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by the combination

of (3.2) and (3.24) the identities

〈
y
(0)
i ,M(2)y

(0)
j

〉
= λ

(2)
i · δi,j . (3.25)

The remaining eigenvalue corrections λ(k)i (k ≥ 3) may be obtained from
the Dalgarno-Stewart identities.

Analogous to the case of first-order degeneracy, β(i)j,k (i �= j) of (3.7) are
to be determined from the condition that (2.5) be solvable for k← k + 2
and i = 1, . . . ,m. Since, by design, (2.5) is solvable for k = 1,2, we may
proceed recursively. After considerable algebraic manipulation, the end
result is

β
(i)
j,k

=

〈
y
(0)
j ,M(2)ŷ

(k)
i

〉−∑k−1
l=1 λ

(k−l+2)
i β

(i)
j,l

λ
(2)
i −λ

(2)
j

(i �= j). (3.26)
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The existence of this formula guarantees that each y
(k)
i is uniquely deter-

mined by enforcing solvability of (2.5) for k← k + 2.

Example 3.2. Define

A0 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 3


 , A1 =




1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0


 . (3.27)

Using Matlab’s Symbolic Toolbox, we find that

λ1(ε) = 1+ ε,

λ2(ε) = 1+ ε − 1
2
ε2 − 1

4
ε3 +

1
8
ε5 + · · · ,

λ3(ε) = 1+ ε − ε2 − ε3 + 2ε5 + · · · ,
λ4(ε) = 2+ ε2 + ε3 − 2ε5 + · · · ,

λ5(ε) = 3+
1
2
ε2 +

1
4
ε3 − 1

8
ε5 + · · · .

(3.28)

We focus on the second-order degeneracy amongst λ(0)1 = λ
(0)
2 = λ

(0)
3 =

λ(0) = 1. With the choice

x
(0)
1 =




1
0
0
0
0


 , x

(0)
2 =




0
1
0
0
0


 , x

(0)
3 =




0
0
1
0
0


 , (3.29)

we have from (3.4), which enforces solvability of (2.5) for k = 1,

M =


1 0 0

0 1 0
0 0 1


 (3.30)

with triple eigenvalue λ(1) = 1.
Moving on to (3.24), which enforces solvability of (2.5) for k = 2, we

have

M =



−1 0 0

0 −1
2

0

0 0 0


 (3.31)
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with eigenpairs

λ
(2)
1 = 0,



a
(1)
1

a
(1)
2

a
(1)
3


 =


0

0
1


 ;

λ
(2)
2 = −1

2
,



a
(2)
1

a
(2)
2

a
(2)
3


 =


0

1
0


 ;

λ
(2)
3 = −1,



a
(3)
1

a
(3)
2

a
(3)
3


 =


1

0
0


 .

(3.32)

Availing ourselves of (3.1), the special unperturbed eigenvectors are now
fully determined as

y
(0)
1 =




0
0
1
0
0


 , y

(0)
2 =




0
1
0
0
0


 , y

(0)
3 =




1
0
0
0
0


 . (3.33)

Solving (2.5), for k = 1,

(
A0 −λ(0)I

)
y
(1)
i = −(A1 −λ(1)I

)
y
(0)
i (i = 1,2,3), (3.34)

produces

y
(1)
1 =



α1

β1

0
0
0


 , y

(1)
2 =




α2

0
γ2

0

−1
2



, y

(1)
3 =




0
β3

γ3

−1
0


 , (3.35)

where we have invoked intermediate normalization. Observe that y(1)
i

(i = 1,2,3) are not yet fully determined.
Solving (2.5), for k = 2,

(
A0 −λ(0)I

)
y
(2)
i = −(A1 −λ(1)I

)
y
(1)
i +λ

(2)
i y

(0)
i (i = 1,2,3), (3.36)
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produces

y
(2)
1 =




a1

b1

0
−α1

−β1

2



, y

(2)
2 =




a2

0
c2

−α2

−1
4



, y

(2)
3 =




0
b3

c3

−1

−β3

2



, (3.37)

where we have invoked intermediate normalization. Likewise, y(2)
i (i =

1,2,3) are not yet fully determined.
We next enforce solvability of (2.5) for k = 3:

〈
y
(0)
j ,−(A1 −λ(1)I

)
y
(2)
i +λ

(2)
i y

(1)
i +λ

(3)
i y

(0)
i

〉
= 0 (i �= j), (3.38)

thereby producing

y
(1)
1 =




0
0
0
0
0


 ; y

(1)
2 =




0
0
0
0

−1
2




; y
(1)
3 =




0
0
0
−1
0


 ,

y
(2)
1 =



a1

b1

0
0
0


 ; y

(2)
2 =




a2

0
c2

0

−1
4




; y
(2)
3 =




0
b3

c3

−1
0


 .

(3.39)

With y
(1)
i (i = 1,2,3) now fully determined, the Dalgarno-Stewart iden-

tities yield

λ
(3)
1 =

〈
y
(1)
1 ,

(
A1 −λ(1)I

)
y
(1)
1

〉
= 0,

λ
(3)
2 =

〈
y
(1)
2 ,

(
A1 −λ(1)I

)
y
(1)
2

〉
= −1

4
,

λ
(3)
3 =

〈
y
(1)
3 ,

(
A1 −λ(1)I

)
y
(1)
3

〉
= −1.

(3.40)

Solving (2.5), for k = 3,

(
A0 −λ(0)I

)
y
(3)
i = −(A1 −λ(1)I

)
y
(2)
i

+λ
(2)
i y

(1)
i +λ

(3)
i y

(0)
i (i = 1,2,3),

(3.41)
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produces

y
(3)
1 =




u1

v1

0
−a1

−b1

2



, y

(3)
2 =




u2

0
w2

−a2

0


 , y

(3)
3 =




0
v3

w3

0

−b3

2



, (3.42)

where we have invoked intermediate normalization. As before, y(3)
i (i =

1,2,3) are not yet fully determined.
We now enforce solvability of (2.5) for k = 4:

〈
y
(0)
j ,−(A1 −λ(1)I

)
y
(3)
i +λ

(2)
i y

(2)
i +λ

(3)
i y

(1)
i +λ

(4)
i y

(0)
i

〉
= 0 (i �= j), (3.43)

thereby fully determining

y
(2)
1 =




0
0
0
0
0


 , y

(2)
2 =




0
0
0
0

−1
4



, y

(2)
3 =




0
0
0
−1
0


 . (3.44)

Subsequent application of the Dalgarno-Stewart identities yields

λ
(4)
1 =

〈
y
(1)
1 ,

(
A1 −λ(1)I

)
y
(2)
1

〉−λ(2)1

〈
y
(1)
1 ,y

(1)
1

〉
= 0,

λ
(5)
1 =

〈
y
(2)
1 ,

(
A1 −λ(1)I

)
y
(2)
1

〉− 2λ(2)1

〈
y
(2)
1 ,y

(1)
1

〉−λ(3)1

〈
y
(1)
1 ,y

(1)
1

〉
= 0,

λ
(4)
2 =

〈
y
(1)
2 ,

(
A1 −λ(1)I

)
y
(2)
2

〉−λ(2)2

〈
y
(1)
2 ,y

(1)
2

〉
= 0,

λ
(5)
2 =

〈
y
(2)
2 ,

(
A1 −λ(1)I

)
y
(2)
2

〉− 2λ(2)2

〈
y
(2)
2 ,y

(1)
2

〉−λ(3)2

〈
y
(1)
2 ,y

(1)
2

〉
=

1
8
,

λ
(4)
3 =

〈
y
(1)
3 ,

(
A1 −λ(1)I

)
y
(2)
3

〉−λ(2)3

〈
y
(1)
3 ,y

(1)
3

〉
= 0,

λ
(5)
3 =

〈
y
(2)
3 ,

(
A1 −λ(1)I

)
y
(2)
3

〉− 2λ(2)3

〈
y
(2)
3 ,y

(1)
3

〉−λ(3)3

〈
y
(1)
3 ,y

(1)
3

〉
= 2.
(3.45)

3.3. Nth order degeneracy

We now consider the case of Nth order degeneracy which is character-
ized by the conditions λ

(j)
1 = λ

(j)
2 = · · · = λ

(j)
m = λ(j) (j = 0, . . . ,N − 1), while

λ
(N)
i (i = 1, . . . ,m) are all distinct. Thus, even though λ(j) (j = 0, . . . ,N − 1)
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are determinate, {y(0)
i }mi=1 are still indeterminate after enforcing solvabil-

ity of (2.5) for k =N − 1.
Hence, we will determine {λ(N)

i ;y(0)
i }mi=1 by insisting that (2.5) be solv-

able for k =N and i = 1, . . . ,m. This requirement is equivalent to the con-
dition that, for each fixed i,

〈
x
(0)
µ ,−(A1 −λ(1)I

)
y
(N−1)
i +λ(2)y

(N−2)
i + · · ·+λ

(N)
i y

(0)
i

〉
= 0 (µ = 1, . . . ,m).

(3.46)

Inserting (3.1) as well as (3.7) with k = 1, . . . ,N − 1 and invoking the
orthonormality of {x(0)

µ }mµ=1, we arrive at, in matrix form,



〈
x
(0)
1 ,M(N)x

(0)
1

〉 · · · 〈
x
(0)
1 ,M(N)x

(0)
m

〉
...

. . .
...〈

x
(0)
m ,M(N)x

(0)
1

〉 · · · 〈
x
(0)
m ,M(N)x

(0)
m

〉




a
(i)
1...

a
(i)
m


 = λ

(N)
i



a
(i)
1...

a
(i)
m


 , (3.47)

where M(N) is specified by the recurrence relation

M(1) =A1,

M(2) =
(
λ(1)I −M(1))(A0 −λ(0)I

)†(
A1 −λ(1)I

)
,

M(3) =
(
λ(2)I −M(2))(A0 −λ(0)I

)†(
A1 −λ(1)I

)
+λ(2)

(
A1 −λ(1)I

)(
A0 −λ(0)I

)†
,

M(N) =
(
λ(N−1)I −M(N−1))(A0 −λ(0)I

)†(
A1 −λ(1)I

)
−

N−3∑
l=2

λ(l)
(
λ(N−l)I −M(N−l))(A0 −λ(0)I

)†
−λ(N−2)[(A1 −λ(1)I

)(
A0 −λ(0)I

)†(
A1−λ(1)I

)
+λ(2)I

](
A0−λ(0)I

)†
+λ(N−1)(A1 −λ(1)I

)(
A0 −λ(0)I

)† (N = 4,5, . . .).
(3.48)

Thus, each λ
(N)
i is an eigenvalue with corresponding eigenvector

[a(i)
1 , . . . ,a

(i)
m ]T of the matrix M defined by Mµ,ν = 〈x(0)

µ ,M(N)x
(0)
ν 〉 (µ,ν =

1, . . . ,m). It is important to note that, while this recurrence relation guar-
antees that {λ(N)

i ;y(0)
i }mi=1 are well defined by enforcing solvability of (2.5)

for k =N, M(N) need not be explicitly computed.
By assumption, the symmetric matrix M has m distinct real eigen-

values and hence orthonormal eigenvectors described by (3.2). These,
in turn, may be used in concert with (3.1) to yield the desired special
unperturbed eigenvectors alluded to above.
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Now that {y(0)
i }mi=1 are fully determined, we have by the combination

of (3.2) and (3.47) the identities

〈
y
(0)
i ,M(N)y

(0)
j

〉
= λ

(N)
i · δi,j . (3.49)

The remaining eigenvalue corrections λ
(k)
i (k ≥N + 1) may be obtained

from the Dalgarno-Stewart identities.
Analogous to the cases of first-order and second-order degeneracies,

β
(i)
j,k (i �= j) of (3.7) are to be determined from the condition that (2.5) be

solvable for k← k +N and i = 1, . . . ,m. Since, by design, (2.5) is solvable
for k = 1, . . . ,N, we may proceed recursively. After considerable algebraic
manipulation, the end result is

β
(i)
j,k =

〈
y
(0)
j ,M(N)ŷ

(k)
i

〉−∑k−1
l=1 λ

(k−l+N)
i β

(i)
j,l

λ
(N)
i −λ(N)

j

(i �= j). (3.50)

The existence of this formula guarantees that each y
(k)
i is uniquely deter-

mined by enforcing solvability of (2.5) for k← k +N.

Example 3.3. Define

A0 =




1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2


 , A1 =




1 0 1 1
0 1 1 −1
1 1 1 0
1 −1 0 0


 . (3.51)

Using Matlab’s Symbolic Toolbox, we find that

λ1(ε) = 1+ ε − 2ε2 + 4ε4 + 0 · ε5 + · · · ,
λ2(ε) = 1+ ε − 2ε2 − 2ε3 + 2ε4 + 10ε5 + · · · ,
λ3(ε) = 2+ 2ε2 + 2ε3 − 2ε4 − 10ε5 + · · · ,
λ4(ε) = 2+ ε + 2ε2 − 4ε4 + 0 · ε5 + · · · .

(3.52)

We focus on the third-order degeneracy amongst λ(0)1 = λ
(0)
2 = λ(0) = 1.

With the choice

x
(0)
1 =




1
0
0
0


 , x

(0)
2 =




0
1
0
0


 , (3.53)
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we have from (3.4), which enforces solvability of (2.5) for k = 1,

M =
[

1 0
0 1

]
(3.54)

with double eigenvalue λ(1) = 1. Equation (3.24), which enforces solv-
ability of (2.5) for k = 2, yields

M =
[−2 0

0 −2

]
(3.55)

with double eigenvalue λ(2) = −2.
Moving on to (3.47) with N = 3, which enforces solvability of (2.5) for

k = 3, we have

M =
[−1 1

1 −1

]
(3.56)

with eigenpairs

λ
(3)
1 = 0,


a(1)

1

a
(1)
2


 =




1√
2

1√
2


 ; λ

(3)
2 = −2,


a(2)

1

a
(2)
2


 =




1√
2

− 1√
2


 . (3.57)

Availing ourselves of (3.1), the special unperturbed eigenvectors are now
fully determined as

y
(0)
1 =




1√
2

1√
2

0
0



, y

(0)
2 =




1√
2

− 1√
2

0
0



. (3.58)

Solving (2.5), for k = 1,

(
A0 −λ(0)I

)
y
(1)
i = −(A1 −λ(1)I

)
y
(0)
i (i = 1,2), (3.59)
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produces

y
(1)
1 =




a
−a
−
√

2
0


 , y

(1)
2 =




b
b
0
−
√

2


 , (3.60)

where we have invoked intermediate normalization. Observe that y(1)
i

(i = 1,2) are not yet fully determined.
Solving (2.5), for k = 2,

(
A0 −λ(0)I

)
y
(2)
i = −(A1 −λ(1)I

)
y
(1)
i +λ(2)y

(0)
i (i = 1,2), (3.61)

produces

y
(2)
1 =




c
−c
0
−2a


 , y

(2)
2 =




d
d
−2b
−
√

2


 , (3.62)

where we have invoked intermediate normalization. Likewise, y(2)
i (i =

1,2) are not yet fully determined.
Solving (2.5), for k = 3,

(
A0 −λ(0)I

)
y
(3)
i = −(A1 −λ(1)I

)
y
(2)
i +λ(2)y

(1)
i +λ

(3)
i y

(0)
i (i = 1,2), (3.63)

produces

y
(3)
1 =




e
−e

2
√

2
−2c− 2a


 , y

(3)
2 =




f
f
−2d√

2


 , (3.64)

where we have invoked intermediate normalization. Likewise, y(3)
i (i =

1,2) are not yet fully determined.
We next enforce solvability of (2.5) for k = 4:

〈
y
(0)
j ,−(A1 −λ(1)I

)
y
(3)
i +λ(2)y

(2)
i +λ

(3)
i y

(1)
i +λ

(4)
i y

(0)
i

〉
= 0 (i �= j),

(3.65)
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thereby producing

y
(1)
1 =




0
0
−
√

2
0


 ; y

(1)
2 =




0
0
0
−
√

2


 ,

y
(2)
1 =




c
−c
0
0


 ; y

(2)
2 =




d
d
0
−
√

2


 ,

y
(3)
1 =




e
−e

2
√

2
−2c


 ; y

(3)
2 =




f
f
−2d√

2


 .

(3.66)

Observe that y(1)
i (i = 1,2) are now fully determined, while y

(2)
i (i = 1,2)

and y
(3)
i (i = 1,2) are not yet completely specified.

Solving (2.5), for k = 4,

(
A0 −λ(0)I

)
y
(4)
i = −(A1 −λ(1)I

)
y
(3)
i +λ(2)y

(2)
i

+λ
(3)
i y

(1)
i +λ

(4)
i y

(0)
i (i = 1,2),

(3.67)

produces

y
(4)
1 =




g
h
0

−2e − 2c


 , y

(4)
2 =




u
v
−2f
5
√

2


 , (3.68)

where we have invoked intermediate normalization. As before, y(4)
i (i =

1,2) are not yet fully determined.
We now enforce solvability of (2.5) for k = 5:

〈
y
(0)
j ,−(A1 −λ(1)I

)
y
(4)
i +λ(2)y

(3)
i +λ

(3)
i y

(2)
i +λ

(4)
i y

(1)
i +λ

(5)
i y

(0)
i

〉
= 0 (i �= j),

(3.69)
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thereby fully determining

y
(2)
1 =




0
0
0
0


 , y

(2)
2 =




0
0
0
−
√

2


 (3.70)

and further specifying

y
(3)
1 =




e
−e

2
√

2
0


 , y

(3)
2 =




f
f
0√
2


 ,

y
(4)
1 =




g
h
0
−2e


 , y

(4)
2 =




u
v
−2f
5
√

2


 .

(3.71)

Subsequent application of the Dalgarno-Stewart identities yields

λ
(4)
1 =

〈
y
(1)
1 ,

(
A1 −λ(1)I

)
y
(2)
1

〉−λ(2)1

〈
y
(1)
1 ,y

(1)
1

〉
= 4,

λ
(5)
1 =

〈
y
(2)
1 ,

(
A1 −λ(1)I

)
y
(2)
1

〉− 2λ(2)1

〈
y
(2)
1 ,y

(1)
1

〉−λ(3)1

〈
y
(1)
1 ,y

(1)
1

〉
= 0,

λ
(4)
2 =

〈
y
(1)
2 ,

(
A1 −λ(1)I

)
y
(2)
2

〉−λ(2)2

〈
y
(1)
2 ,y

(1)
2

〉
= 2,

λ
(5)
2 =

〈
y
(2)
2 ,

(
A1 −λ(1)I

)
y
(2)
2

〉− 2λ(2)2

〈
y
(2)
2 ,y

(1)
2

〉−λ(3)2

〈
y
(1)
2 ,y

(1)
2

〉
= 10.

(3.72)

3.4. Mixed degeneracy

Finally, we arrive at the most general case of mixed degeneracy wherein
a degeneracy (multiple eigenvalue) is partially resolved at more than
a single order. The analysis expounded upon in the previous sections
comprises the core of the procedure for the complete resolution of mixed
degeneracy. The following modifications suffice.

During the Rayleigh-Schrödinger procedure, whenever an eigenvalue
branches by reduction in multiplicity at any order, one simply replaces
the xµ of (3.47) by any convenient orthonormal basis zµ for the reduced
eigenspace. Of course, this new basis is composed of some a priori un-
known linear combination of the original basis. Equation (3.50) will still
be valid where N is the order of correction where the degeneracy be-
tween λi and λj is resolved. Thus, in general, if λi is degenerate to Nth
order, then y

(k)
i will be fully determined by enforcing the solvability of

(2.5) with k← k +N.
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We now present a final example which illustrates this general proce-
dure. This example features a triple eigenvalue which branches into a
single first-order degenerate eigenvalue, together with a pair of second-
order degenerate eigenvalues. Hence, we observe features of both Exam-
ples 3.1 and 3.2 appearing in tandem.

Example 3.4. Define

A0 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 , A1 =




1 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0


 . (3.73)

Using Matlab’s Symbolic Toolbox, we find that

λ1(ε) = ε,

λ2(ε) = ε− ε2 − ε3 + 2ε5 + · · · ,
λ3(ε) = 0,

λ4(ε) = 1+ ε2 + ε3 − 2ε5 + · · · .

(3.74)

We focus on the mixed degeneracy amongst λ(0)1 = λ
(0)
2 = λ

(0)
3 = λ(0) = 0.

With the choice

x
(0)
1 =




1
0
0
0


 , x

(0)
2 =




0
1
0
0


 , x

(0)
3 =




0
0
1
0


 , (3.75)

we have from (3.4), which enforces solvability of (2.5) for k = 1,

M =


1 0 0

0 1 0
0 0 0


 (3.76)

with eigenvalues λ(1)1 = λ
(1)
2 = λ(1) = 1, λ(1)3 = 0.

Thus, y(0)
1 and y

(0)
2 are indeterminate, while



a
(3)
1

a
(3)
2

a
(3)
3


 =


0

0
1


 =⇒ y

(0)
3 =




0
0
1
0


 . (3.77)
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Introducing the new basis

z
(0)
1 =




1√
2

1√
2

0
0



, z

(0)
2 =




1√
2

− 1√
2

0
0



, (3.78)

we now seek y
(0)
1 and y

(0)
2 in the form

y
(0)
1 = b

(1)
1 z

(0)
1 + b

(1)
2 z

(0)
2 , y

(0)
2 = b

(2)
1 z

(0)
1 + b

(2)
2 z

(0)
2 , (3.79)

with orthonormal {[b(1)1 ,b
(1)
2 ]T ,[b(2)1 ,b

(2)
2 ]T}.

Solving (2.5), for k = 1,

(
A0 −λ(0)I

)
y
(1)
i = −(A1 −λ(1)i I

)
y
(0)
i (i = 1,2,3), (3.80)

produces

y
(1)
1 =




α1

β1

γ1

−
(
b
(1)
1 + b

(1)
2

)
√

2



,

y
(1)
2 =




α2

β2

γ2

−
(
b
(2)
1 + b

(2)
2

)
√

2



,

y
(1)
3 =



α3

β3

γ3

0


 .

(3.81)

Now, enforcing solvability of (2.5), for k = 2,

−(A1 −λ(1)i I
)
y
(1)
i +λ

(2)
i y

(0)
i ⊥

{
z
(0)
1 ,z

(0)
2 ,y

(0)
3

}
(i = 1,2,3), (3.82)
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we arrive at

M =



−1

2
−1

2

−1
2
−1

2


 , (3.83)

with eigenpairs

λ
(2)
1 = 0,


b(1)1

b
(1)
2


 =




1√
2

− 1√
2


 ;

λ
(2)
2 = −1,


b(2)1

b
(2)
2


 =




1√
2

1√
2


 =⇒ y

(0)
1 =




0
1
0
0


 ; y

(0)
2 =




1
0
0
0


 ,

y
(1)
1 =



α1

β1

0
0


 ; y

(1)
2 =



α2

β2

0
−1


 ; y

(1)
3 =




0
0
0
0




(3.84)

as well as λ
(2)
3 = 0, where we have invoked intermediate normalization.

Observe that y(1)
1 and y

(1)
2 have not yet been fully determined, while y

(1)
3

has indeed been completely specified.
Solving (2.5), for k = 2,

(
A0 −λ(0)I

)
y
(2)
i = −(A1 −λ(1)i I

)
y
(1)
i +λ

(2)
i y

(0)
i (i = 1,2,3), (3.85)

produces

y
(2)
1 =




a1

0
c1

−α1


 , y

(2)
2 =




0
b2

c2

−1


 , y

(2)
3 =



a3

b3

0
0


 , (3.86)

where we have invoked intermediate normalization.
We next enforce solvability of (2.5) for k = 3:

〈
y
(0)
j ,−(A1 −λ(1)i I

)
y
(2)
i +λ

(2)
i y

(1)
i +λ

(3)
i y

(0)
i

〉
= 0 (i �= j), (3.87)
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thereby producing

y
(1)
1 =




0
0
0
0


 ; y

(1)
2 =




0
0
0
−1


 ,

y
(2)
1 =



a1

0
0
0


 ; y

(2)
2 =




0
b2

0
−1


 ; y

(2)
3 =




0
0
0
0


 .

(3.88)

With y
(1)
i (i = 1,2,3) now fully determined, the Dalgarno-Stewart iden-

tities yield

λ
(3)
1 =

〈
y
(1)
1 ,

(
A1 −λ(1)I

)
y
(1)
1

〉
= 0,

λ
(3)
2 =

〈
y
(1)
2 ,

(
A1 −λ(1)I

)
y
(1)
2

〉
= −1,

λ
(3)
3 =

〈
y
(1)
3 ,

(
A1 −λ(1)3 I

)
y
(1)
3

〉
= 0.

(3.89)

Solving (2.5), for k = 3,

(
A0 −λ(0)I

)
y
(3)
i = −(A1 −λ(1)I

)
y
(2)
i +λ

(2)
i y

(1)
i +λ

(3)
i y

(0)
i (i = 1,2), (3.90)

produces

y
(3)
1 =




u1

0
w1

−a1


 , y

(3)
2 =




0
v2

w2

0


 , (3.91)

where we have invoked intermediate normalization.
We now enforce solvability of (2.5) for k = 4:

〈
y
(0)
j ,−(A1 −λ(1)I

)
y
(3)
i +λ

(2)
i y

(2)
i +λ

(3)
i y

(1)
i +λ

(4)
i y

(0)
i

〉
= 0 (i �= j), (3.92)
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thereby fully determining

y
(2)
1 =




0
0
0
0


 , y

(2)
2 =




0
0
0
−1


 . (3.93)

Subsequent application of the Dalgarno-Stewart identities yields

λ
(4)
1 =

〈
y
(1)
1 ,

(
A1 −λ(1)I

)
y
(2)
1

〉−λ(2)1

〈
y
(1)
1 ,y

(1)
1

〉
= 0,

λ
(5)
1 =

〈
y
(2)
1 ,

(
A1 −λ(1)I

)
y
(2)
1

〉− 2λ(2)1

〈
y
(2)
1 ,y

(1)
1

〉−λ(3)1

〈
y
(1)
1 ,y

(1)
1

〉
= 0,

λ
(4)
2 =

〈
y
(1)
2 ,

(
A1 −λ(1)I

)
y
(2)
2

〉−λ(2)2

〈
y
(1)
2 ,y

(1)
2

〉
= 0,

λ
(5)
2 =

〈
y
(2)
2 ,

(
A1 −λ(1)I

)
y
(2)
2

〉− 2λ(2)2

〈
y
(2)
2 ,y

(1)
2

〉−λ(3)2

〈
y
(1)
2 ,y

(1)
2

〉
= 2,

λ
(4)
3 =

〈
y
(1)
3 ,

(
A1 −λ(1)3 I

)
y
(2)
3

〉−λ(2)3

〈
y
(1)
3 ,y

(1)
3

〉
= 0,

λ
(5)
3 =

〈
y
(2)
3 ,

(
A1 −λ(1)3 I

)
y
(2)
3

〉− 2λ(2)3

〈
y
(2)
3 ,y

(1)
3

〉−λ(3)3

〈
y
(1)
3 ,y

(1)
3

〉
= 0.
(3.94)

4. Conclusion

In this paper, we have endeavored to provide a comprehensive and uni-
fied account of the Rayleigh-Schrödinger perturbation theory for the
symmetric matrix eigenvalue problem. The cornerstone of our develop-
ment has been the Moore-Penrose pseudoinverse. Not only does this ap-
proach permit a direct analysis of the properties of this procedure but it
also obviates the need of alternative approaches for the computation of
all of the eigenvectors of the unperturbed matrix. Instead, we only re-
quire the unperturbed eigenvectors corresponding to those eigenvalues
of interest.

The focal point of this investigation has been the degenerate case.
In the light of the inherent complexity of this topic, we have built up
the theory gradually with the expectation that the reader would thence
not be swept away in a torrent of formulae. At each stage, we have at-
tempted to make the subject more accessible by a judicious choice of
an illustrative example. (Observe that all of the examples were worked
through without explicit computation of the pseudoinverse.) Hopefully,
these efforts have met with a modicum of success.
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