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The problem of crack propagation along the interface of two bonded dissimilar
orthotropic plates is considered. Using Galilean transformation, the problem is reduced
to a quasistatic one. Then, using Fourier transforms and asymptotic analysis, the prob-
lem is reduced to a pair of singular integral equations with Cauchy-type singularity.
These equations are solved using Gauss-Chebyshev quadrature formulae. The dynamic
stress intensity factors are obtained in closed form expressions. Furthermore, a paramet-
ric study is introduced to investigate the effect of crack growth rate and geometric and
elastic characteristics of the plates on values of dynamic stress intensity factors.

1. Introduction

Composite materials have been extensively employed in many engineering fields such as
mechanical and aerospace structures. When the material used as member of such struc-
tures contains a crack, it is seriously necessary to study the stress field distribution at the
immediate vicinity of crack tips. The inertia action must be considered when the applied
loads or crack length depend on time. Also, the most frequently observed phenomenon
in the experiments shows that the crack growth rate is constant during the extending his-
tory except in the final unstable or arresting stage [11]. So, the elastodynamic analysis of
a moving crack, with constant velocity, is one of the most important problems in fracture
mechanics. The dynamic stress intensity factors (DSIF) play a key role in characteriz-
ing the fracture behaviour of such problems. Thus, analytical determination of DSIF in
predicting the fracture cannot be overemphasized.

In general, there are two approaches for analytical determination of DSIF. The first one
employs the integral transforms and asymptotic analysis to reduce the problem to that of
a system of singular integral equations [1, 3, 10, 15, 20, 22, 23]. The second approach
employs complex analysis to reduce the problem to that of a system of Riemann-Hilbert
problems [12, 13, 14, 19].

The present work is concerned with elastodynamic stress disturbance problem of a
moving Griffith crack with constant velocity. The crack is located at the interface of two
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Figure 1.1. Two bonded dissimilar plates containing moving interfacial crack.

bonded dissimilar orthotropic plates, as shown in Figure 1.1. Each plate possesses a finite
width and is subjected to a static stress distribution along crack surfaces. This is the main
difference between the present work and previous ones [1, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15,
19, 20, 22, 23], which were concerned only with plates of infinite widths. The governing
equations of the problem are described. Then, Fourier transforms and asymptotic anal-
ysis are employed to reduce the solution of the problem to that of a system of first-kind
singular integral equations with Cauchy-type singularity. These are solved numerically
according to the algorithm in [17]. Then, closed-form expressions for the asymptotic
stress field distribution at the immediate vicinity of crack tips are obtained.

2. Governing equations

Assuming that the Cartesian coordinate axes are the axes of symmetry of the elastic ma-
terials, the displacement equations of motion for orthotropic plates are [3]
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(2.1)

where � is a superscript (� = 1 for orthotropic material in X2 > 0, while � = 2 for or-
thotropic material in X2 < 0), as shown in Figure 1.1; U�

j ( j = 1,2) are the displacement

components in direction of X1 and X2, respectively; C�
i j (i, j = 1,2) and C�

66 are the elastic
constants of orthotropic plate materials; and m� and t are the material mass density and
time, respectively.

The boundary conditions along the interface of plates are
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where a0 is the initial half crack length, and d = |c|t, where c is the magnitude of crack
propagation velocity. Moreover, Fi(X1) (i= 1,2) are known functions. They represent the
applied static stress along crack surfaces; F1(−X1)= F1(X1) and F2(−X1)=− f2(−X1).

The boundary conditions along the external boundaries are
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where H1 and H2 are as shown in Figure 1.1.
Using Galilean transformation: x = (X1− ct)/a0, y = X2/a0, and t = t, the governing

equations (2.1), (2.2), and (2.3) can be reduced to a quasistatic form as follows:
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Furthermore, the values of Mach numbers M�
j (�, j = 1,2) are assumed to be less than

unity for subsonic crack propagation.
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The boundary conditions for the reduced quasistatic problem can be expressed as fol-
lows:
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3. Solution of the problem

Decoupling (2.4) then employing Fourier sine (cosine) transforms with respect to x, one
can find that
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where α is the transform variable, A�
j(α) (� = 1,2 and j = 1,4) are unknown functions,

and r�j (� = 1,2 and j = 1,4) are the real distinct roots of
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From the stress-displacement relationship of orthotropic materials [9], one can get
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On suitable substitution from (2.9) into (3.5), one can find that
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δnm is the Kronecker delta.
Substituting (3.5) and (3.7) into (2.8), one can find that
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The boundary conditions (2.6) and (2.7) in conjunction with (3.7), (3.8), (3.9), (3.10),
and (3.11) lead to
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The unknown functions A1
j (α) ( j = 3,4) can be determined through solving the integral

equations (3.12) and (3.13) as follows [21].
Let
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where H(x− 1) is the unit step function [2], while φj(x) ( j = 1,2) are unknown odd and
even functions of x, respectively.
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From (3.13) and (3.15), one can deduce that
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Substituting (3.16) into (3.12), the problem is reduced to the following system of integral
equations:
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Since the integrands of (3.19) are continuous functions of α, then it is clear that any
possible singularity of the kernels must result from the asymptotic analysis of the inte-
grands as t → x and α→∞ [16, 21]. Then, by adding and subtracting the asymptotic
expressions of these integrands under the integral sign, the problem can be reduced to
the following pair of singular integral equations with Cauchy-type singularity:
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From (3.15) and (2.5d), one can deduce the single-valuedness conditions ensuring the
uniqueness of φi(α) (i= 1,2) as follows:

∫ 1

−1
φ1(t)dt = 0,

∫ 1

−1
φ2(t)dt = 2
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(√
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Equations (3.20) and (3.22) can be solved as follows [17].
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Assume that

φi(t)= qi(t)√
1− t2

(i= 1,2), (3.23)

where qi(t) (i= 1,2) are bounded continuous functions for all t ∈ [−1,1].
By substituting from (3.23) into (3.20) and (3.22) then employing Gauss-Chebyshev

integration formulae, the solution of the problem can be reduced to the following system
of linear algebraic equations [17]:
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)
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(
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For the concerned problem, one can deduce that the DSIF at the left and right crack
tips are equal. Then, by making use of the following asymptotic relations, as α→∞, [5]:
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−1

q2(t)√
1− t2

cosαtdt ≈ q2(1)

√
2π
α

cos
(
α− π

4

)
+ ϑ

(
1
α

)
,

∫∞
0

1√
α
e−bα

{sinhα

coshα

}
dα=

√
π(

b2 +h2
)0.25

{sin

cos

}(
0.5tan−1

(
h

b

))
, b > 0,

(3.26)
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the leading terms of the asymptotic stress field distribution (3.5) at the immediate vicinity
of the right crack tip (x→ 1 and y→ 0±) can be obtained as follows:

σxy(x, y)≈ q1(1)
(

ζ1√
2ρ1

sin
θ1

2
− ζ2√

2ρ2
sin

θ2

2

)

+ q2(1)
(

ζ3√
2ρ1

cos
θ1

2
− ζ4√

2ρ2
cos

θ2

2

)
,

σyy(x, y)≈ q1(1)
(

γ1√
2ρ1

cos
θ1

2
− γ2√

2ρ2
cos

θ2

2

)

+ q2(1)
(

γ3√
2ρ1

sin
θ1

2
− γ4√

2ρ2
sin

θ2

2

)
,

(3.27)

where

ρ1 =
√

(x− 1)2 +
(
r1

3 y
)2

, ρ2 =
√

(x− 1)2 +
(
r1

4 y
)2

,

θ1 = tan−1
(

r1
3 y

x− 1

)
, θ2 = tan−1

(
r1

4 y

x− 1

)
,

ξ1 = p1
3

(
1− s2/B

)
Z

, ξ2 = p1
4

(
1− s1/B

)
Z

,

ξ3 = p1
3

(
k1

4 − s4/B
)

Z
, ξ4 = p1

4

(
k1

3 − s3/B
)

Z
,

γ1 = o1
3

(
1− s2/B

)
Z

, γ2 = o1
4

(
1− s1/B

)
Z

,

γ3 = o1
3

(
k1

4 − s4/B
)

Z
, γ4 = o1

4

(
k1

3 − s3/B
)

Z
.

(3.28)

Therefore, the DSIF, KI , and KII can be determined as follows [18]:

KI + iKII =Q
√

2a0 lim
x→1, y→0+

√
x− 1

[
σyy(x, y) + iσxy(x, y)

]
(3.29)

such that by substituting from (3.27) and (3.28) into (3.29) then evaluating the limits,
one can find that

KI =Q
√
a0
[
γ1− γ2

]
q1(1),

KII =Q
√
a0
[
ξ3− ξ4

]
q2(1).

(3.30)



M. S. Matbuly 65

   

−0.2

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

0.0 0.2 0.4 0.6 0.8

a0 = 0.75

a0 = 0.5 a0 = 0.25

a0 = 0.10

Crack growth rate (mm/h)

N
or

m
al

iz
ed

D
SI

F
(K

I)

Figure 4.1. Variation of the normalized KI with the crack growth rate and initial crack length.

4. Numerical results

A parametric study is introduced to investigate the effects of crack growth rate, initial
crack length, and the plate width on the values of DSIF. Consider that a structure of two
bonded orthotropic plates as in Figure 1.1 possesses the following elastic characteristics:

m1 =m2 = 1g/cm3,

C1
66 = C2

66 = 1MPa,

C1
22 = 2.5MPa,

C2
22 = 4MPa,

C�
11 =

(
1 + r�1

)
C�

66− r�1
(
r�2
)2
C�

22 (� = 1,2),

C�
12 =

[√
r�1
[(
r�2
)2

+ 1
]− [(

r�1
)2

+
(
r�2
)2]− 1

]
C�

66 (� = 1,2),

(4.1)

where (4.1) are derived from (2.5), (3.2), and (3.3). Also, for the concerned numerical
results, it is assumed that 1 > r�1 > r�2 > 0, r�3 =−r�1, and r�4 =−r�2. The initial crack length
2a0 ranges from 0.2 to 1.5 cm, while the width of plates ranges from 5 to 10 m. For sim-
plicity, the numerical results are obtained for constant uniform stress distribution along
the crack surfaces, |x| < 1 and y→±0.

Furthermore, we have found that |∫∞0 Ii j(α,x, t)dα− ∫ 4
0 Ii j(α,x, t)dα| < 10−16, where

Ii, j(α,x, t) (i, j = 1,2), are the integrands of (3.21). Therefore, the improper integrals of
(3.21) are approximated and evaluated numerically from α = 0→ 4 by using the trape-
zoidal rule. Then, the values of DSIF are normalized such that

NormalizedKI = KI

σ1
22
√
a0

, NormalizedKII = KII

σ1
12
√
a0

, (4.2)

where σ1
22 and σ1

12 represent the applied stress along the upper crack surface.
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Figure 4.2. Variation of the normalized KII with the crack growth rate and initial crack length.
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Figure 4.3. Variation of the normalized KI with the crack growth rate for different plate widths.

Figure 4.1 shows that the value of normalized KI continuously decreases with increas-
ing the crack growth rate, where 0 < c < 0.32 and 0.5 < c < 0.6, while it increases else-
where. Also, it shows increasing the pathological oscillatory behaviour [3] for the nor-
malized KI with increasing the initial crack length.

Figure 4.2 shows that the value of normalized KII continuously increases with increas-
ing the crack growth rate except for 0.5 < c < 0.65. But this decreasing interval is shifted
to 0.4 < c < 0.5 for the case of a relatively long initial crack length 2a0 = 1.5 cm. One can
notice as well that the pathological oscillatory behaviour of the normalized KII increases
with increasing a0.

For the prescribed elastic and geometric characteristics, Figure 4.3 shows that the value
of normalized KI continuously increases with increasing the crack growth rate except
when c < 0.5 and H1 >H2, it is decreased. Also, Figure 4.4 shows that the value of normal-
ized KII continuously decreases with increasing the crack growth rate, while it increases
with increasing c when c > 0.62 and H1 <H2.
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Figure 4.4. Variation of the normalized KII with the crack growth rate for different plate widths.

5. Conclusion

The present work is concerned with elastodynamic analysis of crack propagation between
two bonded dissimilar orthotropic plates. The width of each plate is assumed to be finite.
This is the new trend and the main difference between this work and the previous ones
[1, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 19, 20, 22, 23]. So, the present work can be considered
as an extension for the analysis of interfacial crack problems.
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