THE SECOND-ORDER SELF-ASSOCIATED ORTHOGONAL SEQUENCES

P. MARONI AND M. IHSEN TOUNSI

Received 13 February 2004

The aim of this work is to describe the orthogonal polynomials sequences which are identical to their second associated sequence. The resulting polynomials are semiclassical of class $s \leq 3$. The characteristic elements of the structure relation and of the second-order differential equation are given explicitly. Integral representations of the corresponding forms are also given. A striking particular case is the case of the so-called electrospheric polynomials.

1. Introduction

A long time ago [4], Guillet and Aubert wrote a paper on electrospheric polynomials. They are a particular case of orthogonal polynomials which are identical to their second associated sequence. This property has not been noticed. More recently [7], the first author studied the second-order self-associated sequences in the case where they are positive definite.

Here, we will describe all the orthogonal sequences which are identical to their second associated sequence. Such a sequence depends on three parameters (τ, v, ε), where $\tau \in \mathbb{C}$, $v \in \mathbb{C}-\{-1,1\}$, and $\varepsilon^{2}=1$.

When $\tau=0$, we obtain the so-called electrospheric polynomials. When $|\tau| \leq \min (1,|v|)$, we have the positive definite case.

In Section 2, we deal with general features. Section 3 is devoted to the classification of second-order self-associated sequences. In Section 4, we carry out the quadratic decomposition of second-order self-associated sequences. This section is necessary for determining the useful materials needed in Section 5 in which we establish the structure relation between any second-order self-associated sequence and the differential equation fulfilled by any polynomial of such a sequence. Finally, in Section 6, we give the integral representation and the moments of the corresponding forms.

2. Preliminary results

2.1. Computing forms and Stieltjes function. Let \mathscr{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathscr{P}^{\prime} be its dual. We denote by $\langle u, f\rangle$ the action of $u \in \mathscr{P}^{\prime}$
on $f \in \mathscr{P}$. In particular, we denote by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geq 0$, the moments of u. For any form u and any polynomial h, we let $D u=u^{\prime}$ and $h u$ be the forms defined by duality:

$$
\begin{equation*}
\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle, \quad\langle h u, f\rangle:=\langle u, h f\rangle, \quad f \in \mathscr{P} . \tag{2.1}
\end{equation*}
$$

We recall the definition of right multiplication of a form by a polynomial:

$$
\begin{equation*}
(u p)(x):=\left\langle u, \frac{x p(x)-\xi p(\xi)}{x-\xi}\right\rangle, \quad u \in \mathscr{P}^{\prime}, p \in \mathscr{P} . \tag{2.2}
\end{equation*}
$$

By duality, we obtain the Cauchy's product of two forms:

$$
\begin{equation*}
\langle u v, p\rangle:=\langle u, v p\rangle, \quad u, v \in \mathscr{P}^{\prime}, p \in \mathscr{P} . \tag{2.3}
\end{equation*}
$$

We define [1] the form $(x-c)^{-1} u, c \in \mathbb{C}$, through

$$
\begin{equation*}
\left\langle(x-c)^{-1} u, p\right\rangle:=\left\langle u, \theta_{c} p\right\rangle, \tag{2.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(\theta_{c} p\right)(x):=\frac{p(x)-p(c)}{x-c}, \quad u \in \mathscr{P}^{\prime}, p \in \mathscr{P} . \tag{2.5}
\end{equation*}
$$

From the definitions, we have $\left(u \theta_{0} f\right)(x)=\langle u,(f(x)-f(\xi)) /(x-\xi)\rangle, u \in \mathscr{P}^{\prime}, f \in \mathscr{P}$.
Hence, $W_{n}^{(1)}(x)=\left(w_{0} \theta_{0} W_{n+1}\right)(x)$.
We introduce the operator $\sigma: \mathscr{P} \rightarrow \mathscr{P}$ defined by $(\sigma f)(x):=f\left(x^{2}\right)$ for all $f \in \mathscr{P}$. By transposition, we define σu by duality:

$$
\begin{equation*}
\langle\sigma u, f\rangle=\langle u, \sigma f\rangle, \quad \forall u \in \mathscr{P}^{\prime}, \forall f \in \mathscr{P} . \tag{2.6}
\end{equation*}
$$

Consequently, $(\sigma u)_{n}=(u)_{2 n}$. The following results are fundamental [1, 13].
Lemma 2.1. For any $f, g \in \mathscr{P}, u, v \in \mathscr{P}^{\prime}$, and $c \in \mathbb{C}$,

$$
\begin{gather*}
f(x)(u v)=(f(x) v) u+x\left(v \theta_{0} f\right)(x) u, \tag{2.7}\\
(x-c)^{-1}(f u)=f(c)\left((x-c)^{-1} u\right)+\left(\theta_{c} f\right) u-\left\langle u, \theta_{c} f\right\rangle \delta_{c} \quad\left(\left\langle\delta_{c}, f\right\rangle=f(c)\right), \tag{2.8}\\
f\left((x-c)^{-1} u\right)=f(c)\left((x-c)^{-1} u\right)+\left(\theta_{c} f\right) u, \tag{2.9}\\
(f u)^{\prime}=f u^{\prime}+f^{\prime} u, \tag{2.10}\\
\left(u \theta_{0} f\right)(x)=\left(\theta_{0} u f\right)(x), \tag{2.11}\\
f(x) \sigma u=\sigma\left(f\left(x^{2}\right) u\right), \tag{2.12}\\
2(\sigma u)^{\prime}=\sigma\left(\left(x^{-1} u\right)^{\prime}\right), \tag{2.13}\\
\sigma u^{\prime}=2\left(\sigma(x u)^{\prime} .\right. \tag{2.14}
\end{gather*}
$$

We will also use the so-called formal Stieltjes function associated with $u \in \mathscr{P}^{\prime}$ and defined by

$$
\begin{equation*}
S(u)(z):=-\sum_{n \geq 0} \frac{(u)_{n}}{z^{n+1}} . \tag{2.15}
\end{equation*}
$$

Lemma 2.2. For any $f \in \mathscr{P}$ and $u, v \in \mathscr{P}^{\prime}$ [13],

$$
\begin{align*}
S(f u)(z) & =f(z) S(u)(z)+\left(u \theta_{0} f\right)(z), \\
S\left(u^{\prime}\right)(z) & =S^{\prime}(u)(z), \\
S(u v)(z) & =-z S(u)(z) S(v)(z), \tag{2.16}\\
S\left(u^{n}\right)(z) & =(-1)^{n-1} z^{n-1}(S(u)(z))^{n}, \quad n \geq 1, \\
S\left(x^{-n} u\right)(z) & =z^{-n} S(u)(z), \quad n \geq 1 .
\end{align*}
$$

2.2. Dual sequences and orthogonal sequences. Let $\left\{W_{n}\right\}_{n \geq 0}$ be a monic polynomials sequence (MPS), $\operatorname{deg} W_{n}=n, n \geq 0$, and let $\left\{w_{n}\right\}_{n \geq 0}$ be its dual sequence, $w_{n} \in \mathscr{P}^{\prime}$, defined by $\left\langle w_{n}, W_{m}\right\rangle:=\delta_{n, m}, n, m \geq 0$. The sequence $\left\{W_{n}^{(1)}\right\}_{n \geq 0}$ defined by

$$
\begin{equation*}
W_{n}^{(1)}(x):=\left\langle w_{0}, \frac{W_{n+1}(x)-W_{n+1}(\xi)}{x-\xi}\right\rangle, \quad n \geq 0 \tag{2.17}
\end{equation*}
$$

is called an associated sequence of $\left\{W_{n}\right\}_{n \geq 0}$ (with respect to w_{0}). Any polynomial $W_{n}^{(1)}$ is monic and $\operatorname{deg} W_{n}^{(1)}=n$. We denote by $\left\{w_{n}^{(1)}\right\}_{n \geq 0}$ the dual sequence of $\left\{W_{n}^{(1)}\right\}_{n \geq 0}$.

The dual sequence $\left\{w_{n}^{(1)}\right\}_{n \geq 0}$ is given by [8]

$$
\begin{equation*}
w_{n}^{(1)}=\left(x w_{n+1}\right) w_{0}^{-1}, \quad n \geq 0, \tag{2.18}
\end{equation*}
$$

where w^{-1} exists if and only if $(w)_{0} \neq 0$ and then $w w^{-1}=\delta\left(\delta=\delta_{0}\right.$ is the Dirac measure at origin).

The form w is called regular if we can associate with it an MPS $\left\{W_{n}\right\}_{n \geq 0}$ such that

$$
\begin{equation*}
\left\langle w, W_{m} W_{n}\right\rangle=r_{n} \delta_{n, m}, \quad n, m \geq 0, r_{n} \neq 0, n \geq 0 . \tag{2.19}
\end{equation*}
$$

The sequence $\left\{W_{n}\right\}_{n \geq 0}$ is orthogonal with respect to w; it is a monic orthogonal polynomials sequence (MOPS). Necessarily, $w=\lambda w_{0}, \lambda \neq 0$. In this case, we have $w_{n}=$ $\left(\left\langle w_{0}, W_{n}^{2}\right\rangle\right)^{-1} W_{n} w_{0}, n \geq 0$, and $\left\{W_{n}\right\}_{n \geq 0}$ fulfils the following second-order recurrence relation:

$$
\begin{gather*}
W_{0}(x)=1, \quad W_{1}(x)=x-\beta_{0} \\
W_{n+2}(x)=\left(x-\beta_{n+1}\right) W_{n+1}(x)-\gamma_{n+1} W_{n}(x), \quad n \geq 0 . \tag{2.20}
\end{gather*}
$$

140 The second-order self-associated orthogonal sequences
Likewise, the sequence $\left\{W_{n}^{(1)}\right\}_{n \geq 0}$ verifies the recurrence relation

$$
\begin{gather*}
W_{0}^{(1)}(x)=1, \quad W_{1}^{(1)}(x)=x-\beta_{1}, \\
W_{n+2}^{(1)}(x)=\left(x-\beta_{n+2}\right) W_{n+1}^{(1)}(x)-\gamma_{n+2} W_{n}^{(1)}(x), \quad n \geq 0, \tag{2.21}
\end{gather*}
$$

and it is orthogonal with respect to $w_{0}^{(1)}$, where [10]

$$
\begin{equation*}
\gamma_{1} w_{0}^{(1)}=-x^{2} w_{0}^{-1} . \tag{2.22}
\end{equation*}
$$

Through the formal Stieltjes function [16],

$$
\begin{equation*}
\gamma_{1} S\left(w_{0}^{(1)}\right)(z)=-\frac{1}{S\left(w_{0}\right)(z)}-\left(z-\beta_{0}\right) . \tag{2.23}
\end{equation*}
$$

The successive associated sequences are defined recursively:

$$
\begin{equation*}
W_{n}^{(r+1)}=\left(W_{n}^{(r)}\right)^{(1)}, \quad w_{n}^{(r+1)}=\left(w_{n}^{(r)}\right)^{(1)}, \quad n, r \geq 0 . \tag{2.24}
\end{equation*}
$$

The sequence $\left\{W_{n}^{(r+1)}\right\}_{n \geq 0}$ satisfies the recurrence relation

$$
\begin{gather*}
W_{0}^{(r+1)}(x)=1, \quad W_{1}^{(r+1)}(x)=x-\beta_{r+1}, \\
W_{n+2}^{(r+1)}(x)=\left(x-\beta_{n+r+2}\right) W_{n+1}^{(r+1)}(x)-\gamma_{n+r+2} W_{n}^{(r+1)}(x), \quad n \geq 0 . \tag{2.25}
\end{gather*}
$$

From (2.23), we have

$$
\begin{equation*}
\gamma_{n+r+1} S\left(w_{0}^{(n+r+1)}\right)(z)=-\frac{1}{S\left(w_{0}^{(n+r)}\right)(z)}-\left(z-\beta_{n+r}\right), \quad n, r \geq 0 . \tag{2.26}
\end{equation*}
$$

Hence, we get $[6,10,13]$

$$
\begin{equation*}
\gamma_{n+r+1} S\left(w_{0}^{(n+r+1)}\right)(z)=-\frac{W_{n}^{(r+1)}(z)+W_{n+1}^{(r)}(z) S\left(w_{0}^{(r)}\right)(z)}{W_{n-1}^{(r+1)}(z)+W_{n}^{(r)}(z) S\left(w_{0}^{(r)}\right)(z)}, \quad n, r \geq 0 . \tag{2.27}
\end{equation*}
$$

Let $\left\{W_{n}\right\}_{n \geq 0}$ be an MPS. It is always possible to associate with it two MPSs $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{R_{n}\right\}_{n \geq 0}, \operatorname{deg} P_{n}=\operatorname{deg} R_{n}=n, n \geq 0$, and two polynomials sequences $\left\{a_{n}(x)\right\}_{n \geq 0}$ and $\left\{b_{n}(x)\right\}_{n \geq 0}$ such that

$$
\begin{align*}
W_{2 n}(x) & =P_{n}\left(x^{2}\right)+x a_{n-1}\left(x^{2}\right), \tag{2.28}\\
W_{2 n+1}(x) & =x R_{n}\left(x^{2}\right)+b_{n}\left(x^{2}\right), \quad n \geq 0,
\end{align*}
$$

where $\operatorname{deg} a_{n} \leq n$ and $\operatorname{deg} b_{n} \leq n$.

Since $\operatorname{deg} P_{n}=\operatorname{deg} R_{n}=n, n \geq 0$, there exist two tables of coefficients $\left(\lambda_{\nu}^{n}\right)$ and $\left(\theta_{\nu}^{n}\right)$, $0 \leq v \leq n, n \geq 0$, such that

$$
\begin{align*}
& a_{n}(x)=\sum_{\nu=0}^{n} \lambda_{\nu}^{n} R_{n}(x), \quad n \geq 0 \\
& b_{n}(x)=\sum_{\nu=0}^{n} \theta_{\nu}^{n} P_{n}(x), \quad n \geq 0 \tag{2.29}
\end{align*}
$$

2.3. Semiclassical forms. Let Φ (monic) and Ψ be two polynomials ($\operatorname{deg} \Psi=p \geq 1$, $\operatorname{deg} \Phi=t$). A form w is called semiclassical when it is regular and satisfies the equation $[8,11]$

$$
\begin{equation*}
(\Phi w)^{\prime}+\Psi w=0 \tag{2.30}
\end{equation*}
$$

When w is semiclassical, the orthogonal sequence $\left\{W_{n}\right\}_{n \geq 0}$ is also called semiclassical.
The pair (Φ, Ψ) is not unique. Equation (2.30) can be simplified if and only if there exists a root c of Φ such that

$$
\begin{equation*}
\Psi(c)+\Phi^{\prime}(c)=0, \quad\left\langle w, \theta_{c} \Psi+\theta_{c}^{2} \Phi\right\rangle=0 . \tag{2.31}
\end{equation*}
$$

Then u fulfils the equation $\left(\left(\theta_{c} \Phi\right) w\right)^{\prime}+\left\{\theta_{c} \Psi+\theta_{c}^{2} \Phi\right\} w=0$.
We call the class of w the minimum value of the integer $\max (\operatorname{deg} \Phi-2, \operatorname{deg} \Psi-1)$ for all pairs satisfying (2.30). Given the pair $\left(\Phi_{0}, \Psi_{0}\right)$, the class $s \geq 0$ is unique. When $s=0$, the form w is classical (Hermite, Laguerre, Bessel, Jacobi).

When the form w is of class s, the orthogonal sequence associated with respect to w is known to be of class s.

The class of semiclassical forms is s if and only if the following condition is satisfied [11]:

$$
\begin{equation*}
\prod_{c \in \Theta}\left(\left|\Psi(c)+\Phi^{\prime}(c)\right|+\left|\left\langle w, \theta_{c} \Psi+\theta_{c}^{2} \Phi\right\rangle\right|\right) \neq 0 \tag{2.32}
\end{equation*}
$$

where $\Theta=\{c, \phi(c)=0\}$.
Lemma 2.3. Let w be a regular semiclassical form verifying (2.30). Let a be a root of Φ such that

$$
\begin{align*}
\left|\Psi(a)+\Phi^{\prime}(a)\right|+\left|\left\langle w, \theta_{a} \Psi+\theta_{a}^{2} \Phi\right\rangle\right| & =0, \tag{2.33}\\
\left|\Psi(c)+\Phi^{\prime}(c)\right|+\left|\left\langle w, \theta_{c} \Psi+\theta_{c}^{2} \Phi\right\rangle\right| & \neq 0, \tag{2.34}
\end{align*}
$$

for all c roots of Φ different from a. Then the form w satisfies the equation

$$
\begin{equation*}
\left(\Phi_{1} w\right)^{\prime}+\Psi_{1} w=0 \tag{2.35}
\end{equation*}
$$

where $\Phi_{1}=\theta_{a} \Phi$ and $\Psi_{1}=\theta_{a} \Psi+\theta_{a}^{2} \Phi$ such that

$$
\begin{equation*}
\left|\Psi_{1}(c)+\Phi_{1}^{\prime}(c)\right|+\left|\left\langle w, \theta_{c} \Psi_{1}+\theta_{c}^{2} \Phi_{1}\right\rangle\right| \neq 0 \tag{2.36}
\end{equation*}
$$

for all c roots of Φ different from a.
Proof. We suppose that there exists a root c of Φ different from a verifying

$$
\begin{equation*}
\Psi_{1}(c)+\Phi_{1}^{\prime}(c)=0, \quad\left\langle w, \theta_{c} \Psi_{1}+\theta_{c}^{2} \Phi_{1}\right\rangle=0 \tag{2.37}
\end{equation*}
$$

We have

$$
\begin{equation*}
\Phi(x)=(x-a) \Phi_{1}(x), \quad\left(\Psi+\Phi_{1}\right)(x)=(x-a) \Psi_{1}(x) ; \tag{2.38}
\end{equation*}
$$

then

$$
\begin{equation*}
\Psi(c)+\Phi^{\prime}(c)=(c-a)\left(\Psi_{1}(c)+\Phi_{1}^{\prime}(c)\right), \quad \theta_{c} \Psi+\theta_{c}^{2} \Phi=\Psi_{1}-(c-a)\left(\theta_{c} \Psi_{1}+\theta_{c}^{2} \Phi_{1}\right) \tag{2.39}
\end{equation*}
$$

On account of $\left\langle w, \Psi_{1}\right\rangle=0$, we deduce that $\Psi(c)+\Phi^{\prime}(c)=0$ and $\left\langle w, \theta_{c} \Psi+\theta_{c}^{2} \Phi\right\rangle=0$.
This contradicts the conditions given in (2.34).
2.4. Affine transformation. We define the linear operators τ_{b} and h_{a} in \mathscr{P}^{\prime} as follows:

$$
\begin{align*}
& \left\langle\tau_{b} u, p\right\rangle:=\left\langle u, \tau_{-b} p\right\rangle=\langle u, p(x+b)\rangle, \quad b \in \mathbb{C}, u \in \mathscr{P}^{\prime}, p \in \mathscr{P}, \\
& \left\langle h_{a} u, p\right\rangle:=\left\langle u, h_{a} p\right\rangle=\langle u, p(a x)\rangle, \quad a \in \mathbb{C}-\{0\}, u \in \mathscr{P}^{\prime}, p \in \mathscr{P} . \tag{2.40}
\end{align*}
$$

Let $\left\{W_{n}\right\}_{n \geq 0}$ be an MPS with its dual sequence $\left\{w_{n}\right\}_{n \geq 0}$. The dual sequence $\left\{\tilde{w}_{n}\right\}_{n \geq 0}$ of $\left\{\tilde{W}_{n}\right\}_{n \geq 0}$ with $\tilde{W}_{n}(x)=a^{-n} W_{n}(a x+b), n \geq 0, a \neq 0$, is given by $\tilde{w}_{n}=a^{n}\left(h_{a^{-1}} \circ \tau_{-b}\right) w_{n}$, $n \geq 0$.

Let $\left\{W_{n}\right\}_{n \geq 0}$ be an MOPS with respect to w. Then $\left\{\tilde{W}_{n}\right\}_{n \geq 0}$ is an MOPS with respect to $\tilde{w}=\left(h_{a^{-1}} \circ \tau_{-b}\right) w$. We have

$$
\begin{equation*}
\tilde{\beta}_{n}=\frac{\beta_{n}-b}{a}, \quad \tilde{\gamma}_{n+1}=\frac{\gamma_{n+1}}{a^{2}}, \quad n \geq 0 \tag{2.41}
\end{equation*}
$$

Lemma 2.4. For any $f \in \mathscr{P}, u, v \in \mathscr{P}^{\prime}$, and $(a, b) \in \mathbb{C}-\{0\} \times \mathbb{C}[8,13]$,

$$
\begin{align*}
\tau_{b}(f u) & =\left(\tau_{b} f\right)\left(\tau_{b} u\right), \tag{2.42}\\
h_{a}(f u) & =\left(h_{a^{-1}} f\right)\left(h_{a} u\right), \tag{2.43}\\
\tau_{b}(u v) & =\left(\tau_{b} u\right)\left(\tau_{b} v\right) \delta_{b}^{-1}, \tag{2.44}\\
h_{a}(u v) & =\left(h_{a} u\right)\left(h_{a} v\right) . \tag{2.45}
\end{align*}
$$

As a result, if w is a semiclassical form of class s satisfying (2.30), then the shifted form $\tilde{w}=\left(h_{a^{-1}} \circ \tau_{-b}\right) w$ is of class s satisfying the equation

$$
\begin{equation*}
(\tilde{\Phi} \tilde{w})^{\prime}+\tilde{\Psi} \tilde{w}=0, \tag{2.46}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\Phi}(x)=a^{-t} \Phi(a x+b), \quad \tilde{\Psi}(x)=a^{1-t} \Psi(a x+b) \tag{2.47}
\end{equation*}
$$

Lemma 2.5. Let $\left\{W_{n}\right\}_{n \geq 0}$ be an MPS, $\operatorname{deg} W_{n}=n, n \geq 0$, and let $\left\{w_{n}\right\}_{n \geq 0}$ be its dual sequence. For any $(a, b) \in \mathbb{C}-\{0\} \times \mathbb{C}$,

$$
\begin{align*}
& \tau_{b}\left(w_{n}^{(1)}\right)=\left(\tau_{b} w_{n}\right)^{(1)}, \tag{2.48}\\
& h_{a}\left(w_{n}^{(1)}\right)=\left(h_{a} w_{n}\right)^{(1)} . \tag{2.49}
\end{align*}
$$

Proof. By multiplying the two sides of (2.18) by the form w_{0}, we obtain

$$
\begin{equation*}
w_{n}^{(1)} w_{0}=x w_{n+1} . \tag{2.50}
\end{equation*}
$$

By introducing the operator τ_{b} in the last expression, from (2.42) and (2.44), we obtain

$$
\begin{equation*}
\left(\tau_{b}\left(w_{n}^{(1)}\right)\right)\left(\tau_{b} w_{0}\right)=\left((x-b)\left(\tau_{b} w_{n+1}\right)\right) \delta_{b} . \tag{2.51}
\end{equation*}
$$

From (2.7),

$$
\begin{align*}
\left(\tau_{b}\left(w_{n}^{(1)}\right)\right)\left(\tau_{b} w_{0}\right)= & \left((x-b) \delta_{b}\right)\left(\tau_{b} w_{n+1}\right)+x\left(\tau_{b} w_{n+1}\right) \\
& -x\left(\left(\left(\tau_{b} w_{n+1}\right) \theta_{0}(\xi-b)\right)(x)\right) \delta_{b} . \tag{2.52}
\end{align*}
$$

Since

$$
\begin{equation*}
(x-b) \delta_{b}=0, \quad\left(\left(\tau_{b} w_{n+1}\right) \theta_{0}(\xi-b)\right)(x)=0, \quad n \geq 0 \tag{2.53}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\tau_{b}\left(w_{n}^{(1)}\right)\right)\left(\tau_{b} w_{0}\right)=x\left(\tau_{b} w_{n+1}\right), \quad n \geq 0 \tag{2.54}
\end{equation*}
$$

or

$$
\begin{equation*}
\tau_{b}\left(w_{n}^{(1)}\right)=\left(x\left(\tau_{b} w_{n+1}\right)\right)\left(\tau_{b} w_{0}\right)^{-1}, \quad n \geq 0 . \tag{2.55}
\end{equation*}
$$

From (2.18) and (2.55), we deduce (2.48).

To prove (2.48), we introduce the operator h_{a} in the expression (2.50). From (2.43) and (2.45), we give

$$
\begin{equation*}
\left(h_{a}\left(w_{n}^{(1)}\right)\right)\left(h_{a} w_{0}\right)=a^{-1} x\left(h_{a} w_{n+1}\right), \quad n \geq 0 \tag{2.56}
\end{equation*}
$$

But

$$
\begin{equation*}
\left(a^{-n} h_{a} w_{n}\right)^{(1)}=x\left(a^{-(n+1)} h_{a} w_{n+1}\right)\left(h_{a} w_{0}\right)^{-1}, \quad n \geq 0 . \tag{2.57}
\end{equation*}
$$

From (2.18) and (2.57), we deduce (2.49).
2.5. Second-degree forms. The form w is a second-degree form [13] if it is regular and if there exist polynomials B and C such that

$$
\begin{equation*}
B(z) S^{2}(w)(z)+C(z) S(w)(z)+D(z)=0 \tag{2.58}
\end{equation*}
$$

where D depends on B, C, and w.
The regularity of w means that we must have

$$
\begin{equation*}
B \neq 0, \quad C^{2}-4 B D \neq 0, \quad D \neq 0 \tag{2.59}
\end{equation*}
$$

The following expressions are equivalent to (2.58), [13]:

$$
\begin{equation*}
B(x) w^{2}=x C(x) w, \quad\left\langle w^{2}, \theta_{0} B\right\rangle=\langle w, C\rangle . \tag{2.60}
\end{equation*}
$$

In the sequel, we will assume B to be monic and we will be looking for any regular form w verifying $(w)_{0}=1$.

A second-degree form w is a semiclassical form and satisfies (2.30), where [13]

$$
\begin{gather*}
k \phi(x)=B(x)\left(C^{2}(x)-4 B(x) D(x)\right), \quad \phi \text { monic, } k \neq 0, \\
k \psi(x)=-\frac{3}{2} B(x)\left(C^{2}(x)-4 B(x) D(x)\right)^{\prime} . \tag{2.61}
\end{gather*}
$$

3. The second-order self-associated orthogonal sequences and their classification

In this section, we quote the second-order self-associated sequences following the class of their corresponding canonical forms.

Definition 3.1. Let any integer $m \geq 1$ be fixed. Then the MOPS $\left\{W_{n}\right\}_{n \geq 0}$ is called an m order self-associated polynomials sequence when it fulfils

$$
\begin{equation*}
W_{n}^{(m)}=W_{n}, \quad n \geq 0 . \tag{3.1}
\end{equation*}
$$

In this case, the form w_{0} is also called an m-order self-associated form. See also [14, 15].

Then w_{0} satisfies

$$
\begin{equation*}
w_{0}^{(m)}=w_{0} . \tag{3.2}
\end{equation*}
$$

From (3.1), the coefficients of (2.20) are given by

$$
\begin{equation*}
\beta_{n+m}=\beta_{n}, \quad \gamma_{n+m+1}=\gamma_{n+1}, \quad n \geq 0 . \tag{3.3}
\end{equation*}
$$

The case $m=1$ is well known; w_{0} is the Tchebychev form of the second kind.
According to Lemma 2.5, we give the following result.
Proposition 3.2. Let $\left\{W_{n}\right\}_{n \geq 0}$ be an m-order self-associated MPS, $\operatorname{deg} W_{n}=n, n \geq 0$, and let $\left\{w_{n}\right\}_{n \geq 0}$ be its dual sequence. Then the shifted sequence form $\left\{\tilde{w}_{n}\right\}_{n \geq 0}$ fulfils

$$
\begin{equation*}
\tilde{w}_{n}^{(m)}=\tilde{w}_{n}, \quad m \in \mathbb{N}-\{0\}, n \geq 0, \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{w}_{n}=a^{n}\left(h_{a^{-1}} \circ \tau_{-b}\right) w_{n}, \quad b \in \mathbb{C}, a \in \mathbb{C}-\{0\}, n \geq 0 . \tag{3.5}
\end{equation*}
$$

The object of this subject is to treat the case where $m=2$ by describing all the secondorder self-associated polynomials sequences and their classification. We denote by $\left\{Z_{n}\right\}_{n \geq 0}$ these polynomials sequences and $\left\{z_{n}\right\}_{n \geq 0}$ their dual sequences. From (3.3), we get

$$
\begin{equation*}
\beta_{n+2}=\beta_{n}, \quad \gamma_{n+3}=\gamma_{n+1}, \quad n \geq 0 . \tag{3.6}
\end{equation*}
$$

This implies

$$
\begin{array}{rlll}
\beta_{2 n}=\beta_{0}, & \beta_{2 n+1}=\beta_{1}, & n \geq 0, \\
\gamma_{2 n+1}=\gamma_{1}, & \gamma_{2 n+2}=\gamma_{2}, & n \geq 0 . \tag{3.7}
\end{array}
$$

For $\alpha=(1 / 2)\left(\beta_{0}+\beta_{1}\right), \beta=(1 / 2)\left(\beta_{0}-\beta_{1}\right), \lambda=(1 / 2)\left(\gamma_{2}+\gamma_{1}\right), \mu=(1 / 2)\left(\gamma_{1}-\gamma_{2}\right), n \geq 0$, we have

$$
\begin{align*}
& \beta_{n}=\alpha+(-1)^{n} \beta, \quad n \geq 0,(\alpha, \beta) \in \mathbb{C}^{2}, \\
& \gamma_{n+1}=\lambda+(-1)^{n} \mu, \quad n \geq 0,(\lambda, \mu) \in \mathbb{C}^{2}, \lambda^{2} \neq \mu^{2} . \tag{3.8}
\end{align*}
$$

By means of (2.23), we have

$$
\begin{align*}
& \gamma_{2} S\left(z_{0}^{(2)}\right)(z)=-\frac{1}{S\left(z_{0}^{(1)}\right)(z)}-\left(z-\beta_{1}\right) \tag{3.9}\\
& \gamma_{1} S\left(z_{0}^{(1)}\right)(z)=-\frac{1}{S\left(z_{0}\right)(z)} d-\left(z-\beta_{0}\right) \tag{3.10}
\end{align*}
$$

Substituting (3.10) into (3.9), we obtain

$$
\begin{equation*}
\gamma_{2} S\left(z_{0}^{(2)}\right)(z)=\frac{\gamma_{1} S\left(z_{0}\right)(z)}{1+\left(z-\beta_{0}\right) S\left(z_{0}\right)(z)}-\left(z-\beta_{1}\right) . \tag{3.11}
\end{equation*}
$$

Since

$$
\begin{equation*}
z_{0}^{(2)}=z_{0} \tag{3.12}
\end{equation*}
$$

relation (3.11) becomes

$$
\begin{equation*}
\left(z-\beta_{0}\right) S^{2}\left(z_{0}\right)(z)+\frac{1}{\gamma_{2}}\left(\gamma_{2}-\gamma_{1}+\left(z-\beta_{0}\right)\left(z-\beta_{1}\right)\right) S\left(z_{0}\right)(z)+\frac{1}{\gamma_{2}}\left(z-\beta_{1}\right)=0 . \tag{3.13}
\end{equation*}
$$

From (3.8), we get

$$
\begin{equation*}
(z-\alpha-\beta) S^{2}\left(z_{0}\right)(z)+\frac{1}{\lambda-\mu}\left(z^{2}-2 \alpha z+\alpha^{2}-\beta^{2}-2 \mu\right) S\left(z_{0}\right)(z)+\frac{1}{\lambda-\mu}(z-\alpha+\beta)=0 \tag{3.14}
\end{equation*}
$$

Thus, the form z_{0} is a second-degree form [10, 14, 15].
It is also a semiclassical form of class $s \leq 3$, satisfying the functional equation (2.30) with

$$
\begin{align*}
& \Phi(x)=(x-(\alpha+\beta))\left(\left((x-\alpha)^{2}-2 \lambda-\beta^{2}\right)^{2}-4\left(\lambda^{2}-\mu^{2}\right)\right), \tag{3.15}\\
& \Psi(x)=-6(x-\alpha)(x-(\alpha+\beta))\left((x-\alpha)^{2}-2 \lambda-\beta^{2}\right) .
\end{align*}
$$

Let δ_{1}, δ_{2} be two complex numbers such that

$$
\begin{equation*}
\delta_{1}^{2}=2 \lambda+\beta^{2}+2 \sqrt{\lambda^{2}-\mu^{2}}, \quad \delta_{2}^{2}=2 \lambda+\beta^{2}-2 \sqrt{\lambda^{2}-\mu^{2}} . \tag{3.16}
\end{equation*}
$$

The polynomial Φ becomes

$$
\begin{equation*}
\Phi(x)=(x-\alpha-\beta)\left(x-\alpha-\delta_{1}\right)\left(x-\alpha+\delta_{1}\right)\left(x-\alpha-\delta_{2}\right)\left(x-\alpha+\delta_{2}\right) . \tag{3.17}
\end{equation*}
$$

We remark that $\delta_{1}^{2}-\delta_{2}^{2}=4 \sqrt{\lambda^{2}-\mu^{2}}$. The regularity of z_{0} leads to $\lambda^{2} \neq \mu^{2}$. Then $\delta_{1}^{2} \neq \delta_{2}^{2}$; so necessarily one of these values is different from zero. We can suppose that $\delta_{1} \neq 0$.

We make a suitable shift such that $\alpha=0$ and $\delta_{1}=1$. With $\beta=\tau$ and $\delta_{2}=v$, from (3.16), we have $\lambda=(1 / 4)\left(1-2 \tau^{2}+v^{2}\right)$ and $\mu=(1 / 2) \varepsilon \varsigma_{\tau, v}, \varepsilon= \pm 1$, where

$$
\begin{equation*}
\varsigma_{\tau, v}=\sqrt{\left(\tau^{2}-1\right)\left(\tau^{2}-v^{2}\right)} . \tag{3.18}
\end{equation*}
$$

Therefore, (3.14) becomes

$$
\begin{equation*}
(z-\tau) S^{2}\left(z_{0}\right)(z)+\frac{1}{\gamma_{2}}\left(z^{2}-\tau^{2}-\varepsilon \varsigma_{\tau, v}\right) S\left(z_{0}\right)(z)+\frac{1}{\gamma_{2}}(z+\tau)=0, \tag{3.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{2}=\frac{1}{4}\left(1-2 \tau^{2}+v^{2}-2 \varepsilon \varsigma_{\tau, v}\right) . \tag{3.20}
\end{equation*}
$$

The functional equation fulfilled by the form z_{0} becomes

$$
\begin{equation*}
\left(\Phi z_{0}\right)^{\prime}+\Psi z_{0}=0 \tag{3.21}
\end{equation*}
$$

where

$$
\begin{align*}
& \Phi(x)=(x-\tau)\left(x^{2}-1\right)\left(x^{2}-v^{2}\right), \tag{3.22}\\
& \Psi(x)=-3 x(x-\tau)\left(2 x^{2}-1-v^{2}\right) . \tag{3.23}
\end{align*}
$$

Proposition 3.3. Let $\left\{Z_{n}\right\}_{n \geq 0}$ be a second-order self-associated polynomials sequence with respect to z_{0}. Then there exists $(\tau, v) \in \mathbb{C}^{2}, v^{2} \neq 1$, such that

$$
\begin{gather*}
Z_{0}(x)=1, \quad Z_{1}(x)=x-\tau \\
Z_{n+2}(x)=\left(x-(-1)^{n+1} \tau\right) Z_{n+1}(x)-\left(\frac{1}{4}\left(1-2 \tau^{2}+v^{2}\right)+\frac{(-1)^{n}}{2} \varepsilon \varsigma_{\tau, v}\right) Z_{n}(x), \quad n \geq 0 \tag{3.24}
\end{gather*}
$$

The form z_{0} is a semiclassical form of class $s \leq 3$ and satisfies the functional equation (3.21), with the following initial conditions:

$$
\begin{gather*}
\left\langle z_{0}, 1\right\rangle=1, \quad\left\langle z_{0}, x\right\rangle=\tau, \quad\left\langle z_{0}, x^{2}\right\rangle=\frac{1}{4}\left(1+2 \tau^{2}+v^{2}\right)+\frac{1}{2} \varepsilon \varsigma_{\tau, v}, \tag{3.25}\\
\left\langle z_{0}, x^{3}\right\rangle=\tau\left\langle z_{0}, x^{2}\right\rangle .
\end{gather*}
$$

Noting that the sequence $\left\{Z_{n}^{(1)}\right\}_{n \geq 0}$ is also a second-order self-associated sequence,

$$
\begin{equation*}
\left(Z_{n}(\tau, v, \varepsilon ; x)\right)^{(1)}=Z_{n}(-\tau, v,-\varepsilon ; x), \quad n \geq 0 \tag{3.26}
\end{equation*}
$$

Proof. Let $\left\{W_{n}\right\}_{n \geq 0}$ be an MOPS satisfying (2.20) with respect to w_{0}. Generally, we have

$$
\begin{equation*}
\left\langle w_{0}, x\right\rangle=\beta_{0}, \quad\left\langle w_{0}, x^{2}\right\rangle=\beta_{0}^{2}+\gamma_{1}, \quad\left\langle w_{0}, x^{3}\right\rangle=\beta_{0}^{3}+2 \beta_{0} \gamma_{1}+\beta_{1} \gamma_{1} \tag{3.27}
\end{equation*}
$$

By means of relations (3.8), (3.22), and (3.23), we deduce the result.
In the sequel, we quote all the second-order self-associated MPSs $\left\{Z_{n}\right\}_{n \geq 0}$. For this, we need the following lemma. Let c be a root of Φ. We have $c \in\{-1,1, \tau,-v, v\}$.

Lemma 3.4. Let $\left\{Z_{n}\right\}_{<n \geq 0}$ be a second-order self-associated polynomials sequence with respect to z_{0}. The expressions $\Phi^{\prime}(c)+\Psi(c)$ and $\left\langle z_{0}, \theta_{c}^{2} \Phi+\theta_{c} \Psi\right\rangle$ are given for all c roots of Φ in Table 3.1.

Proof. From (3.22) and (3.23), a simple calculation gives us the values of $\Phi^{\prime}(c)+\Psi(c)$ for all c roots of Φ.

Table 3.1

Roots of Φ	$\Phi^{\prime}(c)+\Psi(c)$	$\left\langle z_{0}, \theta_{c}^{2} \Phi+\theta_{c} \Psi\right\rangle$
1	$(\tau-1)\left(1-v^{2}\right)$	$2\left(\tau^{2}-1-\varepsilon \varsigma_{\tau, v}\right)$
-1	$-(\tau+1)\left(1-v^{2}\right)$	$-2\left(\tau^{2}-1-\varepsilon \varsigma_{\tau, v}\right)$
v	$-v(v-\tau)\left(v^{2}-1\right)$	$2 v\left(\tau^{2}-v^{2}-\varepsilon \varsigma_{\tau, v}\right)$
$-v$	$-v(v+\tau)\left(v^{2}-1\right)$	$-2 v\left(\tau^{2}-v^{2}-\varepsilon \varsigma_{\tau, v}\right)$
τ	$\left(\tau^{2}-1\right)\left(\tau^{2}-v^{2}\right)$	$-2 \tau \varepsilon \sqrt{\left(\tau^{2}-1\right)\left(\tau^{2}-v^{2}\right)}$

For calculating $\left\langle z_{0}, \theta_{c}^{2} \Phi+\theta_{c} \Psi\right\rangle$, we must initially calculate the polynomials $\left(\theta_{c}^{2} \Phi+\right.$ $\left.\theta_{c} \Psi\right)(x)$ explicitly. Through definition (3.1) and (3.22), (3.23), we have

$$
\begin{align*}
\left(\theta_{1}^{2} \Phi+\theta_{1} \Psi\right)(x) & =-5 x^{3}+(5 \tau-4) x^{2}+\left(2 v^{2}+4 \tau-1\right) x+v^{2}-2 v^{2} \tau+\tau-1, \\
\left(\theta_{-1}^{2} \Phi+\theta_{-1} \Psi\right)(x) & =-5 x^{3}+(5 \tau+4) x^{2}+\left(2 v^{2}-4 \tau-1\right) x-v^{2}-2 v^{2} \tau+\tau+1, \\
\left(\theta_{\tau}^{2} \Psi+\theta_{\tau} \Psi\right)(x) & =-5 x^{3}+\tau x^{2}+\left(2 v^{2}+\tau^{2}+2\right) x+\tau^{3}-\tau v^{2}-\tau \tag{3.28}\\
\left(\theta_{v}^{2} \Phi+\theta_{v} \Psi\right)(x) & =-5 x^{3}+(5 \tau-4 v) x^{2}+\left(4 \tau v-v^{2}+2\right) x+\tau v^{2}-v^{3}+v-2 \tau, \\
\left(\theta_{-v}^{2} \Phi+\theta_{-v} \Psi\right)(x) & =-5 x^{3}+(5 \tau+4 v) x^{2}+\left(-4 \tau v-v^{2}+2\right) x+\tau v^{2}+v^{3}-v-2 \tau .
\end{align*}
$$

From the expressions of the moments $\left(z_{0}\right)_{k}, 0 \leq k \leq 3$, given by (3.25), and relations (3.28), we deduce the results of Table 3.1.

Proposition 3.5. Let $\left\{Z_{n}\right\}_{n \geq 0}$ be a second-order self-associated MPS with respect to z_{0} (remember that the regularity of z_{0} means $v^{2} \neq 1$). Denoting by s the class of z_{0},
(a) if $\tau^{2} \neq 1, \tau^{2} \neq v^{2}$, and $v \neq 0$, so $s=3$ and z_{0} is given by (3.21), (3.22), (3.23), (3.24), and (3.25);
(b) if $v \neq 0$ and $\tau=1$, so $s=2$ and z_{0} is given by

$$
\begin{equation*}
\left(\left(x^{2}-1\right)\left(x^{2}-v^{2}\right) z_{0}\right)^{\prime}+\left(-5 x^{3}+x^{2}+\left(3+2 v^{2}\right) x-v^{2}\right) z_{0}=0, \tag{3.29}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(z_{0}\right)_{1}=1, \quad\left(z_{0}\right)_{2}=\frac{1}{4}\left(v^{2}+3\right) \tag{3.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n}=(-1)^{n}, \quad \gamma_{n+1}=\frac{v^{2}-1}{4}, \quad v^{2} \neq 1, v \neq 0, n \geq 0 \tag{3.31}
\end{equation*}
$$

(c) if $v=0, \tau^{2} \neq 1$, and $\tau \neq 0$, so $s=2$ and z_{0} is given by

$$
\begin{equation*}
\left(x(x-\tau)\left(x^{2}-1\right) z_{0}\right)^{\prime}+(x-\tau)\left(-5 x^{2}+2\right) z_{0}=0 \tag{3.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(z_{0}\right)_{1}=\tau, \quad\left(z_{0}\right)_{2}=\frac{1}{4}\left(1+2 \tau^{2}\right)+\frac{1}{2} \varepsilon \tau \sqrt{\left(\tau^{2}-1\right)} \tag{3.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n}=(-1)^{n} \tau, \quad \gamma_{n+1}=-\frac{1}{4}\left(\tau-(-1)^{n} \varepsilon \sqrt{\tau^{2}-1}\right)^{2}, \quad \tau^{2} \neq 1, \tau \neq 0, n \geq 0 \tag{3.34}
\end{equation*}
$$

(d) if $v=0$ and $\tau=1$, so $s=1$ and z_{0} is given by

$$
\begin{gather*}
\left(x\left(x^{2}-1\right) z_{0}\right)^{\prime}+\left(-4 x^{2}+x+2\right) z_{0}=0, \quad\left(z_{0}\right)_{1}=1 \\
\beta_{n}=(-1)^{n}, \quad \gamma_{n+1}=-\frac{1}{4}, \quad n \geq 0 \tag{3.35}
\end{gather*}
$$

(e) if $v=0$ and $\tau=0$, so $s=0$ and z_{0} is the Tchebychev form of the second kind [10, 12, 13], given by

$$
\begin{gather*}
\left(\left(x^{2}-1\right) z_{0}\right)^{\prime}-3 x z_{0}=0, \tag{3.36}\\
\beta_{n}=0, \quad \gamma_{n+1}=\frac{1}{4}, \quad n \geq 0 . \tag{3.37}
\end{gather*}
$$

Proof. (a) In the case $\tau^{2} \neq 1, \tau^{2} \neq v^{2}$, and $v \neq 0$ and from Table 3.1, we have

$$
\begin{equation*}
\left|\Psi(c)+\Phi^{\prime}(c)\right|+\left|\left\langle z_{0}, \theta_{c} \Psi+\theta_{c}^{2} \Phi\right\rangle\right| \neq 0 \tag{3.38}
\end{equation*}
$$

for all c roots of Φ. Relation (2.32) is realized. Consequently, (3.21) is not simplified, so the form z_{0} is of class $s=3$.
(b) In the second case, the functional equation of z_{0} is given by

$$
\begin{equation*}
\left((x-1)\left(x^{2}-1\right)\left(x^{2}-v^{2}\right) z_{0}\right)^{\prime}-3 x(x-1)\left(2 x^{2}-1-v^{2}\right) z_{0}=0 . \tag{3.39}
\end{equation*}
$$

From Table 3.1, $\Psi(1)+\Phi^{\prime}(1)=0,\left\langle z_{0}, \theta_{1} \Psi+\theta_{1}^{2} \Phi\right\rangle=0$, and $\left|\Psi(c)+\Phi^{\prime}(c)\right|+\mid\left\langle z_{0}, \theta_{c} \Psi+\right.$ $\left.\theta_{c}^{2} \Phi\right\rangle \mid \neq 0$ for all $c \in\{-1, v,-v\}$.

Then this equation is simplified by $x-1$, and z_{0} fulfils

$$
\begin{equation*}
\left(\Phi_{1} z_{0}\right)^{\prime}+\Psi_{1} z_{0}=0 \tag{3.40}
\end{equation*}
$$

where $\Phi_{1}(x)=\left(x^{2}-1\right)\left(x^{2}-v^{2}\right)$ and $\Psi_{1}(x)=-5 x^{3}+x^{2}+\left(3+2 v^{2}\right) x-v^{2}$.
From Lemma 2.3,

$$
\begin{equation*}
\left|\Psi_{1}(c)+\Phi_{1}^{\prime}(c)\right|+\left|\left\langle z_{0}, \theta_{c} \Psi_{1}+\theta_{c}^{2} \Phi_{1}\right\rangle\right| \neq 0 \tag{3.41}
\end{equation*}
$$

for all $c \in\{-1, v,-v\}$; and taking into account $\Psi_{1}(1)+\Phi_{1}^{\prime}(1)=\left(1-v^{2}\right) \neq 0$, we deduce the result.

When $v \neq 0$ and $\tau=-1, z_{0}$ satisfies the following equation and elements characteristics:

$$
\begin{equation*}
\left(\left(x^{2}-1\right)\left(x^{2}-v^{2}\right) z_{0}\right)^{\prime}+\left(-5 x^{3}-x^{2}+\left(3+2 v^{2}\right) x+v^{2}\right) z_{0}=0 \tag{3.42}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(z_{0}\right)_{1}=-1, \quad\left(z_{0}\right)_{2}=\frac{1}{4}\left(v^{2}+3\right) \tag{3.43}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n}=(-1)^{n+1}, \quad \gamma_{n+1}=\frac{v^{2}-1}{4}, \quad v^{2} \neq 1, v \neq 0, n \geq 0 . \tag{3.44}
\end{equation*}
$$

This form is of class $s=2$. Indeed, through a suitable shifting, we apply the operator h_{-1} in (3.42), (3.43), and (3.44). We obtain the previous case.

Likewise, if $v \neq 0$ and $\tau=v, z_{0}$ is given by

$$
\begin{equation*}
\left(\left(x^{2}-1\right)\left(x^{2}-v^{2}\right) z_{0}\right)^{\prime}+\left(-5 x^{3}+v x^{2}+\left(2+3 v^{2}\right) x-v\right) z_{0}=0 \tag{3.45}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(z_{0}\right)_{1}=v, \quad\left(z_{0}\right)_{2}=\frac{1}{4}\left(3 v^{2}+1\right) \tag{3.46}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n}=\frac{(-1)^{n}}{v}, \quad \gamma_{n+1}=\frac{1-v^{2}}{4}, \quad v^{2} \neq 1, v \neq 0, n \geq 0 . \tag{3.47}
\end{equation*}
$$

Applying the operator h_{v} in (3.45) and (3.47), then while replacing v by v^{-1}, we obtain again case (b).

By a similar calculation, if $v \neq 0$ and $\tau=-v$, then z_{0} is given by

$$
\begin{equation*}
\left(\left(x^{2}-1\right)\left(x^{2}-v^{2}\right) z_{0}\right)^{\prime}+\left(-5 x^{3}-v x^{2}+\left(2+3 v^{2}\right) x+v\right) z_{0}=0 \tag{3.48}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(z_{0}\right)_{1}=-v, \quad\left(z_{0}\right)_{2}=\frac{1}{4}\left(3 v^{2}+1\right), \tag{3.49}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n}=(-1)^{n+1} v, \quad \gamma_{n+1}=\frac{1-v^{2}}{4}, \quad v^{2} \neq 1, v \neq 0, n \geq 0 . \tag{3.50}
\end{equation*}
$$

Applying the operator h_{-v} in (3.48) and (3.50), then while replacing v by v^{-1}, we obtain again case (b).
(c) In this case, we have

$$
\begin{equation*}
\left(x^{2}(x-\tau)\left(x^{2}-1\right) z_{0}\right)^{\prime}-3 x(x-\tau)\left(2 x^{2}-1\right) z_{0}=0 . \tag{3.51}
\end{equation*}
$$

From Table 3.1, $\Psi(0)+\Phi^{\prime}(0)=0,\left\langle z_{0}, \theta_{0} \Psi+\theta_{0}^{2} \Phi\right\rangle=0$, and $\left|\Psi(c)+\Phi^{\prime}(c)\right|+\mid\left\langle z_{0}, \theta_{c} \Psi+\right.$ $\left.\theta_{c}^{2} \Phi\right\rangle \mid \neq 0$ for all $c \in\{-1,1, \tau\}$.

Then this equation is simplified by x, and z_{0} satisfies $\left(\Phi_{1} z_{0}\right)^{\prime}+\Psi_{1} z_{0}=0$, where

$$
\begin{equation*}
\Phi_{1}(x)=x(x-\tau)\left(x^{2}-1\right), \quad \Psi_{1}(x)=(x-\tau)\left(-5 x^{2}+2\right) . \tag{3.52}
\end{equation*}
$$

From Lemma 2.3, $\Psi_{1}(c)+\Phi_{1}^{\prime}(c)\left|+\left|\left\langle z_{0}, \theta_{c} \Psi_{1}+\theta_{c}^{2} \Phi_{1}\right\rangle\right| \neq 0\right.$ for all $c \in\{-1,1, \tau\}$; and taking into account $\Psi_{1}(0)+\Phi_{1}^{\prime}(0)=-\tau \neq 0$, we deduce the result.
(d) From Table 3.1, the equation $\left(x^{2}(x-1)\left(x^{2}-1\right) z_{0}\right)^{\prime}-3 x(x-1)\left(2 x^{2}-1\right) z_{0}=0$ is simplified twice by x and $x-1$. In the first place, we have

$$
\begin{equation*}
\left(x(x-1)\left(x^{2}-1\right) z_{0}\right)^{\prime}+(x-1)\left(-5 x^{2}+2\right) z_{0}=0 \tag{3.53}
\end{equation*}
$$

Next, we simplify once more by $x-1$, and we have $\left(\Phi_{2} z_{0}\right)^{\prime}+\Psi_{2} z_{0}=0$, where

$$
\begin{equation*}
\Phi_{2}(x)=x\left(x^{2}-1\right), \quad \Psi_{2}(x)=-4 x^{2}+x+2 \tag{3.54}
\end{equation*}
$$

Then we get $\Psi_{2}(0)+\Phi_{2}^{\prime}(0)=1 \neq 0$, and according to Lemma 2.3, z_{0} is a semiclassical form of class $s=1$, which satisfies (3.35).

If $v=0$ and $\tau=-1, z_{0}$ is given by

$$
\begin{gather*}
\left(x\left(x^{2}-1\right) z_{0}\right)^{\prime}+\left(-4 x^{2}-x+2\right) z_{0}=0, \quad\left(z_{0}\right)_{1}=-1 \\
\beta_{n}=(-1)^{n+1}, \quad \gamma_{n+1}=-\frac{1}{4}, \quad n \geq 0 . \tag{3.55}
\end{gather*}
$$

This form is of class $s=1$. In fact, applying the operator h_{-1} in (3.55), we have again case (d).
(e) Similarly, from Table 3.1, it is easy to prove that the equation is simplified by x^{3}. Therefore, z_{0} is a classical form given by (3.36).

4. Quadratic decomposition of the second-order self-associated orthogonal sequences

In order to build a structure relation and a differential equation related to second-order self-associated sequences, we want their quadratic decomposition given by (2.28). In [9],
the first author gave necessary and sufficient conditions for the sequences $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{R_{n}\right\}_{n \geq 0}$ to be orthogonal.

Proposition 4.1. Let $\left\{W_{n}\right\}_{n \geq 0}$ satisfy the recurrence relation (2.20), where

$$
\begin{equation*}
\beta_{n}=(-1)^{n} \beta_{0}, \quad n \geq 0 . \tag{4.1}
\end{equation*}
$$

Then there exist two MOPSs $\left\{P_{n}\right\}_{n \geq 0}$, with respect to u_{0}, and $\left\{R_{n}\right\}_{n \geq 0}$, with respect to v_{0}, fulfilling the following relations:

$$
\begin{gather*}
P_{0}(x)=1, \quad P_{1}(x)=x-\gamma_{1}-\beta_{0}^{2}, \\
P_{n+2}(x)=\left(x-\gamma_{2 n+2}-\gamma_{2 n+3}-\beta_{0}^{2}\right) P_{n+1}(x)-\gamma_{2 n+1} \gamma_{2 n+2} P_{n}(x), \quad n \geq 0, \tag{4.2}\\
R_{0}(x)=1, \quad R_{1}(x)=x-\gamma_{1}-\gamma_{2}-\beta_{0}^{2}, \\
R_{n+2}(x)=\left(x-\gamma_{2 n+3}-\gamma_{2 n+4}-\beta_{0}^{2}\right) R_{n+1}(x)-\gamma_{2 n+2} \gamma_{2 n+3} R_{n}(x), \quad n \geq 0, \tag{4.3}\\
P_{n+1}(x)=R_{n+1}(x)+\gamma_{2 n+2} R_{n}(x), \quad n \geq 0, \tag{4.4}\\
\left(x-\beta_{0}^{2}\right) R_{n}(x)=P_{n+1}(x)+\gamma_{2 n+1} P_{n}(x), \quad n \geq 0, \tag{4.5}
\end{gather*}
$$

since, in (2.28), $a_{n}(x)=0$ and $b_{n}(x)=-\beta_{0} R_{n}(x), n \geq 0$.
Moreover, the forms u_{0}, v_{0}, and w_{0} satisfy

$$
\begin{gather*}
u_{0}=\sigma w_{0}, \tag{4.6}\\
\sigma\left(x w_{0}\right)=\beta_{0}\left(\sigma w_{0}\right), \tag{4.7}\\
v_{0}=\frac{1}{\gamma_{1}}\left(x-\beta_{0}^{2}\right)\left(\sigma w_{0}\right) . \tag{4.8}
\end{gather*}
$$

Now, this result will be applied to $\left\{Z_{n}\right\}_{n \geq 0}$ which, by virtue of (3.24), fulfils (4.1) and

$$
\begin{gather*}
Z_{2 n}(x)=P_{n}\left(x^{2}\right), \tag{4.9}\\
Z_{2 n+1}(x)=(x-\tau) R_{n}\left(x^{2}\right) . \tag{4.10}
\end{gather*}
$$

From (3.24) and (4.2), the sequences $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{R_{n}\right\}_{n \geq 0}$ become

$$
\begin{align*}
P_{0}(x) & =1, \quad P_{1}(x)=x-\frac{1}{4}\left(1+v^{2}+2 \tau^{2}\right)-\frac{1}{2} \varepsilon \varsigma_{\tau, v}, \\
P_{n+2}(x) & =\left(x-\frac{1}{2}\left(1+v^{2}\right)\right) P_{n+1}(x)-\left(\frac{v^{2}-1}{4}\right)^{2} P_{n}(x), \quad n \geq 0, \tag{4.11}\\
R_{0}(x) & =1, \quad R_{1}(x)=x-\frac{1}{2}\left(1+v^{2}\right), \\
R_{n+2}(x) & =\left(x-\frac{1}{2}\left(1+v^{2}\right)\right) R_{n+1}(x)-\left(\frac{v^{2}-1}{4}\right)^{2} R_{n}(x), \quad n \geq 0 . \tag{4.12}
\end{align*}
$$

We remark that the sequence $\left\{P_{n}\right\}_{n \geq 0}$ is the corecursive sequence of $\left\{R_{n}\right\}_{n \geq 0}$ with the value $-\gamma_{2}=-(1 / 4)\left(1+v^{2}-2 \tau^{2}\right)+(1 / 2) \varepsilon \varsigma_{\tau, v}$. For the parameter $P_{n}(x)=R_{n}\left(-\gamma_{2} ; x\right)$, $n \geq 0$, we have

$$
\begin{equation*}
P_{n+1}=R_{n+1}+\gamma_{2} R_{n}^{(1)}=R_{n+1}+\gamma_{2} R_{n}, \quad n \geq 0 \tag{4.13}
\end{equation*}
$$

in accordance with (4.4). Moreover, (4.5) becomes

$$
\begin{equation*}
\left(x-\tau^{2}\right) R_{n}(x)=P_{n+1}(x)+\gamma_{1} P_{n}(x), \quad n \geq 0 . \tag{4.14}
\end{equation*}
$$

From (4.12), we easily see that

$$
\begin{equation*}
R_{n}(x)=a^{n} \hat{P}_{n}^{(1 / 2,1 / 2)}\left(a^{-1}(x-b)\right), \quad n \geq 0, a=\frac{1}{2}\left(v^{2}-1\right), b=\frac{1}{2}\left(1+v^{2}\right), \tag{4.15}
\end{equation*}
$$

where $\left\{\hat{P}_{n}^{(\alpha, \beta)}\right\}_{n \geq 0}$ is the monic Jacobi polynomials sequence, orthogonal with respect to the Jacobi form $\mathscr{f}(\alpha, \beta)$, with parameters α, β, see [11, 12], fulfilling the following equation:

$$
\begin{equation*}
\left(\left(x^{2}-1\right) \mathscr{\mathscr { F }}(\alpha, \beta)\right)^{\prime}+(-(\alpha+\beta+2) x+\alpha-\beta) \mathscr{\mathscr { L }}(\alpha, \beta)=0, \quad(\mathscr{F}(\alpha, \beta))_{0}=1 . \tag{4.16}
\end{equation*}
$$

Usually, $\mathscr{F}(1 / 2,1 / 2)$ is denoted by \mathscr{U} which fulfils (3.36), and $\left\{\hat{P}_{n}^{(1 / 2,1 / 2)}(x)\right\}_{n \geq 0}$ is defined by (3.37).

Since $v_{0}=\left(\tau_{b} \circ h_{a}\right) \cup$, we have

$$
\begin{equation*}
\left(\Phi_{0} v_{0}\right)^{\prime}+\Psi_{0} v_{0}=0 \tag{4.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{0}(x)=(x-1)\left(x-v^{2}\right), \quad \Psi_{0}(x)=-\frac{3}{2}\left(2 x-1-v^{2}\right) \tag{4.18}
\end{equation*}
$$

Likewise, from (4.6) and (4.8), taking (4.17) into account, we obtain

$$
\begin{gather*}
\left(\Phi_{1} u_{0}\right)^{\prime}+\Psi_{1} u_{0}=0 \\
\left(u_{0}\right)_{1}=\left(\sigma z_{0}\right)_{1}=\tau^{2}+\gamma_{1}=\frac{1}{4}\left(1+v^{2}+2 \tau^{2}\right)+\frac{1}{2} \varepsilon \varsigma_{\tau, v} \tag{4.19}
\end{gather*}
$$

where

$$
\begin{equation*}
\Phi_{1}(x)=(x-1)\left(x-v^{2}\right)\left(x-\tau^{2}\right), \quad \Psi_{1}(x)=-\frac{3}{2}\left(2 x-1-v^{2}\right)\left(x-\tau^{2}\right) . \tag{4.20}
\end{equation*}
$$

Lemma 4.2. The following cases hold:
(a) if $\tau^{2} \neq 1$ and $\tau^{2} \neq v^{2}$, the class of u_{0} is $s=1$;
(b) if $\tau^{2}=1$ and $\tau^{2} \neq v^{2}$, the form u_{0} is classical $(s=0)$ and fulfils the equation

$$
\begin{equation*}
\left((x-1)\left(x-v^{2}\right) u_{0}\right)^{\prime}-\frac{1}{2}\left(4 x-3-v^{2}\right) u_{0}=0, \quad\left(u_{0}\right)_{1}=\frac{1}{4}\left(3+v^{2}\right) \tag{4.21}
\end{equation*}
$$

this implies

$$
\begin{equation*}
u_{0}=\left(\tau_{b} \circ h_{a}\right) \mathscr{F}\left(-\frac{1}{2}, \frac{1}{2}\right) \tag{4.22}
\end{equation*}
$$

with

$$
\begin{equation*}
a=\frac{1}{2}\left(v^{2}-1\right), \quad b=\frac{1}{2}\left(1+v^{2}\right) ; \tag{4.23}
\end{equation*}
$$

(c) if $\tau^{2}=v^{2}$, the form u_{0} is classical and fulfils the equation

$$
\begin{equation*}
\left((x-1)\left(x-\tau^{2}\right) u_{0}\right)^{\prime}-\frac{1}{2}\left(4 x-1-3 \tau^{2}\right) u_{0}=0, \quad\left(u_{0}\right)_{1}=\frac{1}{4}\left(1+3 \tau^{2}\right) \tag{4.24}
\end{equation*}
$$

this implies

$$
\begin{equation*}
u_{0}=\left(\tau_{b} \circ h_{a}\right) \mathscr{F}\left(\frac{1}{2},-\frac{1}{2}\right) \tag{4.25}
\end{equation*}
$$

with

$$
\begin{equation*}
a=\frac{1}{2}\left(\tau^{2}-1\right), \quad b=\frac{1}{2}\left(1+\tau^{2}\right) . \tag{4.26}
\end{equation*}
$$

Proof. From (4.20), we have

$$
\begin{align*}
\Phi_{1}^{\prime}(1)+\Psi_{1}(1) & =-\frac{1}{2}\left(1-v^{2}\right)\left(1-\tau^{2}\right), \\
\Phi_{1}^{\prime}\left(v^{2}\right)+\Psi_{1}\left(v^{2}\right) & =-\frac{1}{2}\left(v^{2}-1\right)\left(\tau^{2}-v^{2}\right), \tag{4.27}\\
\Phi_{1}^{\prime}\left(\tau^{2}\right)+\Psi_{1}\left(\tau^{2}\right) & =\left(\tau^{2}-1\right)\left(\tau^{2}-v^{2}\right) .
\end{align*}
$$

Assertion (a) is evident. When $\tau^{2}=1$ and $\tau^{2} \neq v^{2}$, we have

$$
\begin{equation*}
\left\langle u_{0}, \theta_{1}^{2} \Phi_{1}+\theta_{1} \Psi_{1}\right\rangle=\left\langle u_{0},-2 x+\frac{1}{2}\left(3+v^{2}\right)\right\rangle=-2\left(u_{0}\right)_{1}+\frac{1}{2}\left(3+v^{2}\right)=0, \tag{4.28}
\end{equation*}
$$

whence (4.21) and (4.22). The same applies to (4.24) and (4.25).

5. Structure relation and differential equation

It is well known that a semiclassical orthogonal polynomials sequence fulfils a secondorder differential equation $[3,5,10]$. In this section, we give the following second-order differential equation fulfilled by $\left\{Z_{n}\right\}_{n \geq 0}$. We have

$$
\begin{equation*}
J(x ; n) Z_{n+1}^{\prime \prime}(x)+K(x ; n) Z_{n+1}^{\prime}(x)+L(x ; n) Z_{n+1}(x)=0, \quad n \geq 0, \tag{5.1}
\end{equation*}
$$

with

$$
\begin{gather*}
J(x ; n)=\Phi(x) D_{n+1}(x), \quad n \geq 0, \\
K(x ; n)=C_{0}(x) D_{n+1}(x)-\mathrm{W}\left(\Phi, D_{n+1}\right)(x), \quad n \geq 0, \\
L(x ; n)=\mathrm{W}\left(\frac{1}{2}\left(C_{n+1}-C_{0}\right), D_{n+1}\right)(x)-D_{n+1}(x) \sum_{\nu=0}^{n} D_{\nu}(x), \quad n \geq 0, \tag{5.2}
\end{gather*}
$$

where $\mathrm{W}(f, g)=f g^{\prime}-g f^{\prime}$ is the Wronskian of f and g.
The sequences $\left\{C_{n}\right\}_{n \geq 0}$ and $\left\{D_{n}\right\}_{n \geq 0}$ are defined by

$$
\begin{equation*}
\Phi(z) S^{\prime}\left(z_{0}^{(n)}\right)(z)=B_{n}(z) S^{2}\left(z_{0}^{(n)}\right)(z)+C_{n}(z) S\left(z_{0}^{(n)}\right)(z)+D_{n}(z), \quad n \geq 0 \tag{5.3}
\end{equation*}
$$

and fulfil

$$
\begin{gather*}
B_{0}(z)=0, \\
C_{0}(z)=-\Phi^{\prime}(z)-\Psi(z), \tag{5.4}\\
D_{0}(z)=-\left(z_{0} \theta_{0} \Phi\right)^{\prime}(z)-\left(z_{0} \theta_{0} \Psi\right)(z), \\
B_{n+1}(z)=\gamma_{n+1} D_{n}(z), \quad n \geq 0, \\
C_{n+1}(z)=-C_{n}(z)+2\left(z-\beta_{n}\right) D_{n}(z), \quad \operatorname{deg} C_{n} \leq 4, n \geq 0, \\
\gamma_{n+1} D_{n+1}(z)=-\Phi(z)+B_{n}(z)-\left(z-\beta_{n}\right) C_{n}(z)+\left(z-\beta_{n}\right)^{2} D_{n}(z), \quad \operatorname{deg} D_{n} \leq 3, n \geq 0 . \tag{5.5}
\end{gather*}
$$

They are involved in the so-called structure relation [3, 10]

$$
\begin{equation*}
\Phi(x) Z_{n+1}^{\prime}(x)=\frac{1}{2}\left(C_{n+1}(x)-C_{0}(x)\right) Z_{n+1}(x)-\gamma_{n+1} D_{n+1}(x) Z_{n}(x), \quad n \geq 0 \tag{5.6}
\end{equation*}
$$

Here, from (3.22), (3.23), and (5.4), we have

$$
\begin{gather*}
\Phi(z)=(z-\tau)\left(z^{2}-1\right)\left(z^{2}-v^{2}\right), \\
C_{0}(z)=z^{4}-2 \tau z^{3}+\tau\left(1+v^{2}\right) z-v^{2}, \tag{5.7}\\
D_{0}(z)=2 z\left(z^{2}+2 \gamma_{1}-\frac{1}{2}\left(1+v^{2}\right)\right)=2 z\left(z^{2}-\tau^{2}+\varepsilon \varsigma_{\tau, v}\right) .
\end{gather*}
$$

Indeed, from (2.2), we have

$$
\begin{align*}
\left(z_{0} \theta_{0} \Phi\right)(x)= & \left\langle z_{0}, \frac{\Phi(x)-\Phi(\xi)}{x-\xi}\right\rangle \\
= & \left\langle z_{0}, \frac{(x-\tau)\left(x^{4}-\left(1+v^{2}\right) x^{2}+v^{2}\right)-(\xi-\tau)\left(\xi^{4}-\left(1+v^{2}\right) \xi^{2}+v^{2}\right)}{x-\xi}\right\rangle \\
= & \left\langle z_{0}, x^{4}+(\xi-\tau) x^{3}+\left(\xi^{2}-\left(1+v^{2}\right) \xi-\tau \xi\right) x^{2}\right. \\
& +\left(\xi^{3}-\left(1+v^{2}\right) \xi-\tau \xi^{2}+\left(1+v^{2}\right) \tau\right) x \tag{5.8}\\
& \left.+\xi^{4}-\tau \xi^{3}-\left(1+v^{2}\right) \xi+\tau\left(1+v^{2}\right) \xi+v^{2}\right\rangle \\
= & x^{4}+\left(\left(z_{0}\right)_{1}-\tau\right) x^{3}+\left(\left(z_{0}\right)_{2}-\left(1+v^{2}\right)-\tau\left(z_{0}\right)_{1}\right) x^{2} \\
& +\left(\left(z_{0}\right)_{3}-\tau\left(z_{0}\right)_{2}-\left(1+v^{2}\right)\left(\left(z_{0}\right)_{1}-\tau\right)\right) x \\
& +\left(z_{0}\right)_{4}-\tau\left(z_{0}\right)_{3}-\left(1+v^{2}\right)\left(z_{0}\right)_{1}+\tau\left(1+v^{2}\right)\left(z_{0}\right)_{1}+v^{2} .
\end{align*}
$$

Through (3.25), $\left(z_{0}\right)_{1}=\tau,\left(z_{0}\right)_{2}=\gamma_{1}+\tau^{2}$, and $\left(z_{0}\right)_{3}=\tau\left(z_{0}\right)_{2}$; so

$$
\begin{equation*}
\left(z_{0} \theta_{0} \Phi\right)^{\prime}(x)=4 x^{3}+2\left(\gamma_{1}-\left(1+v^{2}\right)\right) x \tag{5.9}
\end{equation*}
$$

In the same way, from (2.2) and (3.23), we get

$$
\begin{align*}
\left(z_{0} \theta_{0} \Psi\right)(x)= & \left\langle z_{0},-6 x^{3}+(6 \tau-6 \xi) x^{2}+\left(6 \tau \xi-6 \xi^{2}+3\left(1+v^{2}\right)\right) x\right. \\
& \left.-6 \xi^{3}+6 \tau \xi^{2}+3\left(1+v^{2}\right)(\xi-\tau)\right\rangle \tag{5.10}\\
= & -6 x^{3}+\left(3\left(1+v^{2}\right)-6 \gamma_{1}\right) x .
\end{align*}
$$

Thus, we deduce the expression of $D_{0}(x)$.
Generally, it is difficult to give the sequences $\left\{C_{n}\right\}_{n \geq 0}$ and $\left\{D_{n}\right\}_{n \geq 0}$ explicitly using the recurrence relations (5.5). The quadratic decomposition allows us to do it.

Lemma 5.1. The following structure relations hold:

$$
\begin{align*}
&(x-1)\left(x-v^{2}\right) R_{n+1}^{\prime}(x)=(n+1)\left(x-\frac{1}{2}\left(1+v^{2}\right)\right) R_{n+1}(x) \\
&-2(n+2)\left(\frac{1-v^{2}}{4}\right)^{2} R_{n}(x), \quad n \geq 0, \tag{5.11}\\
& \Phi_{1}(x) P_{n+1}^{\prime}(x)=A(n ; x) P_{n+1}(x)-B(n ; x) P_{n}(x), \quad n \geq 0, \tag{5.12}
\end{align*}
$$

where

$$
\begin{align*}
\Phi_{1}(x)= & (x-1)\left(x-v^{2}\right)\left(x-\tau^{2}\right), \tag{5.13}\\
A(n ; x)= & (n+1)\left(x+2 \gamma_{2}-\frac{1}{2}\left(v^{2}+1\right)\right)\left(x+\gamma_{1}-\frac{1}{2}\left(v^{2}+1\right)\right) \tag{5.14}\\
& \quad-(n+2) \gamma_{2}\left(x+2 \gamma_{1}-\frac{1}{2}\left(v^{2}+1\right)\right), \quad n \geq 0, \\
B(n ; x)= & \gamma_{1} \gamma_{2}\left\{(n+1)\left(x+2 \gamma_{2}-\frac{1}{2}\left(v^{2}+1\right)\right)\right. \\
& \left.\quad+(n+2)\left(x+2 \gamma_{1}-\frac{1}{2}\left(v^{2}+1\right)\right)\right\}, \quad n \geq 0 . \tag{5.15}
\end{align*}
$$

Proof. Since, for the Jacobi sequence, we have [10, 11]

$$
\begin{gather*}
C_{n}^{(\alpha, \beta)}(x)=(2 n+\alpha+\beta) x-\frac{\alpha^{2}-\beta^{2}}{2 n+\alpha+\beta}, \quad n \geq 0 \tag{5.16}\\
D_{n}^{(\alpha, \beta)}(x)=2 n+\alpha+\beta+1, \quad n \geq 0
\end{gather*}
$$

then, in the case $\alpha=\beta=1 / 2$, we obtain

$$
\begin{gather*}
C_{n}^{R}(x)=a C_{n}^{(1 / 2,1 / 2)}\left(\frac{x-b}{a}\right)=(2 n+1)\left(x-\frac{1}{2}\left(1+v^{2}\right)\right), \quad n \geq 0 \\
D_{n}^{R}(x)=D_{n}^{(1 / 2,1 / 2)}\left(\frac{x-b}{a}\right)=2 n+2, \quad n \geq 0 \tag{5.17}
\end{gather*}
$$

where $a=(1 / 2)\left(v^{2}-1\right)$ and $b=(1 / 2)\left(1+v^{2}\right)$.
Hence, (5.11) holds.
Next, from (4.4), we have

$$
\begin{align*}
\Phi_{1}(x) P_{n+1}^{\prime}(x)= & (x-1)\left(x-v^{2}\right)\left(x-\tau^{2}\right) R_{n+1}^{\prime}(x) \\
& +\gamma_{2}(x-1)\left(x-v^{2}\right)\left(x-\tau^{2}\right) R_{n}^{\prime}(x), \quad n \geq 0 . \tag{5.18}
\end{align*}
$$

According to (5.11) and taking (4.12) into account, we obtain

$$
\begin{align*}
\Phi_{1}(x) P_{n+1}^{\prime}(x)= & (n+1)\left(x+2 \gamma_{1}-\frac{1}{2}\left(v^{2}+1\right)\right)\left(x-\tau^{2}\right) R_{n+1}(x) \\
& -(n+2)\left(\gamma_{2}\left(x-\frac{1}{2}\left(v^{2}+1\right)\right)+2 \gamma_{1} \gamma_{2}\right)\left(x-\tau^{2}\right) R_{n}(x), \quad n \geq 0 . \tag{5.19}
\end{align*}
$$

With (4.5), this yields (5.12), (5.13), (5.14), and (5.15).

Proposition 5.2. The sequence $\left\{Z_{n}\right\}_{n \geq 0}$ fulfils (5.6), where the sequences $\left\{C_{n}\right\}_{n \geq 0}$ and $\left\{D_{n}\right\}_{n \geq 0}$ are given by

$$
\begin{align*}
C_{2 n}(x)= & (4 n+1) x^{4}-2 \tau(2 n+1) x^{3}+4 n\left(\frac{1}{2}\left(v^{2}+1\right)-2\left(\gamma_{1}+\tau^{2}\right)\right) x^{2} \tag{5.20}\\
& +\tau\left(8\left(\tau^{2}+\gamma_{1}\right) n-(2 n-1)\left(1+v^{2}\right)\right) x-v^{2}, \quad n \geq 0, \\
D_{2 n}(x)= & 2 x\left((2 n+1) x^{2}-2 n \tau^{2}+2 \gamma_{1}-\frac{1}{2}\left(v^{2}+1\right)\right), \quad n \geq 0, \tag{5.21}\\
C_{2 n+1}(x)= & (4 n+3) x^{4}-2 \tau(2 n+1) x^{3}+2(n+1)\left(4 \gamma_{1}-\left(v^{2}+1\right)\right) x^{2} \\
& -2 \tau\left(4 \gamma_{1}(n+1)-\frac{1}{2}(2 n+1)\left(v^{2}+1\right)\right) x+v^{2}, \quad n \geq 0, \tag{5.22}\\
& =4(n+1) x(x-\tau)^{2}, \quad n \geq 0 . \tag{5.23}
\end{align*}
$$

Proof. We start with (5.11), where $x \rightarrow x^{2}$. According to

$$
\begin{equation*}
Z_{2 n+3}^{\prime}(x)=R_{n+1}\left(x^{2}\right)+2 x(x-\tau) R_{n+1}^{\prime}\left(x^{2}\right), \quad n \geq 0 \tag{5.24}
\end{equation*}
$$

obtained by differentiating (4.10), relation (5.11) becomes

$$
\begin{align*}
\Phi(x) Z_{2 n+3}^{\prime}(x)= & \left(\left(x^{2}-1\right)\left(x^{2}-v^{2}\right)+2(n+1) x(x-\tau)\left(x^{2}-\frac{1}{2}\left(v^{2}+1\right)\right)\right) Z_{2 n+3}(x) \\
& -4\left(\frac{1-v^{2}}{4}\right)^{2}(n+2) x(x-\tau)^{2} R_{n}\left(x^{2}\right), \quad n \geq 0 \tag{5.25}
\end{align*}
$$

But (4.9) and (4.13) provide

$$
\begin{equation*}
\Phi(x) Z_{2 n+3}^{\prime}(x)=E(n ; x) Z_{2 n+3}(x)-4 \gamma_{1}(n+2) x(x-\tau)^{2} Z_{2 n+2}(x), \quad n \geq 0 \tag{5.26}
\end{equation*}
$$

where

$$
\begin{equation*}
E(n ; x)=\left(x^{2}-1\right)\left(x^{2}-v^{2}\right)+2 x(x-\tau)\left((n+1)\left(x^{2}-\frac{1}{2}\left(v^{2}+1\right)\right)+2(n+2) \gamma_{1}\right) . \tag{5.27}
\end{equation*}
$$

Comparing (5.26) with (5.6), where $n \rightarrow 2 n+2$, leads to

$$
\begin{align*}
& \left(E(n ; x)-\frac{1}{2}\left(C_{2 n+3}(x)-C_{0}(x)\right)\right) Z_{2 n+3}(x) \tag{5.28}\\
& \quad=\gamma_{1}\left(4(n+2) x(x-\tau)^{2}-D_{2 n+3}(x)\right) Z_{2 n+2}(x), \quad n \geq 0 .
\end{align*}
$$

This yields

$$
\begin{gather*}
\frac{1}{2}\left(C_{2 n+1}(x)-C_{0}(x)\right)=E(n-1 ; x), \quad n \geq 1 \tag{5.29}\\
D_{2 n+1}(x)=4(n+1) x(x-\tau)^{2}, \quad n \geq 1
\end{gather*}
$$

by virtue of a well-known result on orthogonal sequences. Routine calculation from (5.5) shows that (5.29) is valid for $n \geq 0$, whence (5.22) and (5.23).

Next, from (5.12), where $x \rightarrow x^{2}$, and with (4.9), we obtain

$$
\begin{equation*}
(x+\tau) \Phi(x) Z_{2 n+2}^{\prime}(x)=2 x A\left(n ; x^{2}\right) Z_{2 n+2}(x)-2 x B\left(n ; x^{2}\right) Z_{2 n}(x) . \tag{5.30}
\end{equation*}
$$

But

$$
\begin{equation*}
Z_{2 n}(x)=\frac{1}{\gamma_{1}}(x+\tau) Z_{2 n+1}(x)-\frac{1}{\gamma_{1}} Z_{2 n+2}(x) \tag{5.31}
\end{equation*}
$$

implies

$$
\begin{align*}
(x+\tau) \Phi(x) Z_{2 n+2}^{\prime}(x)= & 2 x\left(A\left(n ; x^{2}\right)+\gamma_{1}^{-1} B\left(n ; x^{2}\right)\right) Z_{2 n+2}(x) \\
& -2 \gamma_{1}^{-1} x(x+\tau) B\left(n ; x^{2}\right) Z_{2 n+1}(x) . \tag{5.32}
\end{align*}
$$

Taking (5.14) and (5.15) into account, we have

$$
\begin{equation*}
A\left(n ; x^{2}\right)+\gamma_{1}^{-1} B\left(n ; x^{2}\right)=(n+1)\left(x^{2}-\tau^{2}\right)\left(x^{2}+2 y_{2}-\frac{1}{2}\left(v^{2}+1\right)\right) . \tag{5.33}
\end{equation*}
$$

This leads to

$$
\begin{align*}
\Phi(x) Z_{2 n+2}^{\prime}(x)= & 2(n+1) x(x-\tau)\left(x^{2}+2 \gamma_{2}-\frac{1}{2}\left(v^{2}+1\right)\right) Z_{2 n+2}(x) \\
& -2 \gamma_{2} x\left((n+1)\left(x^{2}+2 \gamma_{2}-\frac{1}{2}\left(v^{2}+1\right)\right)\right. \tag{5.34}\\
& \left.+(n+2)\left(x^{2}+2 \gamma_{1}-\frac{1}{2}\left(v^{2}+1\right)\right)\right) Z_{2 n+1}(x), \quad n \geq 0
\end{align*}
$$

As above, we obtain

$$
\begin{gather*}
C_{2 n}(x)=C_{0}(x)+4 n x(x-\tau)\left(x^{2}+2 \gamma_{2}-\frac{1}{2}\left(v^{2}+1\right)\right) \\
D_{2 n}(x)=2 x\left(n\left(x^{2}+2 \gamma_{2}-\frac{1}{2}\left(v^{2}+1\right)\right)+(n+1)\left(x^{2}+2 \gamma_{1}-\frac{1}{2}\left(v^{2}+1\right)\right)\right), \quad n \geq 2 \tag{5.35}
\end{gather*}
$$

In fact, these relations are valid for $n \geq 0$, whence (5.20) and (5.21).
Now, we are able to calculate the coefficients of (5.1) defined by (5.2).

160 The second-order self-associated orthogonal sequences
Proposition 5.3. The sequence $\left\{Z_{n}\right\}_{n \geq 0}$ fulfils (5.1), where the elements characteristics $J(x ; n), K(x ; n)$, and $L(x ; n)$ are given as follows:

$$
\begin{align*}
& J(x ; 2 n)= 4(n+1) x(x-\tau)^{3}\left(x^{2}-1\right)\left(x^{2}-v^{2}\right), \tag{5.36}\\
& J(x ; 2 n+1)= 2 x(x-\tau)\left(x^{2}-1\right)\left(x^{2}-v^{2}\right)\left\{(2 n+3) x^{2}-2(n+1) \tau^{2}+2 \gamma_{1}-\frac{1}{2}\left(v^{2}+1\right)\right\}, \tag{5.37}\\
& K(x ; 2 n)=4(n+1)(x-\tau)^{2}\left\{3 x^{5}-5 \tau x^{4}+2 \tau\left(1+v^{2}\right) x^{2}-3 v^{2} x+\tau v^{2}\right\}, \quad n \geq 0, \tag{5.38}\\
& K(x ; 2 n+1)=(x-\tau)\left\{3(4 n+6) x^{6}-\left(20(n+1) \tau^{2}-5\left(4 \gamma_{1}-\left(v^{2}+1\right)\right)\right) x^{4}\right. \\
&+\left(\left(1+v^{2}\right)\left(8(n+1) \tau^{2}-2\left(4 \gamma_{1}-\left(v^{2}+1\right)\right)\right)-3(4 n+6) v^{2}\right) x^{2} \\
&\left.+(4 n+1) \tau^{2} v^{2}-v^{2}\left(4 \gamma_{1}-\left(v^{2}+1\right)\right)\right\}, \quad n \geq 0, \tag{5.39}\\
& L(x ; 2 n)=-4(n+1)(x-\tau)\left\{(2 n+1)(2 n+3) x^{5}-\left(8 n^{2}+16 n+5\right) \tau x^{4}\right. \\
&+4 n(n+2) \tau^{2} x^{3}+2\left(1+v^{2}\right) \tau x^{2} \tag{5.40}\\
&\left.-3 v^{2} x+\tau v^{2}\right\}, \quad n \geq 0, \\
& L(x ; 2 n+1)=-4(n+1)(n+2) x^{2}\left\{2(2 n+3) x^{4}-2(2 n+3) \tau x^{3}\right. \\
&+\left(3\left(4 \gamma_{1}-\left(v^{2}+1\right)\right)-4 n \tau^{2}\right) x^{2}-\left(\left(4 y_{1}-\left(v^{2}+1\right)\right)\right. \\
&\left.\left.+4(n+2) \tau^{2}\right) \tau x\right\}, \quad n \geq 0 . \tag{5.41}
\end{align*}
$$

Proof. From (5.2), (5.7), (5.21), and (5.23), it is easy to obtain (5.36) and (5.37). Next, we have

$$
\begin{gather*}
K(x, 2 n)=\left(C_{0}(x)+\Phi^{\prime}(x)\right) D_{2 n+1}(x)-\Phi(x) D_{2 n+1}^{\prime}(x), \\
K(x, 2 n+1)=\left(C_{0}(x)+\Phi^{\prime}(x)\right) D_{2 n+2}(x)-\Phi(x) D_{2 n+2}^{\prime}(x) . \tag{5.42}
\end{gather*}
$$

On account of (5.7), (5.21), and (5.23), we have (5.38) and (5.39).
Finally, from (5.2), we have

$$
\begin{equation*}
L(x ; 2 n)=\mathrm{W}\left(\frac{1}{2}\left(C_{2 n+1}-C_{0}\right), D_{2 n+1}\right)(x)-D_{2 n+1}(x) \sum_{\nu=0}^{2 n} D_{\nu}(x), \quad n \geq 0 . \tag{5.43}
\end{equation*}
$$

Successively, we get

$$
\begin{align*}
& \begin{aligned}
& \frac{1}{2}\left(C_{2 n+1}-C_{0}\right)(x)= E(n-1 ; x) \\
&=\left(x^{2}-1\right)\left(x^{2}-v^{2}\right) \\
&+2 x(x-\tau)\left\{n\left(x^{2}-\frac{1}{2}\left(v^{2}+1\right)\right)+2(n+1) \gamma_{1}\right\}, \\
& \frac{1}{2}\left(C_{2 n+1}-C_{0}\right)(x) D_{2 n+1}^{\prime}(x) \quad \\
&=4(n+1)(x-\tau)(3 x-\tau)\left\{(2 n+1) x^{4}-2 n \tau x^{3}+(n+1)\left(4 \gamma_{1}-\left(v^{2}+1\right)\right) x^{2}\right. \\
&\left.\quad-\tau\left(4(n+1) \gamma_{1}-n\left(1+v^{2}\right)\right) x+v^{2}\right\}
\end{aligned} \\
&=4(n+1)(x-\tau)\left\{3(2 n+1) x^{5}-(8 n+1) \tau x^{4}+\left(3(n+1)\left(4 \gamma_{1}-\left(v^{2}+1\right)\right)+2 n \tau^{2}\right) x^{3}\right. \\
&- \tau\left(16(n+1) \gamma_{1}-(4 n+1)\left(1+v^{2}\right)\right) x^{2} \\
&\left.+\left(\tau^{2}\left(4(n+1) \gamma_{1}-n\left(1+v^{2}\right)\right)+3 v^{2}\right) x-\tau v^{2}\right\} .
\end{align*}
$$

Next

$$
\begin{align*}
& \frac{1}{2}\left(C_{2 n+1}-C_{0}\right)^{\prime}(x) D_{2 n+1}(x) \\
& =8(n+1) x(x-\tau)^{2}\left\{2(2 n+1) x^{3}-3 n \tau x^{2}+(n+1)\left(4 \gamma_{1}-\left(v^{2}+1\right)\right) x\right. \\
& \\
& \left.-\quad \tau\left(2(n+1) \gamma_{1}-\frac{1}{2}\left(1+v^{2}\right) n\right)\right\} \\
& =4(n+1)(x-\tau)\left\{4(2 n+1) x^{5}-2(7 n+2) \tau x^{4}+2\left((n+1)\left(4 \gamma_{1}-\left(v^{2}+1\right)\right)+3 n \tau^{2}\right) x^{3}\right. \\
& \tag{5.45}\\
& -2 \tau\left(6(n+1) \gamma_{1}-\frac{1}{2}(2 n+1)\left(1+v^{2}\right)\right) x^{2} \\
& +
\end{aligned} \begin{aligned}
& \left.2 \tau^{2}\left(2(n+1) \gamma_{1}-\frac{1}{2} n\left(1+v^{2}\right)\right) x\right\} .
\end{align*}
$$

Further, since

$$
\begin{align*}
& \sum_{\nu=0}^{2 n} D_{\nu}(x)=\sum_{v=0}^{n} D_{2 v}(x)+\sum_{\nu=0}^{n-1} D_{2 v+1}(x) \\
\sum_{\nu=0}^{n} D_{2 v}(x)= & 2(n+1) x\left((n+1) x^{2}+\left(2 \gamma_{1}-\frac{1}{2}\left(v^{2}+1\right)-n \tau^{2}\right)\right), \tag{5.46}\\
& \sum_{\nu=0}^{n-1} D_{2 v+1}(x)=2 n(n+1) x(x-\tau)^{2},
\end{align*}
$$

we obtain

$$
\begin{align*}
D_{2 n+1}(x) & \sum_{\nu=0}^{2 n} D_{\gamma}(x) \\
=4(n+1)^{2}(x-\tau) & \left\{2(2 n+1) x^{5}-2(4 n+1) \tau x^{4}\right. \tag{5.47}\\
& \left.+\left(4 \gamma_{1}-\left(v^{2}+1\right)+4 n \tau^{2}\right) x^{3}-\left(4 \gamma_{1}-\left(v^{2}+1\right)\right) \tau x^{2}\right\}
\end{align*}
$$

This leads to (5.40). Similar calculations can be used to prove (5.41).

6. The integral representations of the second-order self-associated forms

Throughout this section, we will suppose $v \in \mathbb{R}-\{-1,1\}$. It will be sufficient to consider $0 \leq v<1$ or $v>1$.

From (3.19), the formal Stieltjes function $S\left(z_{0}\right)$ is given by

$$
\begin{equation*}
S\left(z_{0}\right)(z)=\frac{1}{2} \gamma_{2}^{-1}(z-\tau)^{-1}\left\{\left(z^{2}-1\right)^{1 / 2}\left(z^{2}-v^{2}\right)^{1 / 2}-2 \gamma_{2}-W(z)\right\} \tag{6.1}
\end{equation*}
$$

with $W(z)=z^{2}-(1 / 2)\left(v^{2}+1\right), z_{0}=z_{0}(\tau, v, \varepsilon)$, and $\gamma_{2}=\gamma_{2}(\tau, v, \varepsilon)$. Putting

$$
\begin{equation*}
w(\tau)=w(\tau, v, \varepsilon)=(x-\tau) z_{0}(\tau, v, \varepsilon), \tag{6.2}
\end{equation*}
$$

we have $S(w(\tau))(z)=(z-\tau) S\left(z_{0}\right)(z)+1$. Therefore, taking (6.1) into account, we get

$$
\begin{equation*}
S(w(\tau, v, \varepsilon))(z)=\frac{1}{2} \gamma_{2}^{-1} Q(z), \tag{6.3}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(z)=\left(z^{2}-1\right)^{1 / 2}\left(z^{2}-v^{2}\right)^{1 / 2}-W(z) \tag{6.4}
\end{equation*}
$$

Since $\gamma_{2}(\tau, v,-\varepsilon)=\gamma_{1}(\tau, v, \varepsilon)$, we have

$$
\begin{equation*}
S(w(\tau, v,-\varepsilon))(z)=\frac{1}{2} \gamma_{1}^{-1} Q(z) . \tag{6.5}
\end{equation*}
$$

Consequently, it is sufficient to study the case $\varepsilon=1$.
Choosing the branch which is positive when $z^{2}-1>0$ and $z^{2}-v^{2}>0$, we see that Q is regular in the upper half-plane. Moreover, it is easy to prove

$$
\begin{equation*}
\sup _{y>0} \int_{-\infty}^{+\infty}|Q(x+i y)|^{2} d x<+\infty \tag{6.6}
\end{equation*}
$$

Consequently, the function Q possesses the following representation [2]:

$$
\begin{equation*}
Q(z)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\mathfrak{I} Q(t+i 0)}{t-z} d t, \quad \mathfrak{I} z>0 . \tag{6.7}
\end{equation*}
$$

We obtain from (6.4) that
(i) for $0 \leq v<1$,

$$
\mathfrak{I} Q(x+i 0)= \begin{cases}0, & |x|>1 \tag{6.8}\\ \operatorname{sgn} x \sqrt{\left(1-x^{2}\right)\left(x^{2}-v^{2}\right)}, & v<|x|<1 \\ 0, & |x|<v\end{cases}
$$

(ii) for $v>1$,

$$
\mathfrak{I} Q(x+i 0)= \begin{cases}0, & |x|>v \tag{6.9}\\ \operatorname{sgn} x \sqrt{\left(x^{2}-1\right)\left(v^{2}-x^{2}\right)}, & 1<|x|<v \\ 0, & |x|<1\end{cases}
$$

In accordance with (6.3), this leads to

$$
\begin{equation*}
\langle w(\tau), f\rangle=\frac{1}{2 \pi \gamma_{2}} \int_{-\bar{v}}^{+\bar{v}} \mathfrak{I} Q(x+i 0) f(x) d x, \quad f \in \mathscr{P} \tag{6.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{v}:=\max (1, v) . \tag{6.11}
\end{equation*}
$$

But from (6.2), we have

$$
\begin{equation*}
z_{0}=\delta_{\tau}+(x-\tau)^{-1} z(\tau) \tag{6.12}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\left\langle z_{0}, f\right\rangle=f(\tau)+\frac{1}{2 \pi \gamma_{2}} \int_{-\bar{v}}^{+\bar{v}} \mathfrak{I} Q(x+i 0) \frac{f(x)-f(\tau)}{x-\tau} d x . \tag{6.13}
\end{equation*}
$$

When $\tau \in \mathbb{C}-]-\bar{v},+\bar{v}[$, we get

$$
\begin{equation*}
\left\langle z_{0}, f\right\rangle=\left\{1-\frac{1}{2 \pi \gamma_{2}} \int_{-\bar{v}}^{+\bar{v}} \frac{\mathfrak{J} Q(x+i 0)}{x-\tau} d x\right\} f(\tau)+\frac{1}{2 \pi \gamma_{2}} \int_{-\bar{v}}^{+\bar{v}} \frac{\mathfrak{J} Q(x+i 0)}{x-\tau} f(x) d x . \tag{6.14}
\end{equation*}
$$

On account of (6.4) and (6.7), we obtain

$$
\begin{equation*}
\left(\tau^{2}-1\right)^{1 / 2}\left(\tau^{2}-v^{2}\right)^{1 / 2}-\tau^{2}+\frac{1}{2}\left(v^{2}+1\right)=\frac{1}{\pi} \int_{-\bar{v}}^{+\bar{v}} \frac{\mathfrak{J} Q(t+i 0)}{t-\tau} d t \tag{6.15}
\end{equation*}
$$

But $2 \gamma_{1}=\left(\tau^{2}-1\right)^{1 / 2}\left(\tau^{2}-v^{2}\right)^{1 / 2}-\tau^{2}+1 / 2\left(v^{2}+1\right)$; accordingly, (6.14) becomes

$$
\begin{equation*}
\left\langle z_{0}, f\right\rangle=\left(1-\gamma_{1} \gamma_{2}^{-1}\right) f(\tau)+\frac{1}{2 \pi \gamma_{2}} \int_{\underline{v}<|x|<\bar{v}} \frac{\operatorname{sgn} x \sqrt{\left(\bar{v}^{2}-x^{2}\right)\left(x^{2}-\underline{v}^{2}\right)}}{x-\tau} f(x) d x \tag{6.16}
\end{equation*}
$$

where $\underline{v}:=\min (1, v)$.

When $\tau \in]-\bar{v}, \bar{v}[$, we distinguish two cases.
(a) $\underline{v} \leq|\tau|<\bar{v}$. From (6.13), we have

$$
\begin{equation*}
\left\langle z_{0}, f\right\rangle=f(\tau)+\frac{1}{2 \pi \gamma_{2}} \int_{\underline{v}<|x|<\bar{v}} \mathfrak{I} Q(x+i 0) \frac{f(x)-f(\tau)}{x-\tau} d x \tag{6.17}
\end{equation*}
$$

with

$$
\begin{equation*}
\gamma_{2}(\tau)=\frac{1}{2}\left(1+v^{2}\right)-\tau^{2}-\frac{1}{2} Q(\tau+i 0) . \tag{6.18}
\end{equation*}
$$

It is easy to see that

$$
\mathfrak{R} Q(x+i 0)= \begin{cases}\sqrt{\left(x^{2}-\underline{v}^{2}\right)\left(x^{2}-\bar{v}^{2}\right)}-W(x), & |x|>\bar{v}, \tag{6.19}\\ -W(x), & \underline{v} \leq|x|<\bar{v}, \\ -\sqrt{\left(\underline{v}^{2}-x^{2}\right)\left(\bar{v}^{2}-x^{2}\right)}-W(x), & |x|<\underline{v} .\end{cases}
$$

Consequently,

$$
\begin{equation*}
\gamma_{2}(\tau)=-\frac{1}{2}\left(W(\tau)+i \operatorname{sgn} \tau \sqrt{\left(\underline{v}^{2}-\tau^{2}\right)\left(\bar{v}^{2}-\tau^{2}\right)}\right) . \tag{6.20}
\end{equation*}
$$

Next, from (6.17), we can have

$$
\begin{align*}
\left\langle z_{0}, f\right\rangle= & \left\{1-\frac{1}{2 \pi \gamma_{2}(\tau)} P \int_{\underline{v}<|x|<\bar{v}} \frac{\mathfrak{T} Q(x+i 0)}{x-\tau} d x\right\} f(\tau) \tag{6.21}\\
& +\frac{1}{2 \pi \gamma_{2}(\tau)} P \int_{\underline{v}<|x|<\bar{v}} \frac{\mathfrak{I} Q(x+i 0)}{x-\tau} f(x) d x,
\end{align*}
$$

where P means principal value of the integral.
But from (6.7), the following limit relationship holds:

$$
\begin{equation*}
\mathfrak{R} Q(x+i 0)=\frac{1}{\pi} P \int_{\underline{v} \leq|t|<\bar{v}} \frac{\mathfrak{J} Q(t+i 0)}{t-x} d t, \quad x \in \mathbb{R} . \tag{6.22}
\end{equation*}
$$

With (6.19), this gives

$$
\begin{equation*}
\frac{1}{\pi} P \int_{\underline{v}<|t|<\bar{v}} \frac{\mathfrak{I} Q(t+i 0)}{t-x} d t=-W(x), \quad \underline{v}<|x|<\bar{v} . \tag{6.23}
\end{equation*}
$$

Consequently, (6.21) becomes

$$
\begin{align*}
\left\langle z_{0}, f\right\rangle= & -\frac{1}{2} i \gamma_{2}^{-1}(\tau) \operatorname{sgn} \tau \sqrt{\left(\underline{v}^{2}-\tau^{2}\right)\left(\bar{v}^{2}-\tau^{2}\right)} f(\tau) \\
& +\frac{1}{2 \pi \gamma_{2}(\tau)} P \int_{\underline{v}<|x|<\bar{v}} \frac{\mathfrak{J} Q(x+i 0)}{x-\tau} f(x) d x . \tag{6.24}
\end{align*}
$$

(b) $|\tau|<\underline{v}$. From (6.13), we still have (6.17), where here

$$
\begin{equation*}
\gamma_{2}(\tau)=\frac{1}{2}\left(\sqrt{\left(\underline{v}^{2}-\tau^{2}\right)\left(\bar{v}^{2}-\tau^{2}\right)}-W(\tau)\right) . \tag{6.25}
\end{equation*}
$$

Taking (6.19) and (6.22) into account, we infer that

$$
\begin{equation*}
\frac{1}{\pi} P \int_{\underline{v}<|t|<\bar{v}} \frac{\mathfrak{T} Q(t+i 0)}{t-\tau} d t=-\left(\sqrt{\left(\underline{v}^{2}-\tau^{2}\right)\left(\bar{v}^{2}-\tau^{2}\right)}+W(\tau)\right) . \tag{6.26}
\end{equation*}
$$

Thus, we obtain

$$
\begin{align*}
\left\langle z_{0}, f\right\rangle= & \gamma_{2}^{-1}(\tau) \sqrt{\left(\underline{v}^{2}-\tau^{2}\right)\left(\bar{v}^{2}-\tau^{2}\right)} f(\tau) \\
& +\frac{1}{2 \pi \gamma_{2}(\tau)} \int_{\underline{v}<|x|<\bar{v}} \frac{\mathfrak{T} Q(x+i 0)}{x-\tau} f(x) d x . \tag{6.27}
\end{align*}
$$

These results are summarized in the following proposition.
Proposition 6.1. Suppose either $0 \leq v<1$ or $v>1$. Let $\underline{v}:=\min (1, v)$ and $\bar{v}:=\max (1, v)$. Then the form z_{0} possesses the following integral representation:
(1) for $\tau \in \mathbb{C}-]-\bar{v},+\bar{v}[$,

$$
\begin{align*}
\left\langle z_{0}, f\right\rangle= & -\gamma_{2}^{-1}\left(\tau^{2}-1\right)^{1 / 2}\left(\tau^{2}-v^{2}\right)^{1 / 2} f(\tau) \\
& +\frac{1}{2 \pi \gamma_{2}} \int_{\underline{v}<|x|<\bar{v}} \frac{\operatorname{sgn} x \sqrt{\left(\bar{v}^{2}-x^{2}\right)\left(x^{2}-\underline{v}^{2}\right)}}{x-\tau} f(x) d x ; \tag{6.28}
\end{align*}
$$

(2) for $\underline{v}<|\tau|<\bar{v}$,

$$
\begin{align*}
\left\langle z_{0}, f\right\rangle= & -\frac{1}{2} i \gamma_{2}^{-1}(\tau) \operatorname{sgn} \tau \sqrt{\left(\underline{v}^{2}-\tau^{2}\right)\left(\bar{v}^{2}-\tau^{2}\right)} f(\tau) \\
& +\frac{1}{2 \pi \gamma_{2}(\tau)} P \int_{\underline{v}<|x|<\bar{v}} \frac{\operatorname{sgn} x \sqrt{\left(\bar{v}^{2}-x^{2}\right)\left(x^{2}-\underline{v}^{2}\right)}}{x-\tau} f(x) d x ; \tag{6.29}
\end{align*}
$$

(3) for $|\tau| \leq \underline{v}$,

$$
\begin{align*}
\left\langle z_{0}, f\right\rangle= & \gamma_{2}^{-1}(\tau) \sqrt{\left(\underline{v}^{2}-\tau^{2}\right)\left(\bar{v}^{2}-\tau^{2}\right)} f(\tau) \\
& +\frac{1}{2 \pi \gamma_{2}(\tau)} \int_{\underline{v}<|x|<\bar{v}} \frac{\operatorname{sgn} x \sqrt{\left(\bar{v}^{2}-x^{2}\right)\left(x^{2}-\underline{v}^{2}\right)}}{x-\tau} f(x) d x . \tag{6.30}
\end{align*}
$$

Remark 6.2. In the last case $|\tau| \leq \underline{v}$, the form z_{0} is positive definite since $\gamma_{1}(\tau)>0$ and $\gamma_{2}(\tau)>0$.

Regarding the moments, from (6.1), we easily obtain

$$
\begin{align*}
\left(z_{0}(\tau, v,+1)\right)_{2 n} & =\sum_{\mu=0}^{n} \tau^{2(n-\mu)} d_{\mu}, \quad n \geq 0, \tag{6.31}\\
\left(z_{0}(\tau, v,+1)\right)_{2 n+1} & =\tau\left(z_{0}(\tau, v,+1)\right)_{2 n}, \quad n \geq 0,
\end{align*}
$$

where

$$
\begin{gather*}
d_{0}=1, \quad d_{n}=-\frac{1}{2} \gamma_{2}^{-1} c_{n+1}, \quad n \geq 1 \\
c_{n}=\frac{1}{4 \pi} \sum_{m+k=n} \frac{\Gamma(m-1 / 2)}{m!} \frac{\Gamma(k-1 / 2)}{k!} v^{2 k}, \quad n \geq 0 . \tag{6.32}
\end{gather*}
$$

Acknowledgments

Part of this work was performed while the first author was in residence at the Department of Applied Mathematics, Faculty of Science, University of Porto. He is grateful to the support of the Foundation for Science and Technology, Praxis XXI.

References

[1] J. Dini and P. Maroni, La multiplication d'une forme linéaire par une fraction rationnelle. Application aux formes de Laguerre-Hahn [Multiplication of a linear form by a rational fraction. Application to Laguerre-Hahn forms], Ann. Polon. Math. 52 (1990), no. 2, 175-185 (French).
[2] P. L. Duren, Theory of H^{p} Spaces, Pure and Applied Mathematics, vol. 38, Academic Press, New York, 1970.
[3] J. Dzoumba, Sur les polynômes de Laguerre-Hahn, Thèse de troisième cycle, Univ. P. et M. Curie, Paris, 1985.
[4] A. Guillet, M. Aubert, and M. Parodi, Propriétés des Polynômes Électrosphériques, Mémor. Sci. Math., no. 107, Gauthier-Villars, Paris, 1948.
[5] W. Hahn, Über differentialgleichungen für orthogonalpolynome [On differential equations for orthogonal polynomials], Monatsh. Math. 95 (1983), no. 4, 269-274 (German).
[6] A. Magnus, Riccati acceleration of Jacobi continued fractions and Laguerre-Hahn orthogonal polynomials, Padé Approximation and Its Applications (Bad Honnef, 1983) (H. Werner and H.T. Bünger, eds.), Lecture Notes in Math., vol. 1071, Springer-Verlag, Berlin, 1984, pp. 213230.
[7] P. Maroni, Les polynômes orthogonaux auto-associés modulo deux [Self-associated orthogonal polynomials modulo 2], Portugal. Math. 42 (1983/1984), no. 2, 195-202 (French).
[8] , Le calcul des formes linéaires et les polynômes orthogonaux semi-classiques [Calculation of linear forms and semiclassical orthogonal polynomials], Orthogonal Polynomials and Their Applications (Segovia, 1986), Lecture Notes in Math., vol. 1329, Springer-Verlag, Berlin, 1988, pp. 279-290.
[9] __ Sur la décomposition quadratique d'une suite de polynômes orthogonaux. I [On the quadratic decomposition of a sequence of orthogonal polynomials. I], Riv. Mat. Pura Appl. (1990), no. 6, 19-53 (French).
[10] , Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques [An algebraic theory of orthogonal polynomials. Application to semiclassical orthogonal polynomials], Orthogonal Polynomials and Their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., vol. 9, Baltzer, Basel, 1991, pp. 95-130.
[11] , Variations around classical orthogonal polynomials. Connected problems, J. Comput. Appl. Math. 48 (1993), no. 1-2, 133-155.
[12] , Fonctions eulériennes. Polynômes orthogonaux classiques, Technique de l'ingénieur A154 (1994), 1-30 (French).
[13] , An introduction to second degree forms, Adv. Comput. Math. 3 (1995), no. 1-2, 59-88.
[14] F. Peherstorfer, On Bernstein-Szegó orthogonal polynomials on several intervals, SIAM J. Math. Anal. 21 (1990), no. 2, 461-482.
[15] On Bernstein-Szegö orthogonal polynomials on several intervals. II. Orthogonal polynomials with periodic recurrence coefficients, J. Approx. Theory 64 (1991), no. 2, 123-161.
[16] J. Sherman, On the numerators of the convergents of the Stieltjes continued fractions, Trans. Amer. Math. Soc. 35 (1933), no. 1, 64-87.
P. Maroni: Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie-Centre National de la Recherche Scientifique (CNRS), Boîte courrier 187, 75252 Paris Cedex 05, France

E-mail address: maroni@ann.jussieu.fr
M. Ihsen Tounsi: Institut Supérieur des Sciences Appliquées et de Téchnologies Gabès, Route de Medenine, 6072-Gabès, Tunisia

E-mail address: MohamedIhssen.Tounsi@issatgb.rnu.tn

