
BLOWUP OF SOLUTIONS WITH POSITIVE ENERGY
IN NONLINEAR THERMOELASTICITY
WITH SECOND SOUND

SALIM A. MESSAOUDI AND BELKACEM SAID-HOUARI

Received 6 November 2003 and in revised form 14 April 2004

This work is concerned with a semilinear thermoelastic system, where the heat flux is
given by Cattaneo’s law instead of the usual Fourier’s law. We will improve our earlier
result by showing that the blowup can be obtained for solutions with “relatively” positive
initial energy. Our technique of proof is based on a method used by Vitillaro with the
necessary modifications imposed by the nature of our problem.

1. Introduction

Results concerning existence, blowup, and asymptotic behaviors of smooth, as well as
weak, solutions in classical thermoelasticity have been established by several authors over
the past two decades. See in this regard [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 20].

For thermoelasticity with second sound, Tarabek [21] considered problems related to
the one-dimensional system

utt − a
(
ux,θ,q

)
uxx + b

(
ux,θ,q

)
θx = α1

(
ux,θ

)
qqx,

θt + g
(
ux,θ,q

)
qx +d

(
ux,θ,q

)
utx = α2

(
ux,θ

)
qqt,

τ
(
ux,θ

)
qt + q+ k

(
ux,θ

)
θx = 0

(1.1)

in both bounded and unbounded situations and established global existence results for
small initial data. He also showed that these “classical” solutions tend to equilibrium as t
tends to infinity; however, no rate of decay has been discussed. In his work, Tarabek used
the usual energy argument and exploited some relations from the second law of thermo-
dynamics to overcome the difficulty arising from the lack of Poincare’s inequality in the
unbounded domains. Relations from thermodynamics have been also used by Hrusa &
Tarabek [4] to prove a global existence for the Cauchy problem to a classical thermoe-
lasticity system and then by Hrusa & Messaoudi [3] to establish a blowup result for a
thermoelastic system. Saouli [19] used the nonlinear semigroup theory to prove a local
existence result for a system similar to the one considered by Tarabek.
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Concerning the asymptotic behavior, Racke [15] discussed lately (1.1) and established
exponential decay results for several linear and nonlinear initial boundary value prob-
lems. In particular, he studied the system (1.1) for a rigidly clamped medium with tem-
perature held constant on the boundary, that is,

u(t,0)= u(t,1)= θ(t,0)= θ(t,1)= θ̄, t ≥ 0, (1.2)

and showed that, for small enough initial data and for α1 = α2 = 0, classical solutions
decay exponentially to the equilibrium state. We should note here that, although the dis-
sipative effects of heat conduction induced by Cattaneo’s law are usually weaker than
those induced by Fourier’s law, a global existence as well as exponential decay results for
small initial data have been established. For a discussion in this direction, see Racke [15].
Messaoudi and Said-Houari [10] extended lately the decay result of [15] to (1.1) for α1

and α2 that are not necessarily zero.
Regarding the multidimensional case (n = 2,3), Racke [16] established an existence

result for the n-dimensional problem

utt −µ∆u− (µ+ λ)∇divu+β∇θ = 0,

θt + γdivq+ δdivut = 0,

τqt + q+ κ∇θ = 0, x ∈Ω, t > 0,

u(·,0)= u0, ut(·,0)= u1, θ(·,0)= θ0, q(·,0)= q0, x ∈Ω,

u= θ = 0, x ∈ ∂Ω, t ≥ 0,

(1.3)

where Ω is a bounded domain of Rn, with a smooth boundary ∂Ω, u= u(x, t)∈Rn is the
displacement vector, θ = θ(x, t) is the difference temperature, q = q(x, t)∈Rn is the heat
flux vector, and µ, λ, β, γ, δ, τ, κ are positive constants, where µ, λ are Lame moduli and
τ is the relaxation time, a small parameter compared to the others. In particular, if τ = 0,
(1.3) reduces to the system of classical thermoelasticity in which the heat flux is given
by Fourier’s law instead of Cattaneo’s law. He also proved, under the conditions rotu =
rotq = 0, an exponential decay result for (1.3). This result includes the radially symmetric
solution, as it is on only a special case. Messaoudi [9] investigated the situation where a
nonlinear source term is competing with the damping caused by the heat conduction and
established a local existence result. He also showed that solutions with negative energy
blow up in finite time. His work generalized an earlier one in [7, 8] to thermoelasticity
with second sound.

In this paper, we are concerned with the nonlinear problem

utt −µ∆u− (µ+ λ)∇divu+β∇θ = |u|p−2u,

θt + γdivq+ δdivut = 0,

τqt + q+ κ∇θ = 0, x ∈Ω, t > 0,

u(·,0)= u0, ut(·,0)= u1, θ(·,0)= θ0, q(·,0)= q0, x ∈Ω,

u= θ = 0, x ∈ ∂Ω, t ≥ 0,

(1.4)

for p > 2. This is a similar problem to (1.3), with a nonlinear source term competing with
the damping factor. We will extend the blowup result of [9] to situations where the energy
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can be positive. Our technique of proof follows carefully the techniques of Vitillaro [22]
with the necessary modifications imposed by the nature of our problem. For the sake of
completeness, we state here the local existence of [9]. For this purpose, we introduce the
following functional spaces:

Π := [H1
0 (Ω)∩H2(Ω)

]n× [H1
0 (Ω)

]n×H1
0 (Ω)×D,

D := {q ∈ [L2(Ω)
]n

such that divq ∈ L2(Ω)
}

,

H := [H1
0 (Ω)

]n× [L2(Ω)
]n×L2(Ω)× [L2(Ω)

]n
.

(1.5)

Theorem 1.1. Assume that

2 < p ≤ 2(n− 3)
n− 4

, n≥ 5,

2 < p, n≤ 4,
(1.6)

holds. Then given any (u0,u1,θ0,q0) ∈ Π, there exists a positive number T small enough
such that problem (1.4) has a unique strong solution satisfying

(
u,ut,θ,q

)∈ C1([0,T);Π
)∩C

(
[0,T);H

)
. (1.7)

2. Blowup

In order to state and prove our result we introduce the following: let B1 be the best con-
stant of the Sobolev imbedding [H1

0 (Ω)]n↩ [Lp(Ω)]n and B2 = B1/µ. We set

α1 = B
−p/(p−2)
2 , E1 =

(
1
2
− 1

p

)
α2

1, (2.1)

E(t)= 1
2

∥∥ut∥∥2
2 +

µ

2
‖∇u‖2

2 +
λ+µ

2
‖divu‖2

2 +
β

2δ
‖θ‖2

2 +
γβτ

2δk
‖q‖2

2−
1
p
‖u‖pp. (2.2)

Lemma 2.1. Let (u,θ,q) be solution of (1.4). Assume that E(0) < E1 and

[
µ
∥∥∇u0

∥∥2
2 + (λ+µ)

∥∥divu0
∥∥2

2 +
β

δ

∥∥θ0
∥∥2

2

γβτ

δk

∥∥q0
∥∥2

2

]1/2

> B
−p/(p−2)
2 . (2.3)

Then there exists a constant α2 > B
−p/(p−2)
2 such that

[
µ‖∇u‖2

2 + (λ+µ)‖divu‖2
2 +

β

δ
‖θ‖2

2 +
γβτ

δk
‖q‖2

2

]1/2

≥ α2, (2.4)

‖u‖p ≥ B2α2, ∀t ∈ [0,T). (2.5)
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Proof. We first note that, by (2.2) and the Sobolev imbedding, we have

E(t)≥ µ

2
‖∇u‖2

2 +
λ+µ

2
‖divu‖2

2 +
β

2δ
‖θ‖2

2 +
γβτ

2δk
‖q‖2

2−
1
p
‖u‖pp

≥ 1
2

[
µ‖∇u‖2

2 + (λ+µ)‖divu‖2
2 +

β

δ
‖θ‖2

2 +
γβτ

δk
‖q‖2

2

]

− B
p
2

p

[
µ‖∇u‖2

2 + (λ+µ)‖divu‖2
2 +

β

δ
‖θ‖2

2 +
γβτ

δk
‖q‖2

2

]p/2

= 1
2
α2− B

p
2

p
αp = g(α),

(2.6)

where

α=
[
µ‖∇u‖2

2 + (λ+µ)‖divu‖2
2 +

β

δ
‖θ‖2

2 +
γβτ

δk
‖q‖2

2

]1/2

. (2.7)

It is easy to verify that g is increasing for 0 < α < α1, decreasing for α > α1, g(α)→−∞ as
α→ +∞, and

g
(
α1
)=

(
1
2
− 1

p

)
B
−2p/(p−2)
2 = E1, (2.8)

where α1 is given in (2.1). Therefore, since E(0) < E1, there exists α2 > α1 such that g(α2)=
E(0).

If we set

α0 =
[
µ
∥∥∇u0

∥∥2
2 + (λ+µ)

∥∥divu0
∥∥2

2 +
β

δ

∥∥θ0
∥∥2

2 +
γβτ

δk

∥∥q0
∥∥2

2

]1/2

, (2.9)

then by (2.6), we have

g
(
α0
)≤ E(0)= g

(
α2
)
, (2.10)

which implies that α0 ≥ α2.
Now to establish (2.4), we suppose by contradiction that

[
µ
∥∥∇u(t0)∥∥2

2 + (λ+µ)
∥∥divu

(
t0
)∥∥2

2 +
β

δ

∥∥θ(t0)∥∥2
2 +

γβτ

δk

∥∥q(t0)∥∥2
2

]1/2

< α2 (2.11)

for some t0 > 0 and by the continuity of

µ
∥∥∇u(·)∥∥2

2 + (λ+µ)
∥∥divu(·)∥∥2

2 +
β

δ

∥∥θ(·)∥∥2
2

γβτ

δk

∥∥q(·)∥∥2
2, (2.12)

we can choose t0 such that

[
µ
∥∥∇u(t0)∥∥2

2 + (λ+µ)
∥∥divu

(
t0
)∥∥2

2 +
β

δ

∥∥θ(t0)∥∥2
2

γβτ

δk

∥∥q(t0)∥∥2
2

]1/2

> α1. (2.13)
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Again the use of (2.6) leads to

E
(
t0
)≥ g

(
µ
∥∥∇u(t0)∥∥2

2 + (λ+µ)
∥∥divu

(
t0
)∥∥2

2 +
β

δ

∥∥θ(t0)∥∥2
2

γβτ

δk

∥∥q(t0)∥∥2
2

)
> g
(
α2
)= E(0).

(2.14)

This is impossible since E(t)≤ E(0) for all t ∈ [0,T). Hence (2.4) is established.
To prove (2.5), we exploit (2.2) to see

1
2

[
µ‖∇u‖2

2 + (λ+µ)‖divu‖2
2 +

β

δ
‖θ‖2

2
γβτ

δk
‖q‖2

2

]
≤ E(0) +

1
p
‖u‖pp. (2.15)

Consequently,

1
p
‖u‖pp ≥ 1

2

[
µ‖∇u‖2

2 + (λ+µ)‖divu‖2
2 +

β

δ
‖θ‖2

2 +
γβτ

δk
‖q‖2

2

]
−E(0)

≥ 1
2
α2

2−E(0)≥ 1
2
α2

2− g
(
α2
)= B

p
2

p
α
p
2 .

(2.16)

Therefore, (2.16) and (2.1) yield the desired result. �

Theorem 2.2. Suppose that

2 < p ≤ 2n
n− 2

, n≥ 3, (2.17)

βτδ

κγ
< 8. (2.18)

Then any solution of (1.4), with initial data satisfying
[
µ
∥∥∇u0

∥∥2
2 + (λ+µ)

∥∥divu0
∥∥2

2 +
β

δ

∥∥θ0
∥∥2

2 +
γβτ

δk

∥∥q0
∥∥2

2

]
> B

−2p/(p−2)
2 (2.19)

and

E(0) < E1, (2.20)

blows up in finite time.

Remark 2.3. The condition (2.18) is “physically” reasonable due to the very small value
of τ. For instance, in [15], for the isotropic silicon and a medium temperature of 300K,
we have

β ≈ 391.62
[
m2

s2K

]
, τ ≈ 10−12[s], δ ≈ 163.82[K],

γ ≈ 5.99× 10−7
[
ms2K

kg

]
, κ≈ 148

[
W

mK

]
;

(2.21)

consequently, we get

βτδ

κγ
≈ 72.367× 10−7 < 8. (2.22)
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Proof. A multiplication of (1.4) by ut, (β/δ)θ, and (βγ/δτ)q, respectively, integration over
Ω, using integration by parts, and addition of equalities yields

E′(t)=−γβ

δk
‖q‖2

2 ≤ 0. (2.23)

We then set

H(t)= E1−E(t). (2.24)

By using (2.2) and (2.23), we get

0 <H(0)≤H(t)

≤ E1− 1
2

(∥∥ut∥∥2
2 +µ‖∇u‖2

2 + (λ+µ)‖divu‖2
2 +

β

δ
‖θ‖2

2 +
γβτ

δk
‖q‖2

2

)
+

1
p
‖u‖pp,

(2.25)

and from (2.1) and (2.4), we obtain

E1− 1
2

(∥∥ut∥∥2
2 +µ‖∇u‖2

2 + (λ+µ)‖divu‖2
2 +

β

δ
‖θ‖2

2 +
γβτ

δk
‖q‖2

2

)

< E1− 1
2
α2

1 =−
1
p
α2

1 < 0, ∀t ≥ 0.
(2.26)

Hence

0 <H(0)≤H(t)≤ 1
p
‖u‖pp, ∀t ≥ 0. (2.27)

We then define

L(t)=H1−σ(t) + ε
∫
Ω

[
u ·ut +

βτ

k
u · q

]
(x, t)dx, (2.28)

for ε small to be chosen later and

σ = p− 2
2p

. (2.29)

By taking a derivative of (2.28) and using (1.4), we obtain

L′(t)= (1− σ)H−σ(t)H′(t) + ε
(
‖u‖pp +

∥∥ut∥∥2
2−µ‖∇u‖2

2− (λ+µ)‖divu‖2
2

)

− εβ

k

∫
Ω
u · qdx+

εβτ

k

∫
Ω
ut · qdx.

(2.30)

By exploiting (2.2) and (2.24), the estimate (2.30) takes the form

L′(t)= (1− σ)H−σ(t)H′(t) + ε
(

1− 2
p

)
‖u‖pp + 2ε

∥∥ut∥∥2
2−

εβ

k

∫
Ω
u · qdx

+
εβτ

k

∫
Ω
ut · qdx+ 2εH(t)− 2εE1 +

εβ

δ
‖θ‖2

2 +
εγβτ

δk
‖q‖2

2.

(2.31)
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Then using (2.5), we obtain

L′(t)≥ (1− σ)H−σ(t)H′(t) + ε
(

1− 2
p
− 2E1

(
B2α2

)−p)‖u‖pp + 2ε
∥∥ut∥∥2

2

− εβ

k

∫
Ω
u · qdx+

εβτ

k

∫
Ω
ut · qdx+ 2εH(t) +

εβ

δ
‖θ‖2

2 +
εγβτ

δk
‖q‖2

2,

(2.32)

which implies

L′(t)≥ (1− σ)H−σ(t)H′(t) + εc0‖u‖pp + 2ε
∥∥ut∥∥2

2 + 2εH(t) +
εβ

δ
‖θ‖2

2

+
εγβτ

δk
‖q‖2

2−
εβ

k

∫
Ω
u · qdx+

εβτ

k

∫
Ω
ut · qdx,

(2.33)

where c0 = 1− 2/p− 2E1(B2α2)−p > 0 since α2 > B
−p/(p−2)
2 .

Next we exploit Young’s inequality to estimate the last two terms in (2.33) as follows:

∣∣∣∣
∫
Ω
ut · qdx

∣∣∣∣≤ a

2

∥∥ut∥∥2
2 +

1
2a
‖q‖2

2, ∀a > 0,
∫
Ω
u · qdx ≤ b

2
‖q‖2

2 +
1

2b
‖u‖2

2, ∀b > 0.
(2.34)

Thus (2.33) yields

L′(t)≥ (1− σ)H−σ(t)H′(t) + εc0‖u‖pp + ε
(

2− aβτ

2k

)∥∥ut∥∥2
2

+ 2εH(t) +
εβ

δ
‖θ‖2

2 + ε
(
γβτ

δk
− βτ

2ak

)
‖q‖2

2−
εβ

k

[
b

2
‖q‖2

2 +
1

2b
‖u‖2

2

]
.

(2.35)

At this point, we choose a so that

A1 := 2− aβτ

2k
> 0, A2 := βτ

2k

(
2γ
δ
− 1
a

)
> 0. (2.36)

This is possible by virtue of (2.18); consequently, (2.35) becomes

L′(t)≥ (1− σ)H−σ(t)H′(t) + εA1
∥∥ut∥∥2

2 + εA2‖q‖2
2

+ εc0‖u‖pp + εA3‖θ‖2
2 + 2εH(t)− εβ

k

[
b

2
‖q‖2

2 +
1

2b
‖u 2

2

]
,

(2.37)

where A1, A2, A3 are strictly positive constants.
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We also set b = 2MγH−σ(t)/δ, for M a large constant to be determined, to deduce
from (2.37)

L′(t)≥ [(1− σ)− εM
]
H−σ(t)H′(t) + εA1

∥∥ut∥∥2
2 + εA2‖q‖2

2

+ εc0‖u‖pp + εA3‖θ‖2
2 + 2εH(t)− Cε

4M
Hσ(t)‖u‖2

p,
(2.38)

where C, here and in the sequel, is a positive generic constant depending on Ω, p, β, γ, δ,
k, λ, µ, τ only.

We then use (2.27) to get

L′(t)≥ [(1− σ)− εM
]
H−σ(t)H′(t) + εA1

∥∥ut∥∥2
2 + εA2‖q‖2

2

+ εc0‖u‖pp + εA3‖θ‖2
2 + 2εH(t)− Cε

4pM
‖u‖2+σ p

p .
(2.39)

By using (2.29) and the inequality

zν ≤ (z+ 1)≤
(

1 +
1
a

)
(z+ a), ∀z ≥ 0, 0 < ν≤ 1, a > 0, (2.40)

we have the following:

‖u‖2+σ p
p ≤ d

(‖u‖pp +H(0)
)≤ d

(‖u‖pp +H(t)
)
, ∀t ≥ 0, (2.41)

where d = 1 + 1/H(0).
Inserting the estimate (2.41) into (2.39), we arrive at

L′(t)≥ [(1− σ)− εM
]
H−σ(t)H′(t) + εA1

∥∥ut∥∥2
2

+ εA2‖q‖2
2 + ε

(
c0− Cd

4pM

)
‖u‖pp + εA3‖θ‖2

2 + ε
(

2− Cd

4pM

)
H(t).

(2.42)

At this point, we choose M large enough so that (2.42) becomes, for some positive con-
stant A0,

L′(t)≥ [(1− σ)− εM
]
H−σ(t)H′(t) + εA0

[∥∥ut∥∥2
2 +‖q‖2

2 +‖u‖pp +H(t)
]
. (2.43)

Once M is fixed (hence A0), we pick ε small enough so that (1− σ)− εM ≥ 0 and

L(0)=H1−σ(0) + ε
∫
Ω

[
u0 ·u1 +

βτ

k
u0 · q0

]
(x, t)dx > 0. (2.44)
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Therefore, (2.43) yields

L′(t)≥ εA0
[∥∥ut∥∥2

2 +‖q‖2
2 +‖u‖pp +H(t)

]
. (2.45)

Consequently, we have

L(t)≥ L(0) > 0, ∀t ≥ 0. (2.46)

Next we estimate

∣∣∣∣
∫
Ω
uut(x, t)dx

∣∣∣∣≤ ‖u‖2
∥∥ut∥∥2 ≤ C‖u‖p

∥∥ut∥∥2, (2.47)

which implies

∣∣∣∣
∫
Ω
uut(x, t)dx

∣∣∣∣
1/(1−σ)

≤ C‖u‖1/(1−σ)
p

∥∥ut∥∥1/(1−σ)
2 . (2.48)

Again Young’s inequality gives us

∣∣∣∣
∫
Ω
uut(x, t)dx

∣∣∣∣
1/(1−σ)

≤ C
[
‖u‖r/(1−σ)

p +
∥∥ut∥∥s/(1−σ)

2

]
(2.49)

for 1/r + 1/s= 1. We take s= 2(1− σ) to get r/(1− σ)= 2/(1− 2σ)= p by virtue of (2.29).
Therefore, (2.49) becomes

∣∣∣∣
∫
Ω
uut(x, t)dx

∣∣∣∣
1/(1−σ)

≤ C
[
‖u‖pp +

∥∥ut∥∥2
2

]
, ∀t ≥ 0. (2.50)

Similarly we have

∣∣∣∣
∫
Ω
uq(x, t)dx

∣∣∣∣
1/(1−σ)

≤ C
[‖u‖pp +‖q‖2

2

]
, ∀t ≥ 0. (2.51)

Finally, by noting that

L1/(1−σ)(t)=
(
H1−σ(t) + ε

∫
Ω
u
(
ut +

βτ

κ
q
)

(x, t)dx
)1/(1−σ)

≤ C
(
H(t) +

∣∣∣∣
∫
Ω
uut(x, t)dx

∣∣∣1/(1−σ)
+
∣∣∣∣
∫
Ω
uq(x, t)dx

∣∣∣1/(1−σ)
)

≤ C
[
H(t) +‖u‖pp +

∥∥ut∥∥2
2 +‖q‖2

2

]
, ∀t ≥ 0,

(2.52)
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and combining it with (2.45), we obtain

L′(t)≥ a0L
1/(1−σ)(t), ∀t ≥ 0, (2.53)

where a0 is a positive constant depending on εA0 and C. A simple integration of (2.53)
over (0, t) then yields

L(p−2)/(p+2)(t)≥ 1
L−(p−2)/2(0)− a0t(p− 2)/2

. (2.54)

Therefore, L(t) blows up in a time

T∗ ≤ 1−α

αa0
[
L(0)

](p−2)/(p+2) . (2.55)

�

Remark 2.4. The estimate (2.55) shows that the larger L(0) is the quicker the blowup takes
place.
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