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Discrete-time forward interest rate curve models are studied, where the curves are driven
by a random field. Under the assumption of no-arbitrage, the maximum likelihood esti-
mator of the volatility parameter is given and its asymptotic behaviour is studied. First,
the so-called martingale models are examined, but we will also deal with the general case,
where we include the market price of risk in the discount factor.

1. Introduction

In this paper, we study estimation problems in interest rate and bond pricing struc-
tures. In the literature, one can find several approaches to the formulation of interest rate
structures and based on them, one can derive prices of bonds and other interest-rate-
dependent financial assets. An overview on this subject is given, for example, in [12].

The models we consider are based on an idea of Heath et al. [8]. They constructed a
continuous-time model for the so-called forward rate structures and derived the bond
prices from this structure. Later on, many authors studied such forward rate-based bond
models. In what follows, such models will be referred to as Heath-Jarrow-Morton (HJM)-
type models. We note that in the literature, the HJM-type models differ in the parametri-
zation. We follow the so-called Musiela parametrisation (see, e.g., [11] or [1]), in which
the basic model can be summarized as follows.

Let f (t,x) denote the instantaneous forward rate at time t with time to maturity x,
where x, t ∈R+, where R+ denotes the set of the nonnegative real numbers. In particular,
the spot interest rate is defined by r(t) := f (t,0), t ∈ R+. In this HJM-type model, the
forward rates are assumed to follow the dynamics

df (t,x)= α(t,x)dt+ σ(t,x)dW(t), (1.1)

where {W(t)}t∈R+ is a standard Wiener process. In an integral form, we have

f (t,x)= f (0,x) +
∫ t

0
α(u,x)du+

∫ t

0
σ(u,x)dW(u). (1.2)
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We emphasise again that we follow the Musiela parametrisation, and hence x is time
to maturity and not time of maturity. Having built up the forward rate dynamics, the
common way in the literature to define the price of a zero-coupon bond at time t with
maturity date s is to take

P(t,s) := exp
{
−
∫ s−t

0
f (t,u)du

}
, 0≤ t ≤ s. (1.3)

One can see in the above model that for any value x ≥ 0 in (1.1), the forward rate
process { f (t,x)}t∈R+ is driven by the same Wiener process. To put it in another way, one
can say that the same “shocks” have effect on all the forward rates, which seems not to
be very realistic. Therefore, it is natural to generalise the classical models by introducing
a random driving field instead of a single driving process. In this way, forward rates with
different times to maturity can be driven by different processes.

Such a generalisation of the classical HJM-type models has been proposed by Kennedy
[10] in the continuous case. Later on, several authors studied such random field models;
here we refer to Goldstein [6] and Santa-Clara and Sornette [14]. We can formulate the
main idea of random field models as follows. Let {Z(t,s)}t,s∈R+ be a random field and
suppose that for each fixed x ∈R+, the forward rate dynamics is given by

df (t,x)= α(t,x)dt+ σ(t,x)Z(dt,x), (1.4)

where {Z(t,s)}t∈R+ is a martingale for any s≥ 0. Writing (1.4) in an integral form, we have

f (t,x)= f (0,x) +
∫ t

0
α(u,x)du+

∫ t

0
σ(u,x)Z(du,x). (1.5)

In contrast to a “random field” model like (1.4), a model of the form (1.1) will be called
“classical.”

A major part of defining such a model is to find appropriate driving processes or driv-
ing fields for the forward rates. Although in the classical models, Brownian motions are
the most commonly used driving processes (see, e.g., [8]), more general models are also
known in the literature. Schmidt [15] proposed for instance a natural generalisation of
the Brownian motion, namely, the Ornstein-Uhlenbeck process, which can be consid-
ered as the natural analogue of an autoregressive (AR)(1) process in discrete time. Some-
times, some further considerations can be taken into account—especially in the random
field case— which help us to find appropriate and more realistic candidates. Typically,
the covariance structure of the driving field can be restricted by further assumptions, as
described, for example, in [6, 14]. Knowing the classical models, it is not surprising to
see that Brownian sheets and also integrated Brownian sheets and Ornstein-Uhlenbeck
sheets are quite usually used in the random field case. See Kennedy [10], Goldstein [6], or
Santa-Clara and Sornette [14]. Note that in [14], some further examples are also studied.

The HJM model (see [8]) as well as the models studied in [6, 10, 14] are continuous-
time models. One can find several papers on the discrete versions of the classical HJM
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models. Here we mention [7, 9, 13]. Like in the classical case, it is reasonable and sensible
to model and investigate possible discrete-time counterparts of the continuous-time ran-
dom field models of the form (1.4). In [4], such discrete-time random field models have
been studied.

In this paper—based on the models and results of [4]—we consider discrete-time ran-
dom forward interest rate models, where the forward rates corresponding to different
times to maturity are driven by a Gaussian type of random field, which has been built
up by a system of i.i.d. Gaussian random variables. Keeping in mind the consideration
on the possible continuous-time random fields mentioned above, we will study models
which are equipped with the natural discrete-time analogues of these fields, that is, we
will study a Gaussian field built up in an autoregressive way (Section 2). With the special
choice of this driving process, one can get back the classical models as well as a sim-
ple discrete spatial Gaussian lattice, which could be the most natural analogue of many
continuous-time random field models. To make the models realistic, one has to claim
that the market excludes arbitrage opportunities. In [4], such models have been proposed
and also no-arbitrage conditions have been derived for these models. Therefore, in this
paper, we will always assume that the interest rate curves satisfy the no-arbitrage condi-
tions. First, we will focus in our study on the so-called “martingale” case (see Sections 3
and 4), where the market measure is an equivalent measure. Such an approach appears
in derivative pricing problems in the literature, among others in [2, 3]. In our case, this
assumption implies a drift condition (see [4]).

In this setting, our aim is to find an appropriate estimator for the volatility parameter
of the model and to study its asymptotic behaviour. Assuming that the volatility param-
eters are deterministic and independent of time and of maturity and also that the i.i.d.
random variables involved are standardly normally distributed, we will find the maxi-
mum likelihood estimator of the volatility parameter (Section 3) together with its asymp-
totic distribution (Section 4). Depending on the value of the autoregression parameter,
we will separate the stable and unstable (or nearly unit root) case and obtain results for
both cases.

Furthermore, in contrast to the martingale case, we will study, say, a “general” case in
Section 5. For this, a more complicated model must be used, in which market price of
risk will be introduced as a new factor. Again, based on the no-arbitrage conditions, we
will see that the technique applied in Sections 3 and 4 can be used to derive similar results
as in the “martingale” case.

We also mention another important source of motivation for studying discrete-time
forward rates driven by random fields. It is the problem that the rigorous definitions of
some notions of the continuous counterpart models have not been worked out yet in
the literature because of certain technical or theoretical difficulties caused by the change
from the classical models to random field structures. Discrete approximation provides a
promising way for solving these problems. Some results on this question are given by the
authors [5], where it is discussed that Ornstein-Uhlenbeck sheets can be obtained as a
limit of the discrete-time autoregression models, which are studied in this paper. So this
is another reason why we focus on autoregression models in this paper.
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2. The model and the no-arbitrage criterion

We will treat discrete-time forward interest rate curve models driven by a spatial au-
toregressive process. The model can be built up as follows. Let {η(i, j) : i, j ∈ Z+} be a
system of i.i.d. random variables with mean zero and variance one on a probability space
(Ω,�,P). Introduce the filtration �k := σ(η(i, j) : 0 ≤ i ≤ k, j ∈ Z+), k ∈ Z+. Consider
the doubly geometric spatial autoregressive process {S(k,�) : k,� ∈ Z+} generated by

S(k,�)= S(k− 1,�) + ρS(k,�− 1)− ρS(k− 1,�− 1) +η(k,�),

S(k,−1)= S(−1,�)= 0,
k,� ∈ Z+, (2.1)

where ρ ∈ R. Then a discrete-time forward interest rate curve model with initial values
{ f (0,�) : � ∈ Z+}, with coefficients {α(k,�),β(k,�) : k,� ∈ Z+}, and with driving process
{S(k,�) : k,� ∈ Z+} is given by

f (k+ 1,�)= f (0,�) +
k∑
i=0

α(i,�) +
k∑
i=0

β(i,�)∆1S(i,�), k,� ∈ Z+, (2.2)

where ∆1S(i,�) := S(i+ 1,�)− S(i,�), the random variables {α(k,�),β(k,�) : � ∈ Z+} are
�k-measurable, and f (0,�) ∈ R, � ∈ Z+. Clearly { f (k,�) : k,� ∈ Z+} satisfies the (sto-
chastic) difference equation

f (k+ 1,�)= f (k,�) +α(k,�) +β(k,�)∆1S(k,�), k,� ∈ Z+. (2.3)

The random variable f (k,�) is in fact the instantaneous forward rate at time k with time
to maturity �. Hence, the (spot) interest rate holding for the time period t = k to t = k+ 1
is defined by

r(k) := f (k,0) ∀k ∈ Z+. (2.4)

Clearly

S(k,�)=
k∑
i=0

�∑
j=0

ρ�− jη(i, j), (2.5)

and hence

∆1S(k,�)=
�∑
j=0

ρ�− jη(k+ 1, j). (2.6)

Using this equation, one can easily check that

cov
(
∆1S

(
k,�1

)
,∆1S

(
k,�2

))= �1∑
j1=0

�2∑
j2=0

ρ�1+�2− j1− j2 cov
(
η
(
k+ 1, j1

)
,η
(
k+ 1, j2

))

=
�1∧�2∑
j=0

ρ�1+�2−2 j =


ρ�1+�2+2− ρ|�1−�2|

ρ2− 1
for ρ �= ±1,((

�1∧ �2
)

+ 1
)
ρ�1+�2 for ρ=±1.

(2.7)
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Consequently, the covariances

cov
(
∆1S

(
k,�1

)
,∆1S

(
k,�2

))=: c
(
�1,�2

)
(2.8)

do not depend on k.
For the sake of simplicity, we suppose that the stochastic discount factor process

{M(k) : k ∈ Z+} is given by M(0) := 1 and

M(k+ 1)= e− f (k,0)M(k), k ∈ Z+. (2.9)

The price P(k,�) of a zero-coupon bond at time k ∈ Z+ with maturity � ∈ Z+ with � ≥ k
is defined by P(k,k) := 1 and

P(k,� + 1)= e− f (k,�−k)P(k,�), k,� ∈ Z+, k ≤ �. (2.10)

This is a discrete-time analogue of formula (1.3), defined now in a recursive way.
As is natural in financial mathematics, we are interested only in models where arbi-

trage opportunities are excluded in the market. The no-arbitrage conditions are based on
the existence of an equivalent martingale measures. In this paper, we will study volatility
estimation in the “martingale” case, where the real measure of the market is assumed to be
a martingale measure. A similar approach has been proposed and studied by Föllmer and
Sondermann [3], and Föllmer and Schweizer [2]. In this martingale case, a drift condition
occurs which makes the volatility estimation complicated. Note that several no-arbitrage
criteria for the model at issue have been derived by the authors [4]. For our martingale
case and under the assumption that the common distribution of {η(i, j) : i, j ∈ Z+} is the
standard normal distribution, it is proved [4, Corollary 2, page 14] that the no-arbitrage
criterion implies

f (k,� + 1)= f (k,0) +
�∑
j=0

α(k, j)− 1
2

�∑
j1=0

�∑
j2=0

β
(
k, j1

)
β
(
k, j2

)
c
(
j1, j2

)
(2.11)

for all k,� ∈ Z+. From (2.11), one can obtain the difference equation

f (k,� + 1)= f (k,�) +α(k,�)− 1
2
β(k,�)2c(�,�)−β(k,�)

�−1∑
j=0

β(k, j)c(�, j). (2.12)

Together with (2.2), we obtain

f (k+ 1,�)− f (k,� + 1)= 1
2
β(k,�)2c(�,�) +β(k,�)

�−1∑
j=0

β(k, j)c(�, j)

+β(k,�)∆1S(k,�).

(2.13)
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3. ML estimation in martingale models

We consider a forward interest rate curve model { f (k,�) : k,� ∈ Z+} given in (2.2). Sup-
pose that the common distribution of {η(i, j) : i, j ∈ Z+} is the standard normal distri-
bution and the model satisfies the no-arbitrage criterion (2.11). Assume that there exists
β ∈R, β �= 0, such that β(k,�)= β a.s. for all k,� ∈ Z+.

In the lemma below, we will obtain, based on the forward rates, an explicit expression
for the maximum likelihood estimator of the volatility.

Lemma 3.1. Assume that the parameter ρ is known. Let K and L be positive integers. Then

the maximum likelihood estimator β̂2
K ,L of β2 based on the sample

{
f (k,�) : 1≤ k ≤ K , 0≤ � ≤ L

}
(3.1)

is given by

β̂2
K ,L :=

−BK ,L +
√
B2
K ,L + 4AK ,LCK ,L

2AK ,L
, (3.2)

where

AK ,L := K

4

L−1∑
�=0

 2�∑
i=0

ρi

2

+
1
4

K∑
k=1

1
k

k−1∑
j=0

2L+2 j∑
i=0

ρi

2

,

BK ,L := K(L+ 1),

CK ,L :=
K∑
k=1

L−1∑
�=0

g2
k,� +

K∑
k=1

1
k
g̃ 2
k,L,

(3.3)

where

gk,� :=
 f (k,�)− f (k− 1,� + 1)− ρ

(
f (k,�− 1)− f (k− 1,�)

)
for k,� ≥ 1,

f (k,0)− f (k− 1,1) for k ≥ 1, � = 0,

g̃k,L := f (k,L)− f (0,k+L)− ρ
(
f (k,L− 1)− f (0,k+L− 1)

)
for k,L≥ 1.

(3.4)

Proof. The aim of the following discussion is to find the joint density of { f (k,�) : 1 ≤
k ≤ K , 0≤ � ≤ L}. By (2.13), we have

f (k+ 1,�)− f (k,� + 1)= 1
2
β2c(�,�) +β2

�−1∑
j=0

c(�, j) +β∆1S(k,�), k,� ∈ Z+. (3.5)

Clearly

�−1∑
j=0

c(�, j)=
�−1∑
j=0

j∑
i=0

ρ�+ j−2i, (3.6)
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hence

c(�,�) + 2
�−1∑
j=0

c(�, j)=
 �∑
i=0

ρi

2

. (3.7)

Using (2.6), we observe

f (k+ 1,�)− f (k,� + 1)= β2

2

 �∑
i=0

ρi

2

+β
�∑
j=0

ρ�− jη(k+ 1, j), (3.8)

hence

f (k+ 1,�)− f (k,� + 1)− ρ
(
f (k+ 1,�− 1)− f (k,�)

)= β2

2

2�∑
i=0

ρi +βη(k+ 1,�) (3.9)

for k ≥ 0, � ≥ 1. Consequently, f (k + 1,�) can be expressed by f (k,� + 1), f (k + 1,�− 1),
f (k,�), and η(k + 1,�), and the conditional distribution of f (k + 1,�), given f (k,� + 1),
f (k+ 1,�− 1), and f (k,�), is a normal distribution with mean

f (k,� + 1) + ρ
(
f (k+ 1,�− 1)− f (k,�)

)
+
β2

2

2�∑
i=0

ρi (3.10)

and variance β2. Moreover,

f (k+ 1,0)− f (k,1)= β2

2
+βη(k+ 1,0), k ≥ 0, (3.11)

hence the conditional distribution of f (k + 1,0), given f (k,1), is a normal distribution
with mean f (k,1) +β2/2 and variance β2. Finally,

f (k+ 1,�)= f (0,k+ � + 1) +
β2

2

k∑
j=0

�+ j∑
i=0

ρi

2

+β
k∑
j=0

k+�− j∑
i=0

ρk+�− j−iη( j + 1, i), (3.12)

which implies

f (k+ 1,�)− f (0,k+ � + 1)− ρ
(
f (k+ 1,�− 1)− f (0,k+ �)

)
= β2

2

k∑
j=0

2�+2 j∑
i=0

ρi +β
k∑
j=0

η( j + 1,k+ �− j).
(3.13)

Consequently, f (k + 1,�) can be expressed by f (0,k + � + 1), f (k + 1,�− 1), f (0,k + �),
and {η( j + 1,k + �− j) : 0≤ j ≤ k}, and the conditional distribution of f (k + 1,�), given
f (0,k+ � + 1), f (k+ 1,�− 1), and f (0,k+ �), is a normal distribution with mean

f (0,k+ � + 1) + ρ
(
f (k+ 1,�− 1)− f (0,k+ �)

)− β2

2

k∑
j=0

2�+2 j∑
i=0

ρi (3.14)
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and variance (k + 1)β2. For { f (k,�) : 1 ≤ k ≤ K , 1 ≤ � ≤ L− 1} we use the first condi-
tional distribution, for { f (k,0) : 1≤ k ≤ K} the second one, and for { f (k,L) : 1≤ k ≤ K}
we use the third one. By the independence of {η(i, j) : i, j ∈ Z+}, we obtain that the joint
density h(xk,� : 1≤ k ≤ K , 0≤ � ≤ L) of { f (k,�) : 1≤ k ≤ K , 0≤ � ≤ L} has the form

1(
2πβ2

)(L+1)K/2
(K !)1/2

exp

− 1
2β2

K∑
k=1

L−1∑
�=0

yk,� − β2

2

2�∑
i=0

ρi

2

− 1
2β2

K∑
k=1

1
k

 ỹk,L− β2

2

k−1∑
j=0

2L+2 j∑
i=0

ρi

2
 ,

(3.15)

where yk,� and ỹk,L are defined by

yk,� :=
xk,� − xk−1,�+1− ρ

(
xk,�−1− xk−1,�

)
for k,� ≥ 1,

xk,0− xk−1,1 for k ≥ 1, � = 0,

ỹk,L := xk,L− x0,k+L− ρ
(
xk,L−1− x0,k+L−1

)
for k,L≥ 1,

(3.16)

and x0,� := f (0,�) for � ≥ 0.

Thus the maximum likelihood estimator β̂2
K ,L of β2 can be obtained by minimizing

K(L+ 1)logβ2 +
1
β2

K∑
k=1

L−1∑
�=0

yk,� − β2

2

2�∑
i=0

ρi

2

+
1
β2

K∑
k=1

1
k

 ỹk,L− β2

2

k−1∑
j=0

2L+2 j∑
i=0

ρi

2

.

(3.17)

Taking the derivative with respect to β2, we obtain

K(L+ 1)
β2

− 1
β4

K∑
k=1

L−1∑
�=0

yk,� − β2

2

2�∑
i=0

ρi

2

− 1
β2

K∑
k=1

L−1∑
�=0

yk,� − β2

2

2�∑
i=0

ρi

 2�∑
i=0

ρi

− 1
β4

K∑
k=1

1
k

 ỹk,L− β2

2

k−1∑
j=0

2L+2 j∑
i=0

ρi

2

− 1
β2

K∑
k=1

1
k

 ỹk,L− β2

2

k−1∑
j=0

2L+2 j∑
i=0

ρi

 k−1∑
j=0

2�+2 j∑
i=0

ρi

= K(L+ 1)
β2

− 1
β4

K∑
k=1

L−1∑
�=0

yk,� − β2

2

2�∑
i=0

ρi

yk,� +
β2

2

2�∑
i=0

ρi


− 1
β4

K∑
k=1

1
k

 ỹk,L− β2

2

k−1∑
j=0

2L+2 j∑
i=0

ρi

 ỹk,L +
β2

2

k−1∑
j=0

2L+2 j∑
i=0

ρi



= K(L+ 1)
β2

− 1
β4

K∑
k=1

L−1∑
�=0

y2
k,� −

β4

4

 2�∑
i=0

ρi

2
− 1

β4

K∑
k=1

1
k

 ỹ 2
k,L−

β4

4

k−1∑
j=0

2L+2 j∑
i=0

ρi

2
 .

(3.18)
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Consequently, β̂2
K ,L is a solution of the equation

AK ,Lβ
4 +BK ,Lβ

2−CK ,L = 0. (3.19)

This is a second-order equation for β̂2
K ,L, and its positive root gives the maximum likeli-

hood estimator of β2. �

4. Asymptotic behaviour of the volatility estimator

Consider a sequence of discrete-time forward interest rate curve models { fn(k,�) : k,� ∈
Z+}, n ∈ N, with initial values { fn(0,�) : � ∈ Z+}, with coefficients {αn(k,�),βn(k,�) :
k,� ∈ Z+}, and with driving process {Sn(k,�) : k,� ∈ Z+} with parameter ρn. Assume that
there exists βn ∈ R, βn �= 0, such that βn(k,�)= βn a.s. for all k,� ∈ Z+. Suppose that the
common distribution of {ηn(i, j) : i, j ∈ Z+}, n∈ N, is the standard normal distribution
for each model { fn(k,�) : k,� ∈ Z+}, n∈N, and the no-arbitrage condition (2.11) is sat-
isfied in the models.

We will study two important cases regarding the behaviour of the autoregression pa-
rameter ρn. First, we consider a so-called nearly unit root (or unstable) case where the
autoregression parameter ρn tends to 1. Secondly, we study the stable case, where the se-
quence ρn (n ∈ N) has a limit ρ with |ρ| < 1. Theorem 4.1 summarises our main result
achieved in the unstable case.

Theorem 4.1. Consider the maximum likelihood estimator β̂2
Kn,Ln

of β2
n based on a sam-

ple { fn(k,�) : 1≤ k ≤ Kn, 0≤ � ≤ Ln}, whereKn = nK + o(n) and Ln = nL+ o(n) as n→ ∞
with some K ,L > 0. Assume that ρn = 1 + γ/n + o(n−1) as n → ∞, where γ ∈ R, and
liminfn∈N |βn| > 0. Then

n2β−1
n

(
β̂2

Kn,Ln
−β2

n

)
�−−→�

(
0,4σ2), (4.1)

where

1
σ2

:= K
∫ L

0

(∫ 2t

0
eγvdv

)2

dt+
∫ K

0

1
s

(∫ s

0

∫ 2L+2u

0
eγvdvdu

)2

ds. (4.2)

Proof. We have

β̂2
K ,L−β2 = 2

(
CK ,L−β4AK ,L−β2BK ,L

)
BK ,L + 2β2AK ,L +

√
B2
K ,L + 4AK ,LCK ,L

. (4.3)

Clearly, we also have

AKn,Ln =
n4

4

(
1
σ2

+ o(1)
)

, (4.4)

BKn,Ln = n2(KL+ o(1)
)
, (4.5)
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as n→∞. Moreover,

CK ,L =
K−1∑
k=0

(
f (k+ 1,0)− f (k,1)

)2

+
K−1∑
k=0

L−1∑
�=1

(
f (k+ 1,�)− f (k,� + 1)− ρ

(
f (k+ 1,�− 1)− f (k,�)

))2

+
K−1∑
k=0

1
k+ 1

(
f (k+ 1,L)− f (0,k+L+ 1)− ρ

(
f (k+ 1,L− 1)− f (0,k+L)

))2
.

(4.6)

Applying (3.9), (3.11), and (3.12), we obtain

CK ,L−β4AK ,L = β2
K−1∑
k=0

L−1∑
�=0

η(k+ 1,�)2 +β2
K−1∑
k=0

1
k+ 1

 k∑
j=0

η( j + 1,k+L− j)

2

+β3
K−1∑
k=0

L−1∑
�=0

η(k+ 1,�)
2�∑
i=0

ρi +β3
K−1∑
k=0

1
k+ 1

k∑
j=0

η( j + 1,k+L− j)
k∑
j=0

2L+2 j∑
i=0

ρi.

(4.7)

Dividing by n2, the first two terms converge in probability to some deterministic limit
since

1
n2

Kn−1∑
k=0

Ln−1∑
�=0

ηn(k+ 1,�)2 L1−−→ KL,

1
n2

Kn−1∑
k=0

1
k+ 1

 k∑
j=0

ηn( j + 1,k+ �− j)

2

L1−−→ 0.

(4.8)

Dividing by n2, the third and fourth terms have a limit in distribution, namely,

1
n2

Kn−1∑
k=0

Ln−1∑
�=0

ηn(k+ 1,�)
2�∑
i=0

ρin

�=�

0,
1
n4

Kn−1∑
k=0

Ln−1∑
�=0

 2�∑
i=0

ρin

2
 �−−→�

0,K
∫ L

0

(∫ 2t

0
eγvdv

)2

dt

 ,

1
n2

Kn−1∑
k=0

1
k+ 1

k∑
j=0

ηn
(
j + 1,k+Ln− j

) k∑
j=0

2Ln+2 j∑
i=0

ρin

�=�

0,
1
n4

Kn−1∑
k=0

1
k+ 1

 k∑
j=0

2Ln+2 j∑
i=0

ρin

2


�−−→�

0,
∫ K

0

1
s

(∫ s

0

∫ 2L+2u

0
eγvdvdu

)2

ds

 .

(4.9)
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Independence of the third and fourth terms implies

1
β3
nn2

(
CKn,Ln −β4

nAKn,Ln −β2
nBKn,Ln

) �−−→�
(

0,
1
σ2

)
(4.10)

since limsupn∈N
1/|βn| <∞. Furthermore,

1
β2
nn4

(
BKn,Ln + 2β2

nAKn,Ln

)−→ 1
2σ2

K ,L
as n−→∞. (4.11)

Finally,

B2
Kn,Ln + 4AKn,LnCKn,Ln =

(
BKn,Ln + 2β2

nAKn,Ln

)2

+ 4AKn,Ln

(
CKn,Ln −β4

nAKn,Ln −β2
nBKn,Ln

)
,

(4.12)

hence

1
β2
nn4

√
B2
Kn,Ln + 4AKn,LnCKn,Ln

P−→ 1
2σ2

K ,L
. (4.13)

By (4.10), (4.11), and (4.13), we obtain the statement. �

Remark 4.2. If βn→ β with β �= 0, then

n2
(
β̂2

Kn,Ln
−β2

n

)
�−−→�

(
0,4β2σ2). (4.14)

Moreover, for γ = 0, we have

1
σ2
= K

12

(
4L3 + 4LK2 +K3), (4.15)

and for γ �= 0,

1
σ2
= K

γ2

∫ L

0

(
e2γt − 1

)2
dt+

1
γ2

∫ K

0

1
s

(∫ s

0

(
e2γ(L+u)− 1

)
du
)2

ds. (4.16)

The following statements can be useful to derive asymptotic interval estimation for the
volatility.

Corollary 4.3. Under the assumption of Theorem 4.1,

n2β̂2
−1/2

Kn,Ln

(
β̂2

Kn,Ln
−β2

n

)
�−−→�

(
0,4σ2). (4.17)

Proof. To show this, first note that

β2
n

β̂2
Kn,Ln

P−→ 1. (4.18)

Indeed, from Theorem 4.1, one can easily obtain that β−2
n (β̂2

Kn,Ln
− β2

n)
P−→ 0. Now, (4.18)

and (4.1) together with Slutsky’s lemma lead us to the desired statement. �
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Next, we turn to the study of the stable case. Our main result regarding the stable case
is presented in the following theorem.

Theorem 4.4. Consider the maximum likelihood estimator β̂2
Kn,Ln

of β2
n based on a sample

{ fn(k,�) : 1 ≤ k ≤ Kn, 0 ≤ � ≤ Ln}, where Kn = nK + o(n) and Ln = nL+ o(n) as n→∞
with some K ,L > 0. Assume that ρn→ ρ, where ρ∈ (−1,1) and βn→ β ∈R as n→∞. Then

n
(
β̂2

Kn,Ln
−β2

n

)
�−−→�

(
0,

2β4

2β2λ+KL

)
, (4.19)

where

λ= K(2L+K)
8(1− ρ)2

. (4.20)

Proof. To obtain the desired result, as in the proof of Theorem 4.1, we will study the
asymptotics of the terms appearing in (4.3). First, note that

AKn,Ln =
Kn

4
(
1− ρn

)2

(
Ln− 2ρn

1− ρ2Ln
n

1− ρ2
n

+ ρ2
n

1− ρ4Ln
n

1− ρ4
n

)

+
1

4
(
1− ρn

)2

Kn∑
k=1

1
k

(
k− ρ2Ln+1

n

1− ρ2k
n

1− ρ2
n

)2

= K(2L+K)
8(1− ρ)2

n2 + o
(
n2)

(4.21)

and BKn,Ln = KLn2 + o(n2) as n→∞. Next, define for 0≤ k < Kn, 0≤ � ≤ Ln, n∈N,

ξn(k,�) :=



β3
nηn(k+ 1,�)

2�∑
i=0

ρin +β2
n

(
ηn(k+ 1,�)2− 1

)
if 0≤ � < Ln,

β3
n

1√
k+ 1

k∑
j=0

ηn( j + 1,k+L− j)
1√
k+ 1

k∑
j=0

2Ln+2 j∑
i=0

ρin

+β2
n


 1√

k+ 1

k∑
j=0

ηn( j + 1,k+L− j)

2

− 1

 if � = Ln.

(4.22)

Recalling (4.7), one can write

CKn,Ln −β4
nAKn,Ln −β2

nBKn,Ln =
Kn−1∑
k=0

Ln∑
�=0

ξn(k,�). (4.23)

It is easy to see that

1
n2

Var
(
CKn,Ln −β4

nAKn,Ln −β2
nBKn,Ln

)−→ K(2L+K)β6

2(1− ρ)2
+ 2KLβ4,

1
n4

Kn−1∑
k=0

Ln∑
�=0

Eξn(k,�)4 −→ 0,

(4.24)
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as n→∞. Hence, by Lyapounov’s limit theorem, we obtain from (4.24) that

1
n

(
CKn,Ln −β4

nAKn,Ln −β2
nBKn,Ln

) �−−→�

(
0,
K(2L+K)β6

2(1− ρ)2
+ 2KLβ4

)
. (4.25)

Furthermore,

1
n2

(
BKn,Ln + 2β2

nAKn,Ln

)−→ KL+
K(2L+K)β2

4(1− ρ)2
,

1
n2

√
B2
Kn,Ln + 4AKn,LnCKn,Ln

P−→ KL+
K(2L+K)β2

4(1− ρ)2
,

(4.26)

as n→∞. By combining (4.25), (4.26), we obtain the statement. �

In order to derive asymptotic interval estimation for the volatility in the stable case,
one can apply the following corollary.

Corollary 4.5. Under the assumption of Theorem 4.4, suppose that β �= 0. Then

n

2β̂2
Kn,Ln

λ+KL

2
(
β̂2

Kn,Ln

)2


1/2(

β̂2
Kn,Ln

−β2
n

)
�−−→�(0,1) (4.27)

with λ given by (4.20).

Proof. It can be obtained as an easy consequence of (4.19) that β̂2
Kn,Ln

P−→ β2, thus Slutsky’s
lemma and (4.19) lead to (4.27). �

5. A general case

As we mentioned in the introduction, our main focus in the previous sections was on
studying the so-called martingale case. In this section, we turn to the consideration of
the general case, where the asset price processes discounted by the corresponding interest
rates are no longer supposed to be martingales. Instead, we introduce a new factor, called
“market price of risk,” which modifies (and generalises) the discount factor. The model
we will study in this section is the one introduced in [4], which we summarise next.

For this, recall the autoregressive field defined in (2.1) and take φj ∈ R for j ∈ Z+

such that
∑∞

j=0φj∆1S(k, j) is convergent with probability one. Note that, for example,∑∞
j=0φ

2
j <∞ and |ρ| < 1 would be sufficient for this convergence, but one can certainly

find other sufficient conditions. Now, consider a general discount factor satisfying

M(k+ 1)=M(k)exp

−r(k) +
∞∑
j=0

φj∆1S(k, j)

 , k ∈ Z+, (5.1)

where the factors φj ’s will be called market prices of risk. As usual, one should claim the
market to exclude arbitrage. Hence, the bond price processes discounted by the above
discount factors are claimed to form martingales. No-arbitrage conditions for the model
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at issue have been derived in [4]. The authors found that in case of forward rates defined
by (2.1) and (2.2) and equipped with the discount factor in (5.1), the no-arbitrage implies

f (k,� + 1)= f (k,�) +α(k,�)− 1
2
β(k,�)2c(�,�)−β(k,�)

�−1∑
j=0

β(k, j)c(�, j)

+β(k,�)
∞∑
j=0

φjc(�, j), k,� ∈ Z+,

(5.2)

where c(�, j), �, j ∈ Z+, are defined in (2.7) and (2.8). Note that (5.2) is the generalisation
of (2.12) in the martingale case.

For more on such models and the role of the market price of risk, we refer to [1, 4, 14].
We also note that Santa-Clara and Sornette derived the continuous counterpart of (5.2)
(see [14]). Furthermore, the interested reader can find results on the limiting connection
of such discrete and continuous models in [5].

Since the driving fields follow an autoregressive structure, which implies a “geometric”
feature (see, e.g., (2.6)), we will suppose that the market price of risk parameters behave
in a similar way. Therefore, in what follows, we assume that

φj = βbq j , j ∈ Z+, (5.3)

where b ∈R and |q| < 1 such that |qρ| < 1. Note that the latter condition is sufficient for
the convergence of

∑∞
j=0φj∆1S(k, j) with probability one. The parameter b is included

for the sake of generality, although the assumption b = 1 would already lead to a quite
general model. The reason why φj is defined relative to β will be discussed later on.

Now we turn to the maximum likelihood estimator of the volatility.

Lemma 5.1. Consider a forward interest rate curve model { f (k,�) : k,� ∈ Z+} given in (2.2)
and suppose that (5.1) together with the no-arbitrage conditions (5.2) and (5.3) are valid.
Assume that ρ, b, q are known. Then under the assumptions of Lemma 3.1 taken on the

parameters and the sample, the maximum likelihood estimator β̂2
K ,L of β2 is given by

β̂2
K ,L :=

−BK ,L +
√
B2
K ,L + 4AK ,LCK ,L

2AK ,L
, (5.4)

where

AK ,L := K

4

L−1∑
�=0

 2�∑
i=0

ρi− 2b
q�

1− qρ

2

+
1
4

K∑
k=1

1
k

k−1∑
j=0

2L+2 j∑
i=0

ρi− 2b
qL
(
1− qk

)
(1− qρ)(1− q)

2
(5.5)

and BK ,L, CK ,L are the same as in Lemma 3.1.
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Proof. One can derive the statement of this lemma by following the steps of the proof of
Lemma 3.1, where one should use (5.2) instead of (2.12) of course. Hence we omit here
the details of the proof. �

The market price of risk is defined relative to the volatility in our setup. One could of
course parametrise the market price of risk without the inclusion of the volatility. How-
ever, we remark that with the inclusion of the volatility, the maximum likelihood estima-
tor will not be a solution of a second-order equation and cannot be expressed explicitly.
On the other hand, it is important to emphasise that this way does not cause any loss of
generality. It is, in fact, just a matter of parametrisation.

Next, we should like to examine the asymptotics of the estimator given in Lemma 5.1.
For this, like in Section 4, consider again a sequence of discrete-time forward interest rate
curve models { fn(k,�) : k,� ∈ Z+}, n ∈ N, (with parameters βn, ρn, bn, qn) which fulfill
(5.2) with discount factors (5.1).

Theorem 5.2. Suppose that b = limn→∞ bn with b ∈ R, and q = limn→∞ qn with |qn| < 1,
|qnρn| < 1 for all n∈N. Furthermore, assume that the driving process Sn and the sample size
parameters Kn, Ln are as in Theorem 4.1.

(a) If |q| < 1 and the parameters βn, ρn are as in Theorem 4.1, then statement (4.1) re-
mains valid with σ2 given by (4.2).

(b) If |q| < 1 and the parameters βn, ρn are as in Theorem 4.4, then statement (4.19)
remains valid with λ given by (4.20).

(c) If qn = 1− κ/n+ o(n−1), with some κ∈R (and hence q = 1), and the parameters βn,
ρn are as in Theorem 4.1 with κ > γ, then statement (4.1) is valid with

1
σ2

:= K
∫ L

0

(∫ 2t

0
eγvdv− 2be−κt

κ− γ

)2

dt

+
∫ K

0

1
s

(∫ s

0

∫ 2L+2u

0
eγvdvdu− 2be−κL

κ− γ

∫ s

0
e−κvdv

)2

ds.

(5.6)

(d) If qn = 1− κ/n+ o(n−1), with some κ∈R (and hence q = 1), and the parameters βn,
ρn are as in Theorem 4.4, then statement (4.19) is valid with

λ= K

4(1− ρ)2

(
L− 2b

∫ L

0
e−κtdt

)2

+
1

4(1− ρ)2

∫ K

0

1
s

(
s− 2be−κL

∫ s

0
e−κtdt

)2

ds.

(5.7)

Proof. For the proof, one can follow and repeat the steps of the proofs of Theorems 4.1
and 4.4. The only part we should like to emphasise is the asymptotic behaviour of AKn,Ln .
In case (a), the limit of n−4AKn,Ln remains the limit given in (4.4) despite the fact that
AKn,Ln is now given by Lemma 5.1. Similarly, the limit of n−2AKn,Ln in case (b) remains
the limit given in (4.21). In case (c) and case (d), however, we obtain different limits for
n−4AKn,Ln and n−2AKn,Ln , respectively, which leads to the normal limit distributions given
above. �
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We note finally that one could, of course, take some other forms for the market price
of risk. Even much simpler models than (5.3) could be examined. For example, finitely
many factors φ0, . . . ,φN �= 0 could be considered (with φj = 0 for j > N) or even a single-
factor case, that is, φ0 �= 0, φj = 0, j > 0, could be of interest. In this sense, the classical
(not random field-based) models are all such single-factor models. In the literature, au-
thors suggest that the market price of risk parameter(s) could be observed in the market
possibly by the aid of other financial assets (since they should be considered as some com-
mon feature of the market). For a general discussion on the role of the market price of
risk, one can consult, for example, [1].
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