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We study the asymptotic behavior of Lp(σ) extremal polynomials with respect to a mea-
sure of the form σ = α+ γ, where α is a measure concentrated on a rectifiable Jordan curve
in the complex plane and γ is a discrete measure concentrated on an infinite number of
mass points.

1. Introduction

Let F be a compact subset of the complex plane C and let B be a metric space of func-
tions defined on F. We suppose that B contains the set of monic polynomials. Then the
extremal or general Chebyshev polynomial Tn of degree n is a monic polynomial that
minimizes the distance between zero and the set of all monic polynomials of degree n,
that is,

dist
(
Tn,0

)=min
{

dist
(
Qn,0

)
:Qn(z)= zn + an−1z

n−1 + ···+ a0
}=mn(B). (1.1)

Recently, a series of results concerning the asymptotic of the extremal polynomials was
established for the case of B = Lp(F,σ), 1≤ p ≤∞, where σ is a Borel measure on F; see,
for example, [3, 7, 8, 12]. When p = 2, we have the special case of orthogonal polynomials
with respect to the measure σ . A lot of research work has been done on this subject; see,
for example, [1, 4, 5, 9, 11, 13]. The case of the spaces Lp(F,σ), where 0 < p <∞ and
F is a closed rectifiable Jordan curve with some smoothness conditions, was studied by
Geronimus [2]. An extension of Geronimus’s result has been given by Kaliaguine [3] who
found asymptotics when 0 < p <∞ and the measure σ has a decomposition of the form

σ = α+ γ, (1.2)

where α is a measure supported on a closed rectifiable Jordan curve E as defined in [2]
and γ is a discrete measure with a finite number of mass points.

In this paper, we generalize Kaliaguine’s work [3] in the case where 1≤ p <∞ and the
support of the measure σ is a rectifiable Jordan curve E plus an infinite discrete set of
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mass points which accumulate on E. More precisely, σ = α+ γ, where the measure α and
its support E are defined as in [3], that is,

dα(ξ)= ρ(ξ)|dξ|, ρ ≥ 0, ρ ∈ L1(E,|dξ|); (1.3)

γ is a discrete measure concentrated on {zk}∞k=1 ⊂ Ext(E) (Ext(E) is the exterior of E),
that is,

γ =
+∞∑
k=1

Akδ
(
z− zk

)
, Ak > 0,

+∞∑
k=1

Ak <∞. (1.4)

Note that the result of the special case p = 2 is also a generalization of [4]. More pre-
cisely, in the proof of Theorem 4.3, we show that condition [4, page 265, (17)] imposed
on the points {zk}∞k=1 is redundant.

2. The Hp(Ω,ρ) spaces (1≤ p <∞)

Let E be a rectifiable Jordan curve in the complex plane, Ω= Ext(E),G= {z ∈C, |z| > 1}
(∞ belongs to Ω and G).

We denote by Φ the conformal mapping of Ω into G with Φ(∞) =∞ and 1/C(E) =
limz→∞(Φ(z)/z) > 0, where C(E) is the logarithmic capacity of E. We denote Ψ=Φ−1.

Let ρ be an integrable nonnegative weight function on E satisfying the Szegö condition
∫
E

(
logρ(ξ)

)∣∣Φ′(ξ)
∣∣|dξ| >−∞. (2.1)

Condition (2.1) allows us to construct the so-called Szegö function D associated with
the curve E and the weight function ρ:

D(z)= exp

{
− 1

2pπ

∫ +π

−π
w+ eit

w− eit log

(
ρ(ξ)∣∣Φ′(ξ)

∣∣
)
dt

} (
w =Φ(z), ξ =Ψ

(
eit
))

(2.2)

such that

(i) D is analytic in Ω, D(z) �= 0 in Ω, and D(∞) > 0;
(ii) |D(ξ)|−p|Φ′(ξ)| = ρ(ξ) a.e. on E, where D(ξ)= limz→ξ D(z).

We say that f ∈Hp(Ω,ρ) if and only if f is analytic in Ω and f0Ψ/D0Ψ ∈Hp(G).
For 1≤ p <∞, Hp(Ω,ρ) is a Banach space. Each function f ∈Hp(Ω,ρ) has limit val-

ues a.e. on E and

‖ f ‖pHp(Ω,ρ) =
∫
E

∣∣ f (ξ)
∣∣pρ(ξ)|dξ| = lim

R→1+

1
R

∫
ER

∣∣ f (z)
∣∣p∣∣D(z)
∣∣p
∣∣Φ′(z)dz

∣∣, (2.3)

where ER = {z ∈Ω : |Φ(z)| = R}.
Lemma 2.1 [3]. If f ∈Hp(Ω,ρ), then for every compact set K ⊂Ω, there is a constant CK
such that

sup
{∣∣ f (z)

∣∣ : z ∈ K}≤ CK‖ f ‖Hp(Ω,ρ). (2.4)
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3. The extremal problems

Let 1 ≤ p <∞; we denote σl = α +
∑l

k=1Akδ(z− zk) and by µ(ρ), µ(l), µ∞(ρ), mn,p(ρ),
mn,p(l), and mn,p(σ) the extremal values of the following problems, respectively:

µ(ρ)= inf
{‖ϕ‖pHp(Ω,ρ) : ϕ∈Hp(Ω,ρ), ϕ(∞)= 1

}
, (3.1)

µ(l)= inf
{‖ϕ‖pHp(Ω,ρ) : ϕ∈Hp(Ω,ρ), ϕ(∞)= 1, ϕ

(
zk
)= 0, k = 1,2, . . . , l

}
, (3.2)

µ∞(ρ)= inf
{‖ϕ‖pHp(Ω,ρ) : ϕ∈Hp(Ω,ρ), ϕ(∞)= 1, ϕ

(
zk
)= 0, k = 1,2, . . .

}
, (3.3)

mn,p(ρ)=min
{∥∥Qn

∥∥
Lp(α) :Qn(z)= zn + ···}, (3.4)

mn,p(l)=min
{∥∥Qn

∥∥
Lp(σl) :Qn(z)= zn + ···}, (3.5)

mn,p(σ)=min
{∥∥Qn

∥∥
Lp(σ) :Qn(z)= zn + ···}. (3.6)

As usual,

‖ f ‖Lp(σ) :=
(∫

E

∣∣ f (ξ)
∣∣pdσ(ξ)

)1/p

. (3.7)

We denote by ϕ∗ and ψ∞ the extremal functions of problems (3.1) and (3.3), respec-
tively.

Let Tl
n,p(z) and Tn,p(z) be the extremal polynomials with respect to the measures σl

and σ , respectively, that is,

∥∥Tl
n,p

∥∥
Lp(σl)

=mn,p(l),
∥∥Tn,p

∥∥
Lp(σ) =mn,p(σ). (3.8)

Lemma 3.1. Let ϕ∈Hp(Ω,ρ) such that ϕ(∞)= 1 and ϕ(zk)= 0 for k = 1,2, . . . , and let

B∞(z)=
+∞∏
k=1

Φ(z)−Φ
(
zk
)

Φ(z)Φ
(
zk
)− 1

∣∣Φ(zk)∣∣2

Φ
(
zk
) (3.9)

be the Blaschke product. Then

(i) B∞ ∈Hp(Ω,ρ), B∞(∞)= 1, |B∞(ξ)| =∏+∞
k=1 |Φ(zk)| (ξ ∈ E);

(ii) ϕ/B∞ ∈Hp(Ω,ρ) and (ϕ/B∞)(∞)= 1.

Proof. This lemma is proved for p = 2 in [1]. The proof is based on the fact that if f ∈
H2(U), where U = {z ∈C, |z| < 1}, and B is the Blaschke product formed by the zeros of
f , then f /B ∈H2(U). It remains true in Hp(U) for 1≤ p <∞; see [6, 10]. �
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Lemma 3.2. An extremal function ψ∞ of problem (3.3) is given by ψ∞ = ϕ∗B∞; in addition,

µ∞(ρ)=
+∞∏
k=1

(∣∣Φ(zk)∣∣)pµ(ρ). (3.10)

Proof. If ϕ ∈ Hp(Ω,ρ), ϕ(∞) = 1 and ϕ(zk) = 0 for k = 1,2, . . . . Then by Lemma 2.1,
we have f = ϕ/B∞ ∈ Hp(Ω,ρ), f (∞) = 1, and |B∞(ξ)| =∏+∞

k=1 |Φ(zk)| for ξ ∈ E. These
lead to

‖ f ‖p =
( +∞∏
k=1

∣∣Φ(zk)∣∣
)−p

‖ϕ‖p. (3.11)

Thus

µ(ρ)≤
( +∞∏
k=1

∣∣Φ(zk)∣∣
)−p

µ∞(ρ). (3.12)

On the other hand, since the function ψ∞ = ϕ∗B∞ ∈Hp(Ω,ρ), ϕ(∞)= 1 and ϕ(zk)=
0 for k = 1,2, . . . , we get

µ∞(ρ)≤ ∥∥ψ∞∥∥p =
( +∞∏
k=1

∣∣Φ(zk)∣∣
)p

µ(ρ). (3.13)

Finally, the lemma follows from (3.12) and (3.13). �

4. The main results

Definition 4.1. A measure σ = α+ γ is said to belong to a class A if the absolutely contin-
uous part α and the discrete part γ satisfy conditions (1.3), (1.4), and (2.1) and Blaschke’s
condition, that is,

+∞∑
k=1

(∣∣Φ(zk)∣∣− 1
)
<∞. (4.1)

We denote λn = Φn −Φn, where Φn is the polynomial part of the Laurent expansion
of Φn in the neighborhood of infinity.

Definition 4.2 [2]. A rectifiable curve E is said to be of class Γ if λn(ξ)→ 0 uniformly on E.

Theorem 4.3. Let a measure σ = α+ γ satisfy conditions (1.3), (1.4) and Blaschke’s condi-
tion (4.1); then

lim
l→+∞

mn,p(l)=mn,p(σ). (4.2)
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Proof. The extremal property of Tn,p(zk) gives

(
mn,p(σ)

)p ≤
∫
E

∣∣Tl
n,p(ξ)

∣∣pρ(ξ)|dξ|+
l∑

k=1

Ak
∣∣Tl

n,p

(
zk
)∣∣p +

+∞∑
k=l+1

Ak
∣∣Tl

n,p

(
zk
)∣∣p

= (mn,p(l)
)p

+
+∞∑
k=l+1

Ak
∣∣Tl

n,p

(
zk
)∣∣p.

(4.3)

On the other hand, from the extremal property of Tl
n,p(zk), we can write

mn,p(l)≤
(∫

E

∣∣Tn,p(ξ)
∣∣pρ(ξ)|dξ|+

l∑
k=1

Ak
∣∣Tn,p

(
zk
)∣∣p)1/p

≤mn,p(σ)= Cn <∞.
(4.4)

Note that Cn does not depend on l; so for all l = 1,2,3, . . . ,

(∫
E

∣∣Tl
n,p(ξ)

∣∣pρ(ξ)|dξ|
)1/p

< Cn. (4.5)

This implies that there is a constant C′n independent of l such that for all l = 1,2,3, . . . ,

max
{∣∣Tl

n,p(z)
∣∣p : |z| ≤ 2

}
< C′n. (4.6)

Using (4.6) in (4.3) for large enough l with (4.4), we get

(
mn,p(l)

)p ≤ (mn,p(σ)
)p ≤ (mn,p(l)

)p
+C′n

+∞∑
k=l+1

Ak. (4.7)

Letting l→∞, we obtain

lim
l→∞

mn,p(l)=mn,p(σ). (4.8)

�

Theorem 4.4. Let 1≤ p <∞, E ∈ Γ, and let σ = α+ γ be a measure which belongs to A. In
addition, for all n and l,

mn,p(l)≤
( l∏
k=1

∣∣Φ(zk)∣∣
)
mn,p(ρ). (4.9)

Then the monic orthogonal polynomials Tn,p(z) with respect to the measure σ have the
following asymptotic behavior:

(i) limn→∞(mn,p(σ)/(C(E))n)= (µ∞(ρ))1/p;
(ii) limn→∞‖Tn,p/[C(E)Φ]n−ψ∞‖Hp(Ω,ρ) = 0;

(iii) Tn,p(z)= [C(E)Φ(z)]n[ψ∞(z) + εn(z)],

where εn(z) → 0 uniformly on compact subsets of Ω and ψ∞ is an extremal function of
problem (3.3).
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Remark 4.5. For p = 2 and E the unit circle, condition (4.9) is proved (see [5, Theorem
5.2]). In this case, this condition can be written as γn/γln ≤

∏l
k=1 |zk|, where γln = 1/mn,2(l)

and γn = 1/mn,2(ρ) are, respectively, the leading coefficients of the orthonormal polyno-
mials associated to the measures σl and α.

Proof of Theorem 4.4. Taking the limit when l tends to infinity in (4.9) and using Theorem
4.3, we get

mn,p(σ)(
C(E)

)n ≤
( +∞∏
k=1

∣∣Φ(zk)∣∣
)
mn,p(ρ)(
C(E)

)n . (4.10)

On the other hand, it is proved in [2] that

lim
n→∞

mn,p(ρ)(
C(E)

)n = (µ(ρ)
)1/p

. (4.11)

Using (4.10), (4.11), and Lemma 3.2, we obtain

limsup
n→∞

mn,p(σ)(
C(E)

)n ≤
( +∞∏
k=1

∣∣Φ(zk)∣∣
)(
µ(ρ)

)1/p = (µ∞(ρ)
)1/p

. (4.12)

It is well known that (see [3, page 231])

∀l > 0, µ(l)= µ(ρ)

( l∏
k=1

∣∣Φ(zk)∣∣
)p

. (4.13)

We also have (see [3, Theorem 2.2])

lim
n→∞

mn,p(l)(
C(E)

)n = (µ(l)
)1/p

. (4.14)

From (4.4), we deduce that

∀l > 0,
mn,p(σ)(
C(E)

)n ≥ mn,p(l)(
C(E)

)n . (4.15)

By passing to the limit when n tends to infinity in (4.15) and taking into account (4.13)
and (4.14), we get

∀l > 0, liminf
n→∞

mn,p(σ)(
C(E)

)n ≥
( l∏
k=1

∣∣Φ(zk)∣∣
)(
µ(ρ)

)1/p
. (4.16)
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Finally, by using Lemma 3.2, we obtain

liminf
n→∞

mn,p(σ)(
C(E)

)n ≥
( +∞∏
k=1

∣∣Φ(zk)∣∣
)(
µ(ρ)

)1/p = (µ∞(σ)
)1/p

. (4.17)

Inequalities (4.12) and (4.17) prove Theorem 4.4(i).
We obtain (ii) by proceeding as in [3, pages 234, 235].
To prove (iii), we consider the function

εn =
Tn,p[

C(E)Φ
]n −ψ∞ (4.18)

which belongs to the space Hp(Ω,ρ). Then by applying Lemma 2.1, we obtain

sup

{∣∣∣∣∣ Tn,p(z)[
C(E)Φ(z)

]n −ψ∞(z)

∣∣∣∣∣ : z ∈ K
}

= sup
{∣∣εn(z)

∣∣ : z ∈ K}≤ CK∥∥εn∥∥Hp(Ω,ρ) −→ 0

(4.19)

for all compact subsets K of Ω. This achieves the proof of the theorem. �
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