STRONG ASYMPTOTICS FOR L_p EXTREMAL POLYNOMIALS OFF A COMPLEX CURVE

RABAH KHALDI

Received 29 September 2003 and in revised form 15 June 2004

We study the asymptotic behavior of $L_p(\sigma)$ extremal polynomials with respect to a measure of the form $\sigma = \alpha + \gamma$, where α is a measure concentrated on a rectifiable Jordan curve in the complex plane and γ is a discrete measure concentrated on an infinite number of mass points.

1. Introduction

Let *F* be a compact subset of the complex plane \mathbb{C} and let *B* be a metric space of functions defined on *F*. We suppose that *B* contains the set of monic polynomials. Then the extremal or general Chebyshev polynomial T_n of degree *n* is a monic polynomial that minimizes the distance between zero and the set of all monic polynomials of degree *n*, that is,

$$dist(T_n, 0) = \min \{ dist(Q_n, 0) : Q_n(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0 \} = m_n(B).$$
(1.1)

Recently, a series of results concerning the asymptotic of the extremal polynomials was established for the case of $B = L_p(F,\sigma)$, $1 \le p \le \infty$, where σ is a Borel measure on F; see, for example, [3, 7, 8, 12]. When p = 2, we have the special case of orthogonal polynomials with respect to the measure σ . A lot of research work has been done on this subject; see, for example, [1, 4, 5, 9, 11, 13]. The case of the spaces $L_p(F,\sigma)$, where 0 and <math>F is a closed rectifiable Jordan curve with some smoothness conditions, was studied by Geronimus [2]. An extension of Geronimus's result has been given by Kaliaguine [3] who found asymptotics when $0 and the measure <math>\sigma$ has a decomposition of the form

$$\sigma = \alpha + \gamma, \tag{1.2}$$

where α is a measure supported on a closed rectifiable Jordan curve *E* as defined in [2] and γ is a discrete measure with a finite number of mass points.

In this paper, we generalize Kaliaguine's work [3] in the case where $1 \le p < \infty$ and the support of the measure σ is a rectifiable Jordan curve *E* plus an infinite discrete set of

Copyright © 2004 Hindawi Publishing Corporation

Journal of Applied Mathematics 2004:5 (2004) 371-378

URL: http://dx.doi.org/10.1155/S1110757X0430906X

²⁰⁰⁰ Mathematics Subject Classification: 42C05, 30E15, 30E10

372 Asymptotics for L_p extremal polynomials off a curve

mass points which accumulate on *E*. More precisely, $\sigma = \alpha + \gamma$, where the measure α and its support *E* are defined as in [3], that is,

$$d\alpha(\xi) = \rho(\xi)|d\xi|, \quad \rho \ge 0, \ \rho \in L^1(E, |d\xi|); \tag{1.3}$$

 γ is a discrete measure concentrated on $\{z_k\}_{k=1}^{\infty} \subset \text{Ext}(E)$ (Ext(*E*) is the exterior of *E*), that is,

$$\gamma = \sum_{k=1}^{+\infty} A_k \delta(z - z_k), \quad A_k > 0, \ \sum_{k=1}^{+\infty} A_k < \infty.$$
(1.4)

Note that the result of the special case p = 2 is also a generalization of [4]. More precisely, in the proof of Theorem 4.3, we show that condition [4, page 265, (17)] imposed on the points $\{z_k\}_{k=1}^{\infty}$ is redundant.

2. The $H^p(\Omega, \rho)$ spaces $(1 \le p < \infty)$

Let *E* be a rectifiable Jordan curve in the complex plane, $\Omega = \text{Ext}(E)$, $G = \{z \in \mathbb{C}, |z| > 1\}$ (∞ belongs to Ω and *G*).

We denote by Φ the conformal mapping of Ω into G with $\Phi(\infty) = \infty$ and $1/C(E) = \lim_{z \to \infty} (\Phi(z)/z) > 0$, where C(E) is the logarithmic capacity of E. We denote $\Psi = \Phi^{-1}$.

Let ρ be an integrable nonnegative weight function on *E* satisfying the Szegö condition

$$\int_{E} \left(\log \rho(\xi) \right) \left| \Phi'(\xi) \right| \left| d\xi \right| > -\infty.$$
(2.1)

Condition (2.1) allows us to construct the so-called Szegö function *D* associated with the curve *E* and the weight function ρ :

$$D(z) = \exp\left\{-\frac{1}{2p\pi} \int_{-\pi}^{+\pi} \frac{w + e^{it}}{w - e^{it}} \log\left(\frac{\rho(\xi)}{|\Phi'(\xi)|}\right) dt\right\} \quad (w = \Phi(z), \ \xi = \Psi(e^{it}))$$
(2.2)

such that

- (i) *D* is analytic in Ω , $D(z) \neq 0$ in Ω , and $D(\infty) > 0$;
- (ii) $|D(\xi)|^{-p} |\Phi'(\xi)| = \rho(\xi)$ a.e. on *E*, where $D(\xi) = \lim_{z \to \xi} D(z)$.

We say that $f \in H^p(\Omega, \rho)$ if and only if f is analytic in Ω and $f_0 \Psi/D_0 \Psi \in H^p(G)$.

For $1 \le p < \infty$, $H^p(\Omega, \rho)$ is a Banach space. Each function $f \in H^p(\Omega, \rho)$ has limit values a.e. on *E* and

$$\|f\|_{H^{p}(\Omega,\rho)}^{p} = \int_{E} |f(\xi)|^{p} \rho(\xi)|d\xi| = \lim_{R \to 1^{+}} \frac{1}{R} \int_{E_{R}} \frac{|f(z)|^{p}}{|D(z)|^{p}} |\Phi'(z)dz|, \qquad (2.3)$$

where $E_R = \{ z \in \Omega : |\Phi(z)| = R \}.$

LEMMA 2.1 [3]. If $f \in H^p(\Omega, \rho)$, then for every compact set $K \subset \Omega$, there is a constant C_K such that

$$\sup\{|f(z)|: z \in K\} \le C_K \|f\|_{H^p(\Omega,\rho)}.$$
(2.4)

3. The extremal problems

Let $1 \le p < \infty$; we denote $\sigma_l = \alpha + \sum_{k=1}^l A_k \delta(z - z_k)$ and by $\mu(\rho)$, $\mu(l)$, $\mu^{\infty}(\rho)$, $m_{n,p}(\rho)$, $m_{n,p}(l)$, and $m_{n,p}(\sigma)$ the extremal values of the following problems, respectively:

$$\mu(\rho) = \inf \left\{ \|\varphi\|_{H^p(\Omega,\rho)}^p : \varphi \in H^p(\Omega,\rho), \ \varphi(\infty) = 1 \right\},\tag{3.1}$$

$$\mu(l) = \inf \{ \|\varphi\|_{H^{p}(\Omega,\rho)}^{p} : \varphi \in H^{p}(\Omega,\rho), \ \varphi(\infty) = 1, \ \varphi(z_{k}) = 0, \ k = 1, 2, \dots, l \},$$
(3.2)

$$\mu^{\infty}(\rho) = \inf \{ \|\varphi\|_{H^{p}(\Omega,\rho)}^{p} : \varphi \in H^{p}(\Omega,\rho), \ \varphi(\infty) = 1, \ \varphi(z_{k}) = 0, \ k = 1, 2, \dots \},$$
(3.3)

$$m_{n,p}(\rho) = \min\{ ||Q_n||_{L_p(\alpha)} : Q_n(z) = z^n + \cdots \},$$
(3.4)

$$m_{n,p}(l) = \min\{||Q_n||_{L_p(\sigma_l)} : Q_n(z) = z^n + \cdots\},$$
(3.5)

$$m_{n,p}(\sigma) = \min\{ ||Q_n||_{L_p(\sigma)} : Q_n(z) = z^n + \cdots \}.$$
(3.6)

As usual,

$$\|f\|_{L_{p}(\sigma)} := \left(\int_{E} |f(\xi)|^{p} d\sigma(\xi)\right)^{1/p}.$$
(3.7)

We denote by φ^* and ψ^{∞} the extremal functions of problems (3.1) and (3.3), respectively.

Let $T_{n,p}^{l}(z)$ and $T_{n,p}(z)$ be the extremal polynomials with respect to the measures σ_{l} and σ , respectively, that is,

$$||T_{n,p}^{l}||_{L_{p}(\sigma_{l})} = m_{n,p}(l), \qquad ||T_{n,p}||_{L_{p}(\sigma)} = m_{n,p}(\sigma).$$
(3.8)

LEMMA 3.1. Let $\varphi \in H^p(\Omega, \rho)$ such that $\varphi(\infty) = 1$ and $\varphi(z_k) = 0$ for k = 1, 2, ..., and let

$$B_{\infty}(z) = \prod_{k=1}^{+\infty} \frac{\Phi(z) - \Phi(z_k)}{\Phi(z)\overline{\Phi(z_k)} - 1} \frac{|\Phi(z_k)|^2}{\Phi(z_k)}$$
(3.9)

be the Blaschke product. Then

- (i) $B_{\infty} \in H^p(\Omega, \rho), B_{\infty}(\infty) = 1, |B_{\infty}(\xi)| = \prod_{k=1}^{+\infty} |\Phi(z_k)| \ (\xi \in E);$
- (ii) $\varphi/B_{\infty} \in H^p(\Omega, \rho)$ and $(\varphi/B_{\infty})(\infty) = 1$.

Proof. This lemma is proved for p = 2 in [1]. The proof is based on the fact that if $f \in H^2(U)$, where $U = \{z \in \mathbb{C}, |z| < 1\}$, and *B* is the Blaschke product formed by the zeros of *f*, then $f/B \in H^2(U)$. It remains true in $H^p(U)$ for $1 \le p < \infty$; see [6, 10].

374 Asymptotics for L_p extremal polynomials off a curve

LEMMA 3.2. An extremal function ψ^{∞} of problem (3.3) is given by $\psi^{\infty} = \varphi^* B_{\infty}$; in addition,

$$\mu^{\infty}(\rho) = \prod_{k=1}^{+\infty} \left(\left| \Phi(z_k) \right| \right)^p \mu(\rho).$$
(3.10)

Proof. If $\varphi \in H^p(\Omega, \rho)$, $\varphi(\infty) = 1$ and $\varphi(z_k) = 0$ for k = 1, 2, ... Then by Lemma 2.1, we have $f = \varphi/B_{\infty} \in H^p(\Omega, \rho)$, $f(\infty) = 1$, and $|B_{\infty}(\xi)| = \prod_{k=1}^{+\infty} |\Phi(z_k)|$ for $\xi \in E$. These lead to

$$||f||^{p} = \left(\prod_{k=1}^{+\infty} |\Phi(z_{k})|\right)^{-p} ||\varphi||^{p}.$$
(3.11)

Thus

$$\mu(\rho) \le \left(\prod_{k=1}^{+\infty} \left| \Phi(z_k) \right| \right)^{-p} \mu^{\infty}(\rho).$$
(3.12)

On the other hand, since the function $\psi^{\infty} = \varphi^* B_{\infty} \in H^p(\Omega, \rho)$, $\varphi(\infty) = 1$ and $\varphi(z_k) = 0$ for k = 1, 2, ..., we get

$$\mu^{\infty}(\rho) \le \left| \left| \psi^{\infty} \right| \right|^p = \left(\prod_{k=1}^{+\infty} \left| \Phi(z_k) \right| \right)^p \mu(\rho).$$
(3.13)

Finally, the lemma follows from (3.12) and (3.13).

4. The main results

Definition 4.1. A measure $\sigma = \alpha + \gamma$ is said to belong to a class *A* if the absolutely continuous part α and the discrete part γ satisfy conditions (1.3), (1.4), and (2.1) and Blaschke's condition, that is,

$$\sum_{k=1}^{+\infty} \left(\left| \Phi(z_k) \right| - 1 \right) < \infty.$$
(4.1)

We denote $\lambda_n = \Phi^n - \Phi_n$, where Φ_n is the polynomial part of the Laurent expansion of Φ^n in the neighborhood of infinity.

Definition 4.2 [2]. A rectifiable curve *E* is said to be of class Γ if $\lambda_n(\xi) \to 0$ uniformly on *E*.

THEOREM 4.3. Let a measure $\sigma = \alpha + \gamma$ satisfy conditions (1.3), (1.4) and Blaschke's condition (4.1); then

$$\lim_{l \to +\infty} m_{n,p}(l) = m_{n,p}(\sigma).$$
(4.2)

Proof. The extremal property of $T_{n,p}(z_k)$ gives

$$(m_{n,p}(\sigma))^{p} \leq \int_{E} |T_{n,p}^{l}(\xi)|^{p} \rho(\xi)|d\xi| + \sum_{k=1}^{l} A_{k} |T_{n,p}^{l}(z_{k})|^{p} + \sum_{k=l+1}^{+\infty} A_{k} |T_{n,p}^{l}(z_{k})|^{p}$$

$$= (m_{n,p}(l))^{p} + \sum_{k=l+1}^{+\infty} A_{k} |T_{n,p}^{l}(z_{k})|^{p}.$$
(4.3)

On the other hand, from the extremal property of $T_{n,p}^{l}(z_{k})$, we can write

$$m_{n,p}(l) \leq \left(\int_{E} |T_{n,p}(\xi)|^{p} \rho(\xi)| d\xi| + \sum_{k=1}^{l} A_{k} |T_{n,p}(z_{k})|^{p} \right)^{1/p}$$

$$\leq m_{n,p}(\sigma) = C_{n} < \infty.$$
(4.4)

Note that C_n does not depend on l; so for all l = 1, 2, 3, ...,

$$\left(\int_{E} \left| T_{n,p}^{l}(\xi) \right|^{p} \rho(\xi) |d\xi| \right)^{1/p} < C_{n}.$$

$$(4.5)$$

This implies that there is a constant C'_n independent of l such that for all l = 1, 2, 3, ...,

$$\max\{|T_{n,p}^{l}(z)|^{p}:|z|\leq 2\} < C_{n}^{\prime}.$$
(4.6)

Using (4.6) in (4.3) for large enough l with (4.4), we get

$$(m_{n,p}(l))^{p} \le (m_{n,p}(\sigma))^{p} \le (m_{n,p}(l))^{p} + C'_{n} \sum_{k=l+1}^{+\infty} A_{k}.$$
(4.7)

Letting $l \to \infty$, we obtain

$$\lim_{l \to \infty} m_{n,p}(l) = m_{n,p}(\sigma).$$
(4.8)

THEOREM 4.4. Let $1 \le p < \infty$, $E \in \Gamma$, and let $\sigma = \alpha + \gamma$ be a measure which belongs to A. In addition, for all n and l,

$$m_{n,p}(l) \leq \left(\prod_{k=1}^{l} \left| \Phi(z_k) \right| \right) m_{n,p}(\rho).$$
(4.9)

Then the monic orthogonal polynomials $T_{n,p}(z)$ with respect to the measure σ have the following asymptotic behavior:

- (i) $\lim_{n\to\infty} (m_{n,p}(\sigma)/(C(E))^n) = (\mu^{\infty}(\rho))^{1/p}$;
- (ii) $\lim_{n\to\infty} ||T_{n,p}/[C(E)\Phi]^n \psi^{\infty}||_{H^p(\Omega,\rho)} = 0;$
- (iii) $T_{n,p}(z) = [C(E)\Phi(z)]^n [\psi^{\infty}(z) + \varepsilon_n(z)],$

where $\varepsilon_n(z) \to 0$ uniformly on compact subsets of Ω and ψ^{∞} is an extremal function of problem (3.3).

376 Asymptotics for L_p extremal polynomials off a curve

Remark 4.5. For p = 2 and E the unit circle, condition (4.9) is proved (see [5, Theorem 5.2]). In this case, this condition can be written as $\gamma_n/\gamma_n^l \leq \prod_{k=1}^l |z_k|$, where $\gamma_n^l = 1/m_{n,2}(l)$ and $\gamma_n = 1/m_{n,2}(\rho)$ are, respectively, the leading coefficients of the orthonormal polynomials associated to the measures σ_l and α .

Proof of Theorem 4.4. Taking the limit when *l* tends to infinity in (4.9) and using Theorem 4.3, we get

$$\frac{m_{n,p}(\sigma)}{\left(C(E)\right)^{n}} \le \left(\prod_{k=1}^{+\infty} \left| \Phi(z_{k}) \right| \right) \frac{m_{n,p}(\rho)}{\left(C(E)\right)^{n}}.$$
(4.10)

On the other hand, it is proved in [2] that

$$\lim_{n \to \infty} \frac{m_{n,p}(\rho)}{(C(E))^n} = (\mu(\rho))^{1/p}.$$
(4.11)

Using (4.10), (4.11), and Lemma 3.2, we obtain

$$\limsup_{n \to \infty} \frac{m_{n,p}(\sigma)}{\left(C(E)\right)^n} \le \left(\prod_{k=1}^{+\infty} \left| \Phi(z_k) \right| \right) \left(\mu(\rho)\right)^{1/p} = \left(\mu^{\infty}(\rho)\right)^{1/p}.$$
(4.12)

It is well known that (see [3, page 231])

$$\forall l > 0, \quad \mu(l) = \mu(\rho) \left(\prod_{k=1}^{l} |\Phi(z_k)| \right)^p.$$
(4.13)

We also have (see [3, Theorem 2.2])

$$\lim_{n \to \infty} \frac{m_{n,p}(l)}{(C(E))^n} = (\mu(l))^{1/p}.$$
(4.14)

From (4.4), we deduce that

$$\forall l > 0, \quad \frac{m_{n,p}(\sigma)}{\left(C(E)\right)^n} \ge \frac{m_{n,p}(l)}{\left(C(E)\right)^n}.$$
(4.15)

By passing to the limit when *n* tends to infinity in (4.15) and taking into account (4.13) and (4.14), we get

$$\forall l > 0, \quad \liminf_{n \to \infty} \frac{m_{n,p}(\sigma)}{\left(C(E)\right)^n} \ge \left(\prod_{k=1}^l \left| \Phi(z_k) \right| \right) (\mu(\rho))^{1/p}. \tag{4.16}$$

Finally, by using Lemma 3.2, we obtain

$$\liminf_{n \to \infty} \frac{m_{n,p}(\sigma)}{\left(C(E)\right)^n} \ge \left(\prod_{k=1}^{+\infty} \left| \Phi(z_k) \right| \right) \left(\mu(\rho)\right)^{1/p} = \left(\mu^{\infty}(\sigma)\right)^{1/p}.$$
(4.17)

Inequalities (4.12) and (4.17) prove Theorem 4.4(i). We obtain (ii) by proceeding as in [3, pages 234, 235]. To prove (iii), we consider the function

$$\varepsilon_n = \frac{T_{n,p}}{\left[C(E)\Phi\right]^n} - \psi^{\infty} \tag{4.18}$$

which belongs to the space $H^p(\Omega, \rho)$. Then by applying Lemma 2.1, we obtain

$$\sup\left\{ \left| \frac{T_{n,p}(z)}{\left[C(E)\Phi(z) \right]^n} - \psi^{\infty}(z) \right| : z \in K \right\}$$

$$= \sup\left\{ \left| \varepsilon_n(z) \right| : z \in K \right\} \le C_K \left| \left| \varepsilon_n \right| \right|_{H^p(\Omega,\rho)} \longrightarrow 0$$
(4.19)

for all compact subsets K of Ω . This achieves the proof of the theorem.

References

- R. Benzine, Asymptotic behavior of orthogonal polynomials corresponding to a measure with infinite discrete part off a curve, J. Approx. Theory 89 (1997), no. 2, 257–265.
- [2] Y. L. Geronimus, On some extremal problems in the space $L_{\sigma}^{(p)}$, Mat. Sb. (N.S.) **31(73)** (1952), 3–26 (Russian).
- [3] V. Kaliaguine, On asymptotics of L_p extremal polynomials on a complex curve (0 , J. Approx. Theory 74 (1993), no. 2, 226–236.
- [4] R. Khaldi and R. Benzine, On a generalization of an asymptotic formula of orthogonal polynomials, Int. J. Appl. Math. 4 (2000), no. 3, 261–274.
- [5] _____, Asymptotics for orthogonal polynomials off the circle, J. Appl. Math. 2004 (2004), no. 1, 37–53.
- P. Koosis, *Introduction to H_p Spaces*, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge, 1980.
- [7] X. Li and K. Pan, Asymptotics for L_p extremal polynomials on the unit circle, J. Approx. Theory 67 (1991), no. 3, 270–283.
- [8] D. S. Lubinsky and E. B. Saff, Strong asymptotics for L_p extremal polynomials (1
- [9] F. Peherstorfer and P. Yuditskii, Asymptotics of orthonormal polynomials in the presence of a denumerable set of mass points, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3213–3220.
- [10] W. Rudin, *Real and Complex Analysis*, McGraw-Hill, New York, 1966.
- G. Szegö, Orthogonal Polynomials, 4th ed., American Mathematical Society Colloquium Publications, vol. 23, American Mathematical Society, Rhode Island, 1975.
- J. P. Tiran and C. Detaille, *Chebychev polynomials on a circular arc in the complex plane*, preprint, 1990, Namur University, Belgium.

- 378 Asymptotics for L_p extremal polynomials off a curve
- [13] H. Widom, *Extremal polynomials associated with a system of curves in the complex plane*, Advances in Math. **3** (1969), 127–232.

Rabah Khaldi: Department of Mathematics, University of Annaba, P.O. Box 12, 23000 Annaba, Algeria

E-mail address: rkhadi@yahoo.fr