STRONG ASYMPTOTICS FOR L_{p} EXTREMAL POLYNOMIALS OFF A COMPLEX CURVE

RABAH KHALDI

Received 29 September 2003 and in revised form 15 June 2004

We study the asymptotic behavior of $L_{p}(\sigma)$ extremal polynomials with respect to a measure of the form $\sigma=\alpha+\gamma$, where α is a measure concentrated on a rectifiable Jordan curve in the complex plane and γ is a discrete measure concentrated on an infinite number of mass points.

1. Introduction

Let F be a compact subset of the complex plane \mathbb{C} and let B be a metric space of functions defined on F. We suppose that B contains the set of monic polynomials. Then the extremal or general Chebyshev polynomial T_{n} of degree n is a monic polynomial that minimizes the distance between zero and the set of all monic polynomials of degree n, that is,

$$
\begin{equation*}
\operatorname{dist}\left(T_{n}, 0\right)=\min \left\{\operatorname{dist}\left(Q_{n}, 0\right): Q_{n}(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}\right\}=m_{n}(B) . \tag{1.1}
\end{equation*}
$$

Recently, a series of results concerning the asymptotic of the extremal polynomials was established for the case of $B=L_{p}(F, \sigma), 1 \leq p \leq \infty$, where σ is a Borel measure on F; see, for example, $[3,7,8,12]$. When $p=2$, we have the special case of orthogonal polynomials with respect to the measure σ. A lot of research work has been done on this subject; see, for example, $[1,4,5,9,11,13]$. The case of the spaces $L_{p}(F, \sigma)$, where $0<p<\infty$ and F is a closed rectifiable Jordan curve with some smoothness conditions, was studied by Geronimus [2]. An extension of Geronimus's result has been given by Kaliaguine [3] who found asymptotics when $0<p<\infty$ and the measure σ has a decomposition of the form

$$
\begin{equation*}
\sigma=\alpha+\gamma \tag{1.2}
\end{equation*}
$$

where α is a measure supported on a closed rectifiable Jordan curve E as defined in [2] and γ is a discrete measure with a finite number of mass points.

In this paper, we generalize Kaliaguine's work [3] in the case where $1 \leq p<\infty$ and the support of the measure σ is a rectifiable Jordan curve E plus an infinite discrete set of
mass points which accumulate on E. More precisely, $\sigma=\alpha+\gamma$, where the measure α and its support E are defined as in [3], that is,

$$
\begin{equation*}
d \alpha(\xi)=\rho(\xi)|d \xi|, \quad \rho \geq 0, \rho \in L^{1}(E,|d \xi|) ; \tag{1.3}
\end{equation*}
$$

γ is a discrete measure concentrated on $\left\{z_{k}\right\}_{k=1}^{\infty} \subset \operatorname{Ext}(E)(\operatorname{Ext}(E)$ is the exterior of $E)$, that is,

$$
\begin{equation*}
\gamma=\sum_{k=1}^{+\infty} A_{k} \delta\left(z-z_{k}\right), \quad A_{k}>0, \sum_{k=1}^{+\infty} A_{k}<\infty . \tag{1.4}
\end{equation*}
$$

Note that the result of the special case $p=2$ is also a generalization of [4]. More precisely, in the proof of Theorem 4.3, we show that condition [4, page 265, (17)] imposed on the points $\left\{z_{k}\right\}_{k=1}^{\infty}$ is redundant.

2. The $H^{p}(\Omega, \rho)$ spaces $(1 \leq p<\infty)$

Let E be a rectifiable Jordan curve in the complex plane, $\Omega=\operatorname{Ext}(E), G=\{z \in \mathbb{C},|z|>1\}$ (∞ belongs to Ω and G).

We denote by Φ the conformal mapping of Ω into G with $\Phi(\infty)=\infty$ and $1 / C(E)=$ $\lim _{z \rightarrow \infty}(\Phi(z) / z)>0$, where $C(E)$ is the logarithmic capacity of E. We denote $\Psi=\Phi^{-1}$.

Let ρ be an integrable nonnegative weight function on E satisfying the Szegö condition

$$
\begin{equation*}
\int_{E}(\log \rho(\xi))\left|\Phi^{\prime}(\xi)\right||d \xi|>-\infty \tag{2.1}
\end{equation*}
$$

Condition (2.1) allows us to construct the so-called Szegö function D associated with the curve E and the weight function ρ :

$$
\begin{equation*}
D(z)=\exp \left\{-\frac{1}{2 p \pi} \int_{-\pi}^{+\pi} \frac{w+e^{i t}}{w-e^{i t}} \log \left(\frac{\rho(\xi)}{\left|\Phi^{\prime}(\xi)\right|}\right) d t\right\} \quad\left(w=\Phi(z), \xi=\Psi\left(e^{i t}\right)\right) \tag{2.2}
\end{equation*}
$$

such that
(i) D is analytic in $\Omega, D(z) \neq 0$ in Ω, and $D(\infty)>0$;
(ii) $|D(\xi)|^{-p}\left|\Phi^{\prime}(\xi)\right|=\rho(\xi)$ a.e. on E, where $D(\xi)=\lim _{z \rightarrow \xi} D(z)$.

We say that $f \in H^{p}(\Omega, \rho)$ if and only if f is analytic in Ω and $f_{0} \Psi / D_{0} \Psi \in H^{p}(G)$.
For $1 \leq p<\infty, H^{p}(\Omega, \rho)$ is a Banach space. Each function $f \in H^{p}(\Omega, \rho)$ has limit values a.e. on E and

$$
\begin{equation*}
\|f\|_{H^{p}(\Omega, p)}^{p}=\int_{E}|f(\xi)|^{p} \rho(\xi)|d \xi|=\lim _{R \rightarrow 1^{+}} \frac{1}{R} \int_{E_{R}} \frac{|f(z)|^{p}}{|D(z)|^{p}}\left|\Phi^{\prime}(z) d z\right|, \tag{2.3}
\end{equation*}
$$

where $E_{R}=\{z \in \Omega:|\Phi(z)|=R\}$.
Lemma 2.1 [3]. If $f \in H^{p}(\Omega, \rho)$, then for every compact set $K \subset \Omega$, there is a constant C_{K} such that

$$
\begin{equation*}
\sup \{|f(z)|: z \in K\} \leq C_{K}\|f\|_{H^{p}(\Omega, p)} . \tag{2.4}
\end{equation*}
$$

3. The extremal problems

Let $1 \leq p<\infty$; we denote $\sigma_{l}=\alpha+\sum_{k=1}^{l} A_{k} \delta\left(z-z_{k}\right)$ and by $\mu(\rho), \mu(l), \mu^{\infty}(\rho), m_{n, p}(\rho)$, $m_{n, p}(l)$, and $m_{n, p}(\sigma)$ the extremal values of the following problems, respectively:

$$
\begin{align*}
\mu(\rho) & =\inf \left\{\|\varphi\|_{H^{p}(\Omega, p)}^{p}: \varphi \in H^{p}(\Omega, \rho), \varphi(\infty)=1\right\}, \tag{3.1}\\
\mu(l) & =\inf \left\{\|\varphi\|_{H^{p}(\Omega, \rho)}^{p}: \varphi \in H^{p}(\Omega, \rho), \varphi(\infty)=1, \varphi\left(z_{k}\right)=0, k=1,2, \ldots, l\right\}, \tag{3.2}\\
\mu^{\infty}(\rho) & =\inf \left\{\|\varphi\|_{H^{p}(\Omega, \rho)}^{p}: \varphi \in H^{p}(\Omega, \rho), \varphi(\infty)=1, \varphi\left(z_{k}\right)=0, k=1,2, \ldots\right\}, \tag{3.3}\\
m_{n, p}(\rho) & =\min \left\{\left\|Q_{n}\right\|_{L_{p}(\alpha)}: Q_{n}(z)=z^{n}+\cdots\right\}, \tag{3.4}\\
m_{n, p}(l) & =\min \left\{\left\|Q_{n}\right\|_{L_{p}\left(\sigma_{l}\right)}: Q_{n}(z)=z^{n}+\cdots\right\}, \tag{3.5}\\
m_{n, p}(\sigma) & =\min \left\{\left\|Q_{n}\right\|_{L_{p}(\sigma)}: Q_{n}(z)=z^{n}+\cdots\right\} . \tag{3.6}
\end{align*}
$$

As usual,

$$
\begin{equation*}
\|f\|_{L_{p}(\sigma)}:=\left(\int_{E}|f(\xi)|^{p} d \sigma(\xi)\right)^{1 / p} \tag{3.7}
\end{equation*}
$$

We denote by φ^{*} and ψ^{∞} the extremal functions of problems (3.1) and (3.3), respectively.

Let $T_{n, p}^{l}(z)$ and $T_{n, p}(z)$ be the extremal polynomials with respect to the measures σ_{l} and σ, respectively, that is,

$$
\begin{equation*}
\left\|T_{n, p}^{l}\right\|_{L_{p}\left(\sigma_{l}\right)}=m_{n, p}(l), \quad\left\|T_{n, p}\right\|_{L_{p}(\sigma)}=m_{n, p}(\sigma) . \tag{3.8}
\end{equation*}
$$

Lemma 3.1. Let $\varphi \in H^{p}(\Omega, \rho)$ such that $\varphi(\infty)=1$ and $\varphi\left(z_{k}\right)=0$ for $k=1,2, \ldots$, and let

$$
\begin{equation*}
B_{\infty}(z)=\prod_{k=1}^{+\infty} \frac{\Phi(z)-\Phi\left(z_{k}\right)}{\Phi(z) \overline{\Phi\left(z_{k}\right)}-1} \frac{\left|\Phi\left(z_{k}\right)\right|^{2}}{\Phi\left(z_{k}\right)} \tag{3.9}
\end{equation*}
$$

be the Blaschke product. Then
(i) $B_{\infty} \in H^{p}(\Omega, \rho), B_{\infty}(\infty)=1,\left|B_{\infty}(\xi)\right|=\prod_{k=1}^{+\infty}\left|\Phi\left(z_{k}\right)\right|(\xi \in E)$;
(ii) $\varphi / B_{\infty} \in H^{p}(\Omega, \rho)$ and $\left(\varphi / B_{\infty}\right)(\infty)=1$.

Proof. This lemma is proved for $p=2$ in [1]. The proof is based on the fact that if $f \in$ $H^{2}(U)$, where $U=\{z \in \mathbb{C},|z|<1\}$, and B is the Blaschke product formed by the zeros of f, then $f / B \in H^{2}(U)$. It remains true in $H^{p}(U)$ for $1 \leq p<\infty$; see [6, 10].

Lemma 3.2. An extremal function ψ^{∞} of problem (3.3) is given by $\psi^{\infty}=\varphi^{*} B_{\infty}$; in addition,

$$
\begin{equation*}
\mu^{\infty}(\rho)=\prod_{k=1}^{+\infty}\left(\left|\Phi\left(z_{k}\right)\right|\right)^{p} \mu(\rho) \tag{3.10}
\end{equation*}
$$

Proof. If $\varphi \in H^{p}(\Omega, \rho), \varphi(\infty)=1$ and $\varphi\left(z_{k}\right)=0$ for $k=1,2, \ldots$. Then by Lemma 2.1, we have $f=\varphi / B_{\infty} \in H^{p}(\Omega, \rho), f(\infty)=1$, and $\left|B_{\infty}(\xi)\right|=\prod_{k=1}^{+\infty}\left|\Phi\left(z_{k}\right)\right|$ for $\xi \in E$. These lead to

$$
\begin{equation*}
\|f\|^{p}=\left(\prod_{k=1}^{+\infty}\left|\Phi\left(z_{k}\right)\right|\right)^{-p}\|\varphi\|^{p} \tag{3.11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mu(\rho) \leq\left(\prod_{k=1}^{+\infty}\left|\Phi\left(z_{k}\right)\right|\right)^{-p} \mu^{\infty}(\rho) . \tag{3.12}
\end{equation*}
$$

On the other hand, since the function $\psi^{\infty}=\varphi^{*} B_{\infty} \in H^{p}(\Omega, \rho), \varphi(\infty)=1$ and $\varphi\left(z_{k}\right)=$ 0 for $k=1,2, \ldots$, we get

$$
\begin{equation*}
\mu^{\infty}(\rho) \leq\left\|\psi^{\infty}\right\|^{p}=\left(\prod_{k=1}^{+\infty}\left|\Phi\left(z_{k}\right)\right|\right)^{p} \mu(\rho) \tag{3.13}
\end{equation*}
$$

Finally, the lemma follows from (3.12) and (3.13).

4. The main results

Definition 4.1. A measure $\sigma=\alpha+\gamma$ is said to belong to a class A if the absolutely continuous part α and the discrete part γ satisfy conditions (1.3), (1.4), and (2.1) and Blaschke's condition, that is,

$$
\begin{equation*}
\sum_{k=1}^{+\infty}\left(\left|\Phi\left(z_{k}\right)\right|-1\right)<\infty . \tag{4.1}
\end{equation*}
$$

We denote $\lambda_{n}=\Phi^{n}-\Phi_{n}$, where Φ_{n} is the polynomial part of the Laurent expansion of Φ^{n} in the neighborhood of infinity.

Definition 4.2 [2]. A rectifiable curve E is said to be of class Γ if $\lambda_{n}(\xi) \rightarrow 0$ uniformly on E.
Theorem 4.3. Let a measure $\sigma=\alpha+\gamma$ satisfy conditions (1.3), (1.4) and Blaschke's condition (4.1); then

$$
\begin{equation*}
\lim _{l \rightarrow+\infty} m_{n, p}(l)=m_{n, p}(\sigma) . \tag{4.2}
\end{equation*}
$$

Proof. The extremal property of $T_{n, p}\left(z_{k}\right)$ gives

$$
\begin{align*}
\left(m_{n, p}(\sigma)\right)^{p} & \leq \int_{E}\left|T_{n, p}^{l}(\xi)\right|^{p} \rho(\xi)|d \xi|+\sum_{k=1}^{l} A_{k}\left|T_{n, p}^{l}\left(z_{k}\right)\right|^{p}+\sum_{k=l+1}^{+\infty} A_{k}\left|T_{n, p}^{l}\left(z_{k}\right)\right|^{p} \tag{4.3}\\
& =\left(m_{n, p}(l)\right)^{p}+\sum_{k=l+1}^{+\infty} A_{k}\left|T_{n, p}^{l}\left(z_{k}\right)\right|^{p}
\end{align*}
$$

On the other hand, from the extremal property of $T_{n, p}^{l}\left(z_{k}\right)$, we can write

$$
\begin{align*}
m_{n, p}(l) & \leq\left(\int_{E}\left|T_{n, p}(\xi)\right|^{p} \rho(\xi)|d \xi|+\sum_{k=1}^{l} A_{k}\left|T_{n, p}\left(z_{k}\right)\right|^{p}\right)^{1 / p} \tag{4.4}\\
& \leq m_{n, p}(\sigma)=C_{n}<\infty
\end{align*}
$$

Note that C_{n} does not depend on l; so for all $l=1,2,3, \ldots$,

$$
\begin{equation*}
\left(\int_{E}\left|T_{n, p}^{l}(\xi)\right|^{p} \rho(\xi)|d \xi|\right)^{1 / p}<C_{n} . \tag{4.5}
\end{equation*}
$$

This implies that there is a constant C_{n}^{\prime} independent of l such that for all $l=1,2,3, \ldots$,

$$
\begin{equation*}
\max \left\{\left|T_{n, p}^{l}(z)\right|^{p}:|z| \leq 2\right\}<C_{n}^{\prime} . \tag{4.6}
\end{equation*}
$$

Using (4.6) in (4.3) for large enough l with (4.4), we get

$$
\begin{equation*}
\left(m_{n, p}(l)\right)^{p} \leq\left(m_{n, p}(\sigma)\right)^{p} \leq\left(m_{n, p}(l)\right)^{p}+C_{n}^{\prime} \sum_{k=l+1}^{+\infty} A_{k} . \tag{4.7}
\end{equation*}
$$

Letting $l \rightarrow \infty$, we obtain

$$
\begin{equation*}
\lim _{l \rightarrow \infty} m_{n, p}(l)=m_{n, p}(\sigma) . \tag{4.8}
\end{equation*}
$$

Theorem 4.4. Let $1 \leq p<\infty, E \in \Gamma$, and let $\sigma=\alpha+\gamma$ be a measure which belongs to A. In addition, for all n and l,

$$
\begin{equation*}
m_{n, p}(l) \leq\left(\prod_{k=1}^{l}\left|\Phi\left(z_{k}\right)\right|\right) m_{n, p}(\rho) . \tag{4.9}
\end{equation*}
$$

Then the monic orthogonal polynomials $T_{n, p}(z)$ with respect to the measure σ have the following asymptotic behavior:
(i) $\lim _{n \rightarrow \infty}\left(m_{n, p}(\sigma) /(C(E))^{n}\right)=\left(\mu^{\infty}(\rho)\right)^{1 / p}$;
(ii) $\lim _{n \rightarrow \infty}\left\|T_{n, p} /[C(E) \Phi]^{n}-\psi^{\infty}\right\|_{H p(\Omega, p)}=0$;
(iii) $T_{n, p}(z)=[C(E) \Phi(z)]^{n}\left[\psi^{\infty}(z)+\varepsilon_{n}(z)\right]$,
where $\varepsilon_{n}(z) \rightarrow 0$ uniformly on compact subsets of Ω and ψ^{∞} is an extremal function of problem (3.3).

Remark 4.5. For $p=2$ and E the unit circle, condition (4.9) is proved (see [5, Theorem 5.2]). In this case, this condition can be written as $\gamma_{n} / \gamma_{n}^{l} \leq \prod_{k=1}^{l}\left|z_{k}\right|$, where $\gamma_{n}^{l}=1 / m_{n, 2}(l)$ and $\gamma_{n}=1 / m_{n, 2}(\rho)$ are, respectively, the leading coefficients of the orthonormal polynomials associated to the measures σ_{l} and α.

Proof of Theorem 4.4. Taking the limit when l tends to infinity in (4.9) and using Theorem 4.3, we get

$$
\begin{equation*}
\frac{m_{n, p}(\sigma)}{(C(E))^{n}} \leq\left(\prod_{k=1}^{+\infty}\left|\Phi\left(z_{k}\right)\right|\right) \frac{m_{n, p}(\rho)}{(C(E))^{n}} \tag{4.10}
\end{equation*}
$$

On the other hand, it is proved in [2] that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{m_{n, p}(\rho)}{(C(E))^{n}}=(\mu(\rho))^{1 / p} \tag{4.11}
\end{equation*}
$$

Using (4.10), (4.11), and Lemma 3.2, we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{m_{n, p}(\sigma)}{(C(E))^{n}} \leq\left(\prod_{k=1}^{+\infty}\left|\Phi\left(z_{k}\right)\right|\right)(\mu(\rho))^{1 / p}=\left(\mu^{\infty}(\rho)\right)^{1 / p} \tag{4.12}
\end{equation*}
$$

It is well known that (see [3, page 231])

$$
\begin{equation*}
\forall l>0, \quad \mu(l)=\mu(\rho)\left(\prod_{k=1}^{l}\left|\Phi\left(z_{k}\right)\right|\right)^{p} \tag{4.13}
\end{equation*}
$$

We also have (see [3, Theorem 2.2])

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{m_{n, p}(l)}{(C(E))^{n}}=(\mu(l))^{1 / p} . \tag{4.14}
\end{equation*}
$$

From (4.4), we deduce that

$$
\begin{equation*}
\forall l>0, \quad \frac{m_{n, p}(\sigma)}{(C(E))^{n}} \geq \frac{m_{n, p}(l)}{(C(E))^{n}} . \tag{4.15}
\end{equation*}
$$

By passing to the limit when n tends to infinity in (4.15) and taking into account (4.13) and (4.14), we get

$$
\begin{equation*}
\forall l>0, \quad \liminf _{n \rightarrow \infty} \frac{m_{n, p}(\sigma)}{(C(E))^{n}} \geq\left(\prod_{k=1}^{l}\left|\Phi\left(z_{k}\right)\right|\right)(\mu(\rho))^{1 / p} \tag{4.16}
\end{equation*}
$$

Finally, by using Lemma 3.2, we obtain

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{m_{n, p}(\sigma)}{(C(E))^{n}} \geq\left(\prod_{k=1}^{+\infty}\left|\Phi\left(z_{k}\right)\right|\right)(\mu(\rho))^{1 / p}=\left(\mu^{\infty}(\sigma)\right)^{1 / p} . \tag{4.17}
\end{equation*}
$$

Inequalities (4.12) and (4.17) prove Theorem 4.4(i).
We obtain (ii) by proceeding as in [3, pages 234, 235].
To prove (iii), we consider the function

$$
\begin{equation*}
\varepsilon_{n}=\frac{T_{n, p}}{[C(E) \Phi]^{n}}-\psi^{\infty} \tag{4.18}
\end{equation*}
$$

which belongs to the space $H^{p}(\Omega, \rho)$. Then by applying Lemma 2.1, we obtain

$$
\begin{align*}
& \sup \left\{\left|\frac{T_{n, p}(z)}{[C(E) \Phi(z)]^{n}}-\psi^{\infty}(z)\right|: z \in K\right\} \tag{4.19}\\
& \quad=\sup \left\{\left|\varepsilon_{n}(z)\right|: z \in K\right\} \leq C_{K}\left\|\varepsilon_{n}\right\|_{H^{p}(\Omega, \rho)} \longrightarrow 0
\end{align*}
$$

for all compact subsets K of Ω. This achieves the proof of the theorem.

References

[1] R. Benzine, Asymptotic behavior of orthogonal polynomials corresponding to a measure with infinite discrete part off a curve, J. Approx. Theory 89 (1997), no. 2, 257-265.
[2] Y. L. Geronimus, On some extremal problems in the space $L_{\sigma}^{(p)}$, Mat. Sb. (N.S.) 31(73) (1952), 3-26 (Russian).
[3] V. Kaliaguine, On asymptotics of L_{p} extremal polynomials on a complex curve $(0<p<\infty)$, J. Approx. Theory 74 (1993), no. 2, 226-236.
[4] R. Khaldi and R. Benzine, On a generalization of an asymptotic formula of orthogonal polynomials, Int. J. Appl. Math. 4 (2000), no. 3, 261-274.
[5] , Asymptotics for orthogonal polynomials off the circle, J. Appl. Math. 2004 (2004), no. 1, 37-53.
[6] P. Koosis, Introduction to H_{p} Spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge, 1980.
[7] X. Li and K. Pan, Asymptotics for L_{p} extremal polynomials on the unit circle, J. Approx. Theory 67 (1991), no. 3, 270-283.
[8] D. S. Lubinsky and E. B. Saff, Strong asymptotics for L_{p} extremal polynomials $(1<p \leq \infty)$ associated with weights on $[-1,1]$, Approximation Theory (Tampa, Fla, 1985-1986), Lecture Notes in Math., vol. 1287, Springer-Verlag, Berlin, 1987, pp. 83-104.
[9] F. Peherstorfer and P. Yuditskii, Asymptotics of orthonormal polynomials in the presence of a denumerable set of mass points, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3213-3220.
[10] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
[11] G. Szegö, Orthogonal Polynomials, 4th ed., American Mathematical Society Colloquium Publications, vol. 23, American Mathematical Society, Rhode Island, 1975.
[12] J. P. Tiran and C. Detaille, Chebychev polynomials on a circular arc in the complex plane, preprint, 1990, Namur University, Belgium.
[13] H. Widom, Extremal polynomials associated with a system of curves in the complex plane, Advances in Math. 3 (1969), 127-232.

Rabah Khaldi: Department of Mathematics, University of Annaba, P.O. Box 12, 23000 Annaba, Algeria

E-mail address: rkhadi@yahoo.fr

