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We extend, sharpen, or give independent proofs of classical maximum principles. We also
concentrate on maximum principles for equations of higher order. All proofs (except for
one) are derived via comparison principles. The two parts maybe read independently, but
the whole paper is not self-contained.

1. Introduction

The purpose of this paper is to derive general estimates in the maximum norm for solu-
tions of elliptic and parabolic equations, using some global-type comparison results. Our
method has some attractive features, being elementary and applicable for a class of linear
and nonlinear equations of second and higher order defined on nonsmooth domains.
This idea was used for second-order equations and has proved to be a powerful tool.

Section 2.1 is devoted to maximum principles for second-order equations. First, we
sharpen the classical bound for elliptic equations. Further, we study quasilinear equa-
tions and extend some results from the celebrated monograph [6, Problem 10.1, page
277] or reprove by different means some weaker variants of results in [6, Theorem 10.5,
page 266]. Then we consider parabolic equations and claim that stronger results (decay
estimates) can be proved.

In Section 2.2, we transfer the same idea to the higher-order case. We will prove similar
estimates in terms of boundary values of ∆ ju, 0 ≤ j ≤m/2− 1, where m is the order of
the elliptic equation.

A word on notations. The real function spaces and the definitions we use are all famil-
iar, and are omitted (see, for details, [6]). But we note that L denotes a linear operator of
the form

Lu= ai j(x)Diju+ bi(x)Diu+ c(x)u, (1.1)

and Q denotes a quasilinear operator of the form

Qu= ai j(x,u,Du)Diju+ b(x,u,Du), ai j = aji, (1.2)
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where x = (x1, . . . ,xn) is contained in a bounded domain Ω of Rn, n≥ 1. The subscript p
indicates that we are concerned with parabolic operators, that is,

Lpu=−∂u
∂t

+ ai j(x, t)Diju+ bi(x, t)Diu+ c(x, t)u, (1.3)

where (x, t)∈Ω× (0,T]=ΩT . For elliptic quasilinear operators we will let A denote the
coefficient matrix A= [ai j(x,u,Du)] and set �∗ = n

√
�, where � is the determinant of A.

2. Results

2.1. Maximum principles for second-order equations. The starting point is a slightly
sharper version of [6, Theorem 3.7].

Theorem 2.1. Let u ∈ C2(Ω)∩C0(Ω) satisfy Lu ≥ f (= f ) in Ω, where L is elliptic, bi,
i= 1,2, . . . ,n are bounded, and c ≤ 0. Assume also that Ω is contained in the strip between
two planes of distance d. Then

sup
Ω
u
(|u|)≤ sup

∂Ω
u+(|u|)+C∗ sup

Ω

∣∣ f −∣∣
λ

(
sup
Ω

| f |
λ

)
. (2.1)

Here C∗ = e(β+1)d/(β+ 1), β = supΩ |b|/λ, and λ is the ellipticity constant.

Proof. Imitate [6, Proof of Theorem 3.7] with

v(x)= eηd

η

(
1− e−ηx1

)
sup
Ω

∣∣ f −∣∣
λ

+ sup
∂Ω

u+, (2.2)

where η = 1 +β. �

Comments. (1) Theorem 2.1 is exactly the result of [6, Theorem 3.7] with C = e(β+1)d − 1
replaced by C∗ = e(β+1)d/(β+ 1). Of course, if diam(Ω)≥ 1 and β ≥ 1/2, we have C∗ ≤ C.

(2) In certain cases it is possible to relax the condition c ≤ 0 (see [6, Corollary 3.8]). If
parabolic operators of the form Lp are involved, then we can obtain similar estimates to
(2.1) (for arbitrary c). A sharper (since we have only an integral norm of f on the right-
hand side) form of estimate (2.1) is the Alexandrov-Bakelman maximum principle. The
proof maybe found in [6, page 220].

We now pass to the quasilinear case. In the following, we are interested in proving a
one-dimensional version of [6, Theorem 10.3] using a different method.

Theorem 2.2. Let u∈ C1(Ω)∩C2(Ω) be a solution of the equation

a(x,u,u′)u′′ + b(x,u,u′)= 0 in Ω= (0,1), (2.3)

and suppose there exist nonnegative constants µ1 and µ2 such that

∣∣b(x,z, p)
∣∣

a(x,z, p)
≤ µ1|p|+µ2, (2.4)

where µ1 < π.
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Then

sup
Ω
|u| ≤ β+C

(
µ1
)[
π(β−α) +µ2

]
. (2.5)

Here u(0)= α, u(1)= β, and α < β.

Proof. Setting u(x)= y(x) + (β−α)x+α= y(x) +ϕ(x), we see that y satisfies

a(x, y +ϕ, y′ +β−α)y′′ + b(x, y +ϕ, y′ +β−α)= 0 in Ω, (2.6)

and y(0)= 0, y(1)= 0.
By virtue of inequality |y(x)| ≤ ∫ x0 |y′| ≤ (

∫ 1
0 (y′)2)1/2, we need only estimate ‖y′‖L2(0,1).

We note that
∫ 1

0 (y′)2 =−∫ 1
0 (yy′′).

Hence using (2.6) we obtain

∫ 1

0
(y′)2 ≤

∫ 1

0
|y|

∣∣b(x, y +ϕ, y′ +β−α)
∣∣

a(x, y +ϕ, y′ +β−α)
≤ µ1

∫ 1

0
|y||y′|+

[
µ1(β−α) +µ2

]∫ 1

0
|y|.

(2.7)

Using Wirtinger’s inequality

‖y‖2
L2(0,1) ≤

1
π2
‖y′‖2

L2(0,1) (2.8)

which is valid for functions y ∈ C1[0,1] such that y(0) = y(1) = 0, Cauchy’s inequality
with ε,

t1t2 ≤ ε

2
t1

2 +
1
2ε
t2

2, (2.9)

and Holder’s inequality, we get

∫ 1

0
µ1|y||y′| ≤ µ1

(∫ 1

0
(y)2

)1/2(∫ 1

0
(y′)2

)1/2

≤ µ1
1
π

∫ 1

0
(y′)2,

∫ 1

0

[
µ1(β−α) +µ2

]|y| ≤ ε

2π2

∫ 1

0
(y′)2 +

1
2ε

[
µ1(β−α) +µ2

]2
.

(2.10)

Consequently,

(
1− µ1

π
− ε

2π2

)∫ 1

0
(y′)2 ≤ 1

2ε

[
µ1(β−α) +µ2

]2
. (2.11)

We take ε > 0 small so that the term in brackets remains positive to obtain

sup
Ω
|y| ≤ C(µ1

)[
µ1(β−α) +µ2

]
. (2.12)

Replacing y by u−ϕ, we obtain the desired estimate. �
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Remark 2.1. If Ω= (a,b) is an arbitrary interval of finite length, then u can also be esti-
mated in terms of u(a), u(b), µ1, µ2, and u′(b). We do not give the proof here.

We note that we may reprove [6, Theorem 10.3] by choosing as comparison function

w(x)= sup
∂Ω

u+ +µ2
eηd

η

(
1− e−ηx1

)
, η = µ1 + 1, (2.13)

instead of v (see the proof of [6, Theorem 10.3]).
One could prove a parabolic version of [6, Theorem 10.3]. Moreover, if u is a classical

solution of the problem

Qpu= 0 in Ω× (0,∞),

u(x,0)= ψ(x) in Ω,

u(x, t)= 0 on ∂Ω× (0,∞),

(2.14)

where Qp is parabolic in Ω× (0,∞) and b satisfies

(sign z)b(x, t,z, p)
ε(x, t,z, p)

≤ µ1

‖p‖ ∀(x, t,z, p)∈Ω×R×R×Rn, (2.15)

(µ1 > 0 is a constant and ε(x, t,z, p)= ai j(x, t,z, p)pi pj) then the solution has the follow-
ing decay property:

∣∣u(x, t)
∣∣≤ e−αt, x ∈Ω, t > 0. (2.16)

Here α is a positive constant.
The proof is similar to that of [3, Lemma 3] and is left to the reader.
A very general maximum principle is stated in [6, Theorem 10.5]. It tells us that if

u solves Qu ≥ 0 in Ω and if there exist nonnegative functions g ∈ Lnloc(Rn), h ∈ Ln(Ω)
such that

(sign z)b(x,z, p)
n�∗ ≤ h(x)

g(p)
∀(x,z, p)∈Ω×R×Rn, (2.17)

∫
Ω
hndx <

∫
Rn
gndp, (2.18)

then a maximum principle is valid.
Our aim is to show that under strong conditions on the coefficients ai j and on h the

maximum principle holds even if g /∈ Lnloc(Rn).
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Theorem 2.3. Let u∈ C0(Ω)∩W2,n
loc (Ω) satisfy Qu≥ 0(= 0) in Ω. Suppose that b satisfies

the structure condition (2.17) with h bounded in Ω and g(p)= ‖p‖−k, k > 1. If in addition
Q is elliptic with ai j(x,z, p)≥ 0 in Ω×R×Rn, for i �= j, then the estimate

sup
Ω
u
(|u|)≤ 1 + sup

∂Ω
u+(|u|) (2.19)

holds.

Proof. Suppose that Ω lies in the cube

K = {x ∈Rn | 0 < xi < d, i= 1,2, . . . ,n
}

, (2.20)

where d = diam(Ω).
We consider the function

w(x)= sup
∂Ω

u+ + 1− e−η(x1+···+xn)

η
, (2.21)

where the constant η > 1 is to be chosen later.
Let u∈ C0(Ω)∩W2,n

loc (Ω) satisfy Qu≥ 0 in Ω and define Q by

Qw = ai j(x,u,Dw)Dijw+ b(x,u,Dw). (2.22)

It is then not difficult to see that

Qw =−ηe−η(x1+···+xn) ·
∑
i, j

ai j(x,u,Dw) + b(x,u,Dw)

≤−ηe−η(x1+···+xn) ·
∑
i

aii(x,u,Dw) +n�∗∣∣h(x)
∣∣e−η(x1+···+xn)

(2.23)

in Ω+ = {x ∈Ω | u(x) > 0}.
But

detA≤
(

trace A
n

)n
. (2.24)

Since h is bounded in Ω we can choose M such that |h| ≤M in Ω to obtain

Qw ≤ e−η(x1+···+xn) ·
∑
i

aii(x,u,Dw)(−η+M) in Ω+. (2.25)

Setting η =M + 1 we have

Qw < 0≤Qu in Ω+, (2.26)

and hence (2.19) follows from [6, Theorem 10.1]. �
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Remark 2.2. The hypothesis that ai j(x,z, p) ≥ 0 in Ω×R×Rn can be replaced by ai j

bounded in Ω×R×Rn (i �= j).

The following result provides an extension of the maximum principle [6, (10.37), page
277].

Theorem 2.4. Let u∈ C2(Ω)∩C0(Ω) satisfy Qu≥ 0(= 0) in Ω. Suppose the following.
(i) ai j(x,z,0)ξiξ j ≥ 0 for all ξ ∈Rn, (x,z)∈Ω×R and

z · b(x,z,0)≤ 0 (2.27)

for all x ∈Ω, |z| ≥M (here M is a positive constant).
Then

sup
Ω
u
(|u|)≤max

{
sup
∂Ω

u+(|u|),M}. (2.28)

(ii) Ω lies between two parallel planes a distance 1 apart, ai j = δi j , and there exists a
constant M > 0 such that

z · b(x,z, p)≤ z2 +µ1 ∀x ∈Ω, |z| >M, p ∈Rn, (2.29)

where µ1 ≥ 0. If in addition there exists a constant L1 > 0 such that

∣∣b(x,z, p)− b(x,z1, p1
)∣∣≤ L1

∣∣p− p1
∣∣ ∀x ∈Ω, z,z1 ∈R, p, p1 ∈Rn, (2.30)

then

sup
Ω
u
(|u|)≤ sup

∂Ω
u+(|u|)+C, (2.31)

where C = C(µ1,M).
(iii) Q is strictly elliptic in Ω, and b satisfies (2.30). Also suppose that for some k ∈

{1,2, . . . ,n}, there exists a constant L2 > 0 such that

∣∣akk(x,z, p)− akk(x,z1, p1
)∣∣≤ L2 ·

∣∣p− p1
∣∣ (2.32)

for all x ∈Ω, z,z1 ∈R, p, p1 ∈Rn. If

z · b(x,z, p)≤ µ1 · |z|α ∀x ∈Ω, z ∈R, p ∈Rn, (2.33)

where µ1 > 0, α ≥ 3, then supΩu
(|u|) ≤ sup∂Ωu

+
(|u|) + C with C = C(α,diam(Ω),λ0),

where λ0 is a lower bound for the minimum of eigenvalues of [ai j(x,z, p)], (x,z, p) ∈Ω×
R×Rn.

Proof. (i) We define Q as in the proof of Theorem 2.3; namely for u ∈ C0(Ω)∩C2(Ω)
that satisfies Qu≥ 0 in Ω, we set

Qv = ai j(x,u,Dv)Dijv+ b(x,u,Dv). (2.34)
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By considering the function

v(x)=max
{

sup
∂Ω

u+,M
}

, (2.35)

we obtain

Qv = b(x,u,0)≤ 0 in Ω+. (2.36)

Estimate (2.28) for supΩu follows by [11, Corollary III, page 306]. Replacing u by −u, we
obtain estimate (2.28) for supΩ |u|.

(ii) Assume that Ω is contained in the strip π/6
√

2 < δ1 < x1 < δ2 < 5π/6
√

2, where
δ2− δ1 = 1. We also assume initially that u≤ 0 on ∂Ω, that is, sup∂Ωu

+ = 0.
A comparison function v is defined by

v(x)= 2
(
µ1 + 1

) · (M + 1) · sin
(√

2x1
)
. (2.37)

We then get

Qv ≤Qu in Ω, (2.38)

and the result with sup∂Ωu
+ = 0 follows from the refined form of [11, Corollary III, page

307]. By replacing u with u− γ, where γ = sup∂Ωu
+ we obtain estimate (2.31) for subso-

lutions.
(iii) As in the proof of (ii) we can assume initially that u≤ 0 on ∂Ω, and that Ω lies in

the strip 0 < x1 < d, d = diam(Ω).
Defining the function v as

v(x)= r(eηd − eηx1
)
, (2.39)

where the positive constants r, η will be chosen below, we see that

Qv =−rη2eηx1a11(x,v,Dv) + b(x,v,Dv) in Ω. (2.40)

By hypothesis a11(x,z, p)≥ λ0 in Ω×R×Rn. Hence

Qv ≤ reηx1

[
− λ0η

2 +µ1r
α−2(eηd − 1

)α−1
]

in Ω. (2.41)

We choose η = ((1 +µ1)/λ0)1/2, r = 1/(eηd)(α−1)/(α−2), and obtain

Qv < 0≤Qu in Ω. (2.42)

The proof may be effected by using an argument similar to that of (ii). �

Comments. Since we have used a better comparison result, the maximum principle in
[6, (10.37), page 277] becomes a particular case of our principle (2.28). A weaker form
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of this principle appears in [10]. The cases of Theorem 2.4(ii) and (iii) can be viewed as
extensions of (10.37).

Conditions (2.30) and (2.32) in the hypothesis of Theorem 2.4(iii) can be replaced by
the following:

(i) b is strictly decreasing in z for each fixed (x, p)∈Ω×Rn,
(ii) for some k, akk is increasing in z for each fixed (x, p)∈Ω×Rn.

A parabolic version of Theorem 2.4 maybe proved in a similar manner (using the well-
known Nagumo-Westphal lemma in [11, page 187] instead of Corollary III). However,
this result is a particular case of [8, Theorem 2.9, page 23] with φ(s)= αtβ, where α > 0,
β ≥ 1. For some sharper results, that is, decay estimates, the reader is referred to [4].

2.2. Maximum principles for higher-order equations. Maximum principles for equa-
tions of higher order have been developed by various authors (see [1, 2, 5, 9, 12]) using
different methods.

Our approach (based on comparison methods) differs considerably from those in the
above quoted works. Unfortunately, by using this method we cannot strive to obtain max-
imum principles for a broad class of equations. However, it allows us to treat the subso-
lution case.

Theorem 2.5. Let u ∈W4,n
loc (Ω)∩C2(Ω) satisfy Bu ≤ f (= f ) in Ω, where B is an elliptic

operator given by Bu = L2u− ηLu + γu, and where the constants η > 0 and γ satisfy 0 ≤
4γ ≤ η2, and Lu= ai jDi ju (ai j-constants). Then

sup
Ω
u
(|u|)≤ sup

∂Ω
u+(|u|)+C1 sup

∂Ω

−(Lu)−

λ

( |Lu|
λ

)
+C2 sup

∂Ω

f +

λ2

( | f |
λ2

)
, (2.43)

where C1, C2 are constants depending only on diameter of Ω. Here λ is the ellipticity constant
for the operator L.

Proof. Without loss of generality, we may assume that Ω lies in the strip 1 < x1 < d + 1,
where d is the diameter of Ω. We suppose first that Bu≤ f in Ω. Our strategy is to choose
a comparison function v. We set

v(x)= sup
∂Ω

u+ +
(

(d+ 1)2

2
− x2

1

2

)
sup
∂Ω

−(Lu)−

λ

+
[

3x2
1

4
+
(

(d+ 1)2

2
log(1 +d)− x2

1

2
logx1

)]
· (d+ 1)2 · sup

Ω

f +

λ2
.

(2.44)

Obviously u≤ v on ∂Ω.
By ellipticity we have a11 ≥ λ, and hence

Lv = a11

λ

(
inf
∂Ω

(Lu)− − (d+ 1)2 logx1 sup
Ω

f +

λ

)
≤ inf

∂Ω
(Lu)− ≤ Lu on ∂Ω. (2.45)
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Since

B(v−u)≥
(
a11

λ

)2

· (d+ 1)2

x2
1

· sup
Ω

f +− f ≥ sup
Ω

f +− f ≥ 0 in Ω, (2.46)

we obtain the result for functions C2(Ω)∩C4(Ω) by an extension (we interchanged the
symbols≥ and≤ and replaced ∆u by the elliptic operator Lu) of [7, Theorem 2] (see also
the remark of Goyal and Schaefer in [7], top of page 278). We note that the constants
a, b in [7, Theorem 2] are here η, respectively, γ. But [7, Theorem 2] remains valid for
functions in C2(Ω)∩W4,n

loc (Ω) (the proof is left to the reader) and hence the desired result
follows.

The result for solutions is obtained by replacing u with −u. �

Comments. If u is a solution of Bu= f in Ω, then Theorem 2.5 becomes a particular case
of [12, Corollary 13]. We can use similar means to extend the result of Theorem 2.5 to
subsolutions (solutions) of

B1u= ∆2u− (c+d)∆u+ cdu≤ f (= f ) in Ω, (2.47)

where c is a positive constant and d is a positive function in Ω in the class C0(Ω). We
observe that this last result cannot be derived from results in [1, 2, 5, 9, 12], even if u is a
solution of B1u= f in Ω.

It is worth noticing that it is also possible to extend Theorem 2.5 to operators of order
2m and hence obtain corresponding estimates for solutions of

∆mu+ c1∆
m−1u+ ···+ (−1)m+1cmu= f in Ω, (2.48)

if the constants c1 < 0,c2,c3, . . . ,cm > 0 are chosen appropriately.
We save a tree and leave this as an exercise for the reader.
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