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Exploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue
problems, we prove the existence of a countable set of eigenvalues converging to ∞ and
inclusion theorems for a rational spectral problem governing mechanical vibrations of a
tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that
the variational characterization of eigenvalues is a powerful tool for studying nonover-
damped eigenproblems, and that the appropriate enumeration of the eigenvalues is of
predominant importance, whereas the natural ordering of the eigenvalues may yield false
conclusions.

1. Introduction

Characterizations of eigenvalues as minmax or maxmin values of the Rayleigh quotient
are known to be very powerful tools when studying selfadjoint linear operators on a
Hilbert space H . To name just a few applications, bounds for eigenvalues, comparison
theorems, interlacing results, and monotonicity of eigenvalues can be proved easily. Gen-
eralizations to families of operators depending nonlinearly on an eigenparameter were
derived for overdamped problems, that is, if a generalized Rayleigh quotient called
Rayleigh functional is defined on the entire space H [6, 7, 8, 9, 10, 15], and counting
the eigenvalue in an appropriate way it was shown in [11, 13] that variational charac-
terizations of eigenvalues hold in the nonoverdamped case, too. In this paper, we apply
this variational characterization to a model governing small vibrations of a tube bundle
immersed in an incompressible viscous fluid.

The governing nonclassical eigenvalue problem involving the Stokes system of equa-
tions with nonlocal and rational boundary conditions was studied by Conca et al. [3]
(see also the recent monograph [5]). Transforming this problem to one of determining
the characteristic values of a compact (nonselfadjoint) operator they proved that there
exists a countable set of eigenvalues which converge to infinity. Moreover, it was shown
that the number of eigenvalues with nonvanishing imaginary part is finite, and that they
are all lying in a semicircle about the origin in the left half-plane. In [2] an upper bound
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of the number of nonreal eigenvalues was provided, and upper and lower bounds of the
real eigenvalues were derived. The proof of these bounds however is false.

Taking advantage of variational characterizations of real eigenvalues for selfadjoint
nonlinear eigenproblems, we obtain the existence of countably many real eigenvalues
in a more transparent and less technical way than in [3], and comparing the Rayleigh
functional of the rational problem to the Rayleigh quotients of suitable linear eigenvalue
problems, we prove upper and lower a priori bounds for the real eigenvalues outside the
semicircle mentioned above.

A crucial point when applying minmax or maxmin characterizations of eigenvalues for
nonoverdamped problems is to enumerate the eigenvalues correctly. The natural ordering
which was used in [2] is inappropriate, and a finite element discretization of the rational
eigenproblem (to which the techniques from [2, 3] and the ones used here apply as well),
demonstrates that the bounds developed in [2] actually do not hold.

The aim of this paper is twofold. Firstly, it demonstrates by a fluid-structure inter-
action problem the direct study of which requires a mathematical analysis which is far
from being trivial (cf. [2, 3, 5]), that the variational characterization of eigenvalues is
a powerful tool for studying nonoverdamped nonlinear eigenvalue problems. Secondly,
enumerating the eigenvalues appropriately is of predominant importance, whereas the
naive enumeration of the eigenvalues may yield false conclusions.

Our paper is organized as follows. Section 2 summarizes the minmax characteriza-
tion of eigenvalues of nonoverdamped eigenproblems where the eigenparameter appears
nonlinearly. Section 3 outlines the rational eigenvalue problem governing small vibra-
tions of a tube bundle immersed in an incompressible viscous fluid and collects the re-
sults in [2, 3] on the number and location of the eigenvalues. In Section 4, we derive the
existence of a countable set of real eigenvalues, converging to infinity in a transparent
way, from the variational characterizations in Section 2, and we obtain lower and upper
bounds of these real eigenvalues. The paper closes with a numerical example revealing
that the bounds given in [2] do not hold.

2. Variational characterization of eigenvalues of nonlinear eigenproblems

We consider the nonlinear eigenvalue problem

T(λ)x = 0, (2.1)

where T(λ) for every λ in an open real interval J is a selfadjoint and bounded operator
on a Hilbert space H . As in the linear case, λ∈ J is called an eigenvalue of problem (2.1)
if (2.1) has a nontrivial solution x �= 0. Such an x is called an eigenelement or eigenvector
corresponding to λ.

We assume that

f :


J ×H −→R,

(λ,x) �−→ 〈
T(λ)x,x

〉 (2.2)
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is continuously differentiable, and that for every fixed x ∈ H0, H0 := H \ {0}, the real
equation

f (λ,x)= 0 (2.3)

has at most one solution in J . Then (2.3) implicitly defines a functional p on some subset
D of H0 which we call the Rayleigh functional.

We assume that

∂

∂λ
f (λ,x)

∣∣
λ=p(x) > 0 for every x ∈D. (2.4)

Then it follows from the implicit function theorem that D is an open set and that p is
continuously differentiable on D.

For the linear eigenvalue value problem T(λ) := λI −A where A : H → H is selfad-
joint and continuous the assumptions above are fulfilled, and p is the Rayleigh quotient
and D = H0. If A additionally is completely continuous, then A has a countable set of
eigenvalues which can be characterized as minmax and maxmin values of the Rayleigh
quotient by the principles of Poincaré and of Courant, Fischer, and Weyl (cf. [14]).

The nonlinear eigenproblems variational properties using the Rayleigh functional were
proved for overdamped systems (i.e., if the Rayleigh functional is defined on H0) by
Duffin [6] and Rogers [9] for the finite-dimensional case and by Hadeler [7, 8], Rogers
[10], and Werner [15] for the infinite-dimensional case. For nonoverdamped systems
Werner and the author [13] proved a minmax characterization of Poincaré type; a max-
min characterization generalizing the principle of Courant, Fischer, and Weyl is con-
tained in [11].

In this section, we assemble the results in [11, 13] for the nonlinear nonoverdamped
eigenvalue problem (2.1).

We denote by Hj the set of all j-dimensional subspaces of H and by V1 := {v ∈ V :
‖v‖ = 1} the unit sphere of the subspace V of H .

We already stressed the fact that the eigenvalues of problem (2.1) have to be enumer-
ated appropriately to derive variational characterizations for nonoverdamped problems.
To this end we assume that for every fixed λ∈ J there exists ν(λ) > 0 such that the linear
operator T(λ) + ν(λ)I is completely continuous. Then the essential spectrum of T(λ) con-
tains only the point −ν(λ), and every eigenvalue µ >−ν(λ) of T(λ) can be characterized
as maxmin value of the Rayleigh quotient of T(λ). In particular, if λ is an eigenvalue of the
nonlinear problem (2.1), then µ = 0 is an eigenvalue of the linear problem T(λ)y = µy,
and therefore there exists n∈N such that

µn(λ) := max
V∈Hn

min
v∈V1

〈
T(λ)v,v

〉= 0. (2.5)

In this case, we call λ an nth eigenvalue of the nonlinear eigenvalue problem (2.1).
With this enumeration the following minmax characterization of the eigenvalues of

problem (2.1) holds which was proved in [13].
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Theorem 2.1. Under the conditions given above the following assertions hold.
(i) For every n ∈ N there is at most one nth eigenvalue of problem (2.1) which can be

characterized by

λn = min
V∈Hn

V∩D �=∅
sup

v∈V∩D
p(v). (2.6)

The minimum is attained by the invariant subspace W of T(λn) corresponding to the n
largest eigenvalues of T(λn), and supv∈W∩D p(v) is attained by all eigenvectors of (2.1) cor-
responding to λn. The set of eigenvalues of (2.1) is at most countable.

(ii) If, conversely,

λn = inf
V∈Hn

V∩D �=∅
sup

v∈V∩D
p(v)∈ J (2.7)

for some n∈N, then λn is the nth eigenvalue of (2.1) and the characterization (2.6) holds.

The characterization of the eigenvalues in Theorem 2.1 is a generalization of the min-
max principle of Poincaré for linear eigenvalue problems. In a similar way as in [13], the
maxmin characterization of Courant, Fischer, and Weyl can be generalized to the nonlin-
ear case (cf. [11]).

Theorem 2.2. If problem (2.1) has an nth eigenvalue λn ∈ J , then

λn = max
V∈Hn−1
V⊥∩D �=∅

inf
v∈V⊥∩D

p(v). (2.8)

3. A rational eigenvalue problem in fluid-structure interaction

This section is devoted to the presentation of the mathematical model which describes
the problem governing free vibrations of a tube bundle immersed in an incompress-
ible viscous fluid whose velocity field and pressure satisfy the steady Stokes equations.
The tubes are assumed to be rigid, assembled in parallel inside the fluid, and elastically
mounted in such a way that they can vibrate transversally, but they cannot move in the
direction perpendicular to their sections. The fluid is assumed to be contained in a cavity
which is infinitely long, and each tube is supported by an independent system of springs
(which simulates the specific elasticity of each tube). Due to these assumptions, three-
dimensional effects are neglected, and so the problem can be studied in any transversal
section of the cavity.

Considering small vibrations of the fluid (and the tubes) around the state of rest,
and assuming that the fluid is viscous and incompressible, this is a nonclassical eigen-
value problem involving the Stokes system of equations with nonlinear conditions on the
boundaries of the tubes, which model the fluid-solid interaction. On the boundary of the
cavity we assume the standard nonslip conditions.

Mathematically, the problem can be described in the following way as shown in Figure
3.1 (cf. [3, 5]): let Ω0 ⊂ R2 (the section of the cavity) be an open bounded set with lo-
cally Lipschitz continuous boundary Γ0. We assume that there exists a family Ω j �= ∅,
j = 1, . . . ,K , (the sections of the tubes) of simply connected open sets such that Ω̄ j ⊂Ω0
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Ω1 Ω2 Ω3

Γ4 Γ5

Γ0

Figure 3.1. Domain Ω.

for every j, Ω̄ j ∩ Ω̄i =∅ for j �= i, and each Ω j has a locally Lipschitz continuous bound-

ary Γ j . With these notations we set Ω :=Ω0 \
⋃K

j=1 Ω̄ j . Then the boundary Γ of Ω consists
of K + 1 connected components which are Γ0 and Γ j , j = 1, . . . ,K .

If u(x)e−ωt is the velocity field of the fluid, p(x)e−ωt denotes its pressure, and ν its kine-
matic viscosity, then the eigenvalue problem governing the free vibrations of the fluid–
solid structure which was derived by Conca et al. [3] obtains the following form:

−2νdive(u) +∇p−ωu= 0 in Ω, (3.1)

div u= 0 in Ω, (3.2)

u= 0 on Γ0, (3.3)

u= ω

ki +ω2mi

∫
Γi
σ(u, p)nds on Γi. (3.4)

Here mi is the mass per unit length of the ith tube, and ki represents the stiffness constant
of the spring system supporting the ith tube. e(u) is the linear strain tensor of the fluid
defined by

2e(u)=∇u + (∇u)T , (3.5)

and σ(u, p) denotes its stress tensor satisfying the Stokes law

σ(u, p)=−pI + 2νe(u). (3.6)

To rewrite problem (3.1)–(3.4) in variational form let

H1(Ω)2 := {v ∈ L2(Ω)2 :∇v ∈ L2(Ω)4} (3.7)

be the standard Sobolev space equipped with the usual scalar product. Then clearly

H := {v ∈H1(Ω)2 : div v = 0, v = 0 on Γ0, v constant on each Γ j , j = 1, . . . ,K
}

(3.8)

is a closed subspace of H1(Ω)2.
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It is well known from Korn’s inequality that the scalar product

〈
u,v

〉
:=
∫
Ω
e(u) : e(v̄)dx :=

∫
Ω

2∑
i, j=1

ei j(u)ei j(v̄)dx (3.9)

defines a norm on H which is equivalent to the standard Sobolev norm. Hence, H
equipped with this scalar product is a Hilbert space.

Multiplying (3.1) by v̄ ∈H and integrating by parts, one gets (cf. [3]) the variational
form of problem (3.1)–(3.4).

Find ω ∈ C and u∈H , u �= 0 such that for every v ∈H ,

2ν

∫
Ω
e(u) : e(v̄)dx = ω

∫
Ω

u · v̄dx+
K∑
j=1

(
ωmj +

kj
ω

)
γj(u) · γj(v̄), (3.10)

where γj(u) denotes the trace of u on Γ j which by the definition of H is a constant vector.
By standard arguments it can be shown that the eigenproblems (3.1)–(3.4) and (3.10) are
equivalent in the following sense: if (u, p,ω) solves the eigenproblem (3.1)–(3.4), then
(u,ω) is a solution of (3.10), and conversely, if (u,ω) is a solution of (3.10), then there
exists p ∈ L2(Ω) such that (u, p,ω) solves (3.1)–(3.4).

Conca et al. [3] multiplied the rational eigenproblem (3.10) by ω obtaining a quadratic
problem. They proved that the eigenvalues of this problem are the characteristic values
of a compact operator acting on a Hilbert space. Hence, they obtained that the set of
eigenvalues of problem (3.10) is countable, and its only cluster point is ∞. Moreover,
they proved the following location result.

Theorem 3.1. Let (ω,u) be a solution of the rational eigenvalue problem (3.10). Then the
following assertions hold:

(i) Re(ω) > 0,
(ii) if Im(ω) �= 0, then

|ω|2 < k

m
:=max

{
kj
mj

: j = 1, . . . ,K

}
,

Re(ω)≥ 1
2
µ,

K∑
j=1

kj
∣∣γj(u)

∣∣2
> 0,

(3.11)

where µ denotes the smallest eigenvalue of the linear eigenproblem.
Find µ∈ C and v ∈H , v �= 0 such that for every w ∈H ,

2ν

∫
Ω
e(v) : e(w̄)dx = µ

(∫
Ω

v · w̄dx+
K∑
j=1

mjγj(v) · γj(w̄)

)
. (3.12)

From Theorem 3.1(ii), it follows at once that problem (3.10) has only a finite number
of nonreal eigenvalues. In [2] Conca et al. proved that the maximum number of non-
real eigenvalues is 4K , and [1] contains a numerical example that demonstrates that this
bound is attained, which is approved by our numerical example in Section 5 as well.
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4. Comparison results

In this section, we prove inclusion results for the real eigenvalues ωj >
√
k/m taking ad-

vantage of the minmax characterization for these eigenvalues and comparing the Rayleigh
functional with Rayleigh quotients R1 of the linear eigenvalue problem (3.12) and R2 of
the linear problem.

Find ω ∈ C and v ∈H such that for every w ∈H ,

2ν

∫
Ω
e(v) : e(w̄)dx = µ

(∫
Ω

v · w̄dx+
K∑
j=1

(
mj +

m

k
kj

)
γj(v) · γj(w̄)

)
. (4.1)

Problem (3.10) fulfills the conditions of the minmax theory for the interval J :=
(
√
k/m,∞) since for

F(ω,u) :=−2ν

∫
Ω
e(u) : e(ū)dx+ω

∫
Ω
|u|2dx+

K∑
j=1

(
ωmj +

kj
ω

)∣∣γj(u)
∣∣2

, (4.2)

we have

∂

∂ω
F(ω,u)=

∫
Ω
|u|2dx+

K∑
j=1

(
mj −

kj
ω2

)∣∣γj(u)
∣∣2

> 0, (4.3)

if

mj −
kj
ω2

> 0 for every j, i.e., ω2 > max
j=1,...,K

kj
mj

= k

m
. (4.4)

Hence, all eigenvalues ωj ∈ J of problem (3.10) can be characterized by

ωj = min
V∈Hj

V∩D �=∅
sup

v∈V∩D
p(v), (4.5)

where the Rayleigh functional p is defined by F(ω,u) = 0, and F is given in (4.2). By D
we denote the domain of definition of p.

Lemma 4.1. Let R1 be the Rayleigh quotient of the linear eigenproblem (3.12). Then it holds
that

p(u)≤ R1(u) for every u∈D. (4.6)

Proof. For every u∈H , u �= 0 it holds that

F
(
R1(u),u

)=−2ν

∫
Ω
e(u) : e(ū)dx+R1(u)

∫
Ω
|u|2dx+

K∑
j=1

(
R1(u)mj +

kj
R1(u)

)∣∣γj(u)
∣∣2

= 1
R1(u)

K∑
j=1

kj
∣∣γj(u)

∣∣2 ≥ 0.

(4.7)
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Hence, if u ∈ D, that is, F(ω,u) = 0 has a solution p(u) ∈ J , then it follows from (4.3)
that p(u)≤ R1(u). �

Lemma 4.2. Let R2 denote the Rayleigh quotient of the linear eigenproblem (4.1). If R2(u)∈
J for some u∈H0, then u∈D, and p(u)≥ R2(u).

Proof. For u∈H0 such that R2(u) >
√
k/m,

F
(
R2(u),u

)=−2ν

∫
Ω
e(u) : e(ū)dx+R2(u)

∫
Ω
|u|2dx+

K∑
j=1

(
R2(u)mj +

kj
R2(u)

)∣∣γj(u)
∣∣2

=
K∑
j=1

(
1

R2(u)
− m

k
R2(u)

)
kj
∣∣γj(u)

∣∣2
< 0,

lim
ω→∞F(ω,u)=∞.

(4.8)

Thus, u∈D, and p(u)≥ R2(u). �

We are now in the position to prove an inclusion theorem for real eigenvalues of prob-
lem (3.10).

Theorem 4.3. (i) Assume that the jth eigenvalue

µj := min
V∈Hj

max
u∈V 0

R2(u) >
k

m
(4.9)

of problem (4.1) is contained in J . Then the nonlinear eigenproblem (3.10) has a jth eigen-
value ωj ∈ J , and µj is a lower bound of ωj :

µj ≤ ωj. (4.10)

Since the linear problem (4.1) has a countable set of eigenvalues the only accumulation point
of which is ∞, the nonlinear problem (3.10) must have countably many real eigenvalues as
well which also converge to∞.

(ii) If (3.10) has a jth eigenvalue ωj ∈ J , then

ωj ≤ ηj := min
V∈Hj

max
u∈V 0

R1(u). (4.11)

Proof. (i) For V ∈Hj let uV ∈V such that R2(uV )=maxv∈V 0 R2(v). Then

R2
(

uV
)≥ min

W∈Hj

max
w∈W0

R2(w)= µj >
k

m
, (4.12)

and Lemma 4.2 yields

uV ∈D, p
(

uV
)≥ R2

(
uV
)
. (4.13)

In particular V ∩D �= ∅ for every V ∈Hj .
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Moreover,

µj = min
V∈Hj

max
v∈V 0

R2(v)= min
V∈Hj

R2
(

uV
)

≤ min
V∈Hj

p
(

uV
)≤ min

V∈Hj

sup
u∈V∩D

p(u).
(4.14)

By Theorem 2.1(ii), the nonlinear eigenvalue problem (3.10) has a jth eigenvalue ωj , and
µj ≤ ωj .

(ii) Since V ∩D �= ∅ for every V ∈Hj , we obtain from Lemma 4.1

ωj = min
V∈Hj

V∩D �=∅
sup

v∈V∩D
p(v)≤ min

V∈Hj

V∩D �=∅
sup

v∈V∩D
R1(v)

≤ min
V∈Hj

V∩D �=∅
max
v∈V 0

R1(v)= min
V∈Hj

max
v∈V 0

R1(v)= ηj .
(4.15)

�

Remark 4.4. Multiplying the nonlinear eigenproblem (3.10) by ω, we consider the result-
ing quadratic eigenproblem.

Find ρ := 1/ω ∈ C and v ∈H such that for every w ∈H ,

(∫
Ω

v · w̄dx+
K∑
j=1

mjγj(v) · γj(w̄)

)
− ρ

(
2ν

∫
Ω
e(v) : e(w̄)dx

)
+ ρ2

K∑
j=1

kjγj(v) · γj(w̄)= 0

(4.16)

as positive perturbation of finite range of the linear eigenproblem (3.12). Conca, Duran,
and Planchard claimed the following bounds.

Let 0 < ω̃1 ≤ ω̃2 ≤ ··· be the real eigenvalues of the nonlinear eigenproblem (3.10)
ordered by magnitude and regarding their multiplicity, and let 0 < η1 ≤ η2 ≤ ··· be the
eigenvalues of the linear problem (3.12). Then it holds that

ω̃ j ≤ ηj for j = 1, . . . ,2K , (4.17)

ηj−2K ≤ ω̃ j ≤ ηj for j ≥ 2K + 1, (4.18)

where K denotes the number of tubes.

We already pointed out in [12] that the natural enumeration whereby we call the small-
est eigenvalue the first one, the second smallest the second one, and so forth is not ap-
propriate for the quadratic eigenvalue problem (4.16), and therefore the proof of these
bounds is not correct. The numerical example in the next section demonstrates that the
bounds (4.17) and (4.18) actually do not hold.

For those eigenvalues ωj contained in J , the bounds (4.17) and (4.18) can be adjusted
if we replace the natural ordering of the eigenvalues ω̃ j by the enumeration introduced in
Section 2. The upper bound ωj ≤ ηj is already contained in Theorem 4.3(ii).

The lower bound is obtained from the maxmin characterization in Theorem 2.1. Let
W = span{u1, . . . ,un−2K−1} denote the subspace of H spanned by the eigenelements of
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problem (3.12) corresponding to the n− 2K − 1 smallest eigenvalues, and let

Z =
{

u∈H :
K∑
j=1

kjγj(u)γj(v̄)= 0 for every v ∈H

}⊥
. (4.19)

Then obviously p(u)= R1(u) for every u∈D∩Z, and we obtain from Rayleigh’s princi-
ple and the maxmin characterization in Theorem 2.1

ηn−2K = min
u∈W⊥

R1(u)≤ min
u∈(W+Z)⊥

R1(u)

≤ inf
u∈(W+Z)⊥∩D

p(u)≤ max
dimV≤n−1

inf
u∈V⊥∩D

p(u)= ωn.
(4.20)

5. Numerical experiments

While the variational form (3.10) was convenient for the theoretical study of problem
(3.1)–(3.4), its numerical treatment requires to deal with the incompressibility condition
div u = 0 implicitly, and to use a mixed variational formulation, which reads as follows
(cf. [1, 4]).

Find (u, p,ω)∈H ×L2(Ω)×C, (u, p) �= (0,0) such that for every (v,q)∈H ×L2(Ω),

2ν

∫
Ω
e(u) : e(v̄)dx+

∫
Ω
pdiv v̄dx = ω

∫
Ω

u · v̄dx+
K∑
j=1

(
ωmj +

kj
ω

)
γj(u) · γj(v̄),

∫
Ω
q̄div udx = 0.

(5.1)

Here H denotes the space as follows:

H := {v ∈H1(Ω)2 : v = 0 on Γ0, v constant on each Γ j , j = 1, . . . ,K
}

(5.2)

which again is a closed subspace of H1(Ω)2.
We discretized this problem by finite elements using piecewise quadratic ansatz func-

tions on a regular triangulation of Ω for the velocity field, and piecewise linear functions
on the same triangulation for the pressure yielding a rational matrix eigenvalue problem
which can be reduced to a general matrix eigenvalue problem and solved using standard
numerical software. The convergence properties of this approach are studied in [4].

We consider problem (5.1) whereΩ0 = (0,3)× (0,3) is the section of the cave, and four
structures are contained in it with sections Ω1 = (0.8,1.0)× (0.8,1.0), Ω2 = (2.0,2.2)×
(0.8,1.0), Ω3 = (0.8,1.0)× (2.0,2.2), and Ω4 = (2.0,2.2)× (2.0,2.2). In all experiments we
chose ν= 1 and m :=mj = 1, j = 1,2,3,4, and we assumed that all kj =: k are identical.

For k ≥ 30.82 the discrete version of (5.1) has nonreal eigenvalues, and for k ≥ 106.03
there exist 16 nonreal eigenvalues demonstrating that the bound 4K on the number of
nonreal eigenvalues is attained.

For k = 400 the smallest real eigenvalue is ω̃1 = 13.478, whereas the smallest eigenvalue
of (3.12) is η1 = 9.671 demonstrating that (4.17) does not hold. Finally, k = 1 contradicts
the lower bound in (4.18), since ω̃9 = 9.605, whereas η1 = 9.672.
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Table 5.1

j µj ηj ωj(k = 1) ωj(k = 400)

1 5.5273441e+ 00 9.6715372e+ 00 9.6051792e+ 00 —
2 6.3743399e+ 00 1.1103915e+ 01 1.1055398e+ 01 —
3 6.4656339e+ 00 1.2237010e+ 01 1.2164933e+ 01 —
4 7.1377728e+ 00 1.2907175e+ 01 1.2899003e+ 01 —
5 8.6717113e+ 00 1.3728925e+ 01 1.3663594e+ 01 —
6 9.5210984e+ 00 1.4538864e+ 01 1.4516629e+ 01 —
7 1.0069363e+ 01 1.5059600e+ 01 1.5026228e+ 01 —
8 1.0290363e+ 01 1.5874023e+ 01 1.5872178e+ 01 —
9 1.3605487e+ 01 1.7630409e+ 01 1.7588566e+ 01 —

10 1.3716557e+ 01 1.9280833e+ 01 1.9246874e+ 01 —
11 1.5190485e+ 01 1.9647977e+ 01 1.9604771e+ 01 —
12 1.5870909e+ 01 1.9893125e+ 01 1.9848079e+ 01 —
13 2.2897653e+ 01 2.3661814e+ 01 2.3655921e+ 01 2.2948292e+ 01
14 3.2789694e+ 01 3.3880279e+ 01 3.3877702e+ 01 3.3216627e+ 01
15 3.5497102e+ 01 3.6107300e+ 01 3.6106314e+ 01 3.5808040e+ 01
16 3.5548471e+ 01 3.6185088e+ 01 3.6183766e+ 01 3.5828882e+ 01
17 3.7479680e+ 01 3.7852470e+ 01 3.7851786e+ 01 3.7663430e+ 01
18 3.7929796e+ 01 3.8388335e+ 01 3.8387384e+ 01 3.8142407e+ 01
19 3.8082108e+ 01 3.8535861e+ 01 3.8535044e+ 01 3.8307897e+ 01
20 4.3651778e+ 01 4.3695701e+ 01 4.3695639e+ 01 4.3677373e+ 01
21 4.9197938e+ 01 4.9379084e+ 01 4.9378915e+ 01 4.9323111e+ 01

Table 5.1 contains the smallest eigenvalues µj and ηj of the linear problems (4.1) and
(3.12), respectively, which for m = 1 and identical kj are bounds for eigenvalues greater
than

√
k. In columns 4 and 5 we added the smallest real eigenvalues ωj of the rational

eigenproblem for k = 1 and k = 400 satisfying ωj >
√
k where these eigenvalues are enu-

merated in the way introduced in Section 2.
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