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We prove existence results for solutions of periodic boundary value problems concerning
the nth-order differential equation with p-Laplacian [φ(x(n−1)(t))]′ = f (t,x(t),x′(t), . . . ,
x(n−1)(t)) and the boundary value conditions x(i)(0)=x(i)(T), i= 0, . . . ,n− 1. Our method
is based upon the coincidence degree theory of Mawhin. It is interesting that f may
be a polynomial and the degree of some variables among x0,x1, . . . ,xn−1 in the function
f (t,x0,x1, . . . ,xn−1) is allowed to be greater than 1.

1. Introduction

In this paper, we investigate the existence of solutions of the periodic boundary value
problem for nth-order differential equation with p-Laplacian

[
φ
(
x(n−1)

)]′ = f
(
t,x(t),x′(t), . . . ,x(n−1)(t)

)
, t ∈ (0,T), (1.1)

subject to the following periodic boundary conditions:

x(i)(0)= x(i)(T), i= 0,1, . . . ,n− 1, (1.2)

where f : [0,1]×Rn → R is a continuous function, n ≥ 2 an integer, p > 1 a constant,
and φ(x)= |x|p−2x for x �= 0 and φ(0)= 0, which is called p-Laplacian, whose inverse is
denoted by φ−1(x)= |x|q−2x, where q satisfies 1/p+ 1/q = 1.

Our purpose here is to provide sufficient conditions for the existence of solutions of
the periodic boundary value problem (1.1) and (1.2). This will be done by applying the
well-known coincidence degree theory.

The motivation for this paper is as follows. There were many papers concerned with
the solvability of the periodic boundary value problems for second-order differential
equations or higher-order differential equations

x′′(t) + f
(
t,x(t),x′(t)

)= 0, t ∈ (0,T),

x(0)= x(T), x′(0)= x′(T),
(1.3)
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2 Boundary value problems for p-Laplacian equations

or

x(n)(t)= f
(
t,x(t), . . . ,x(n−1)(t)

)
, t ∈ (0,T),

x(i)(0)= x(i)(T), i= 0, . . . ,n− 1.
(1.4)

We refer the readers to [7, 13, 14, 16] and the references therein. If n is even, problem
(1.1)-(1.2) can be reduced to a system of n/2 second-order periodic problems with the last
equation containing a p-Laplacian. Manásevich and Mawhin studied a similar problem
in [12]. They established existence results for periodic solutions.

In [15], the existence of T-periodic solutions of the equation

x(n)(t)= f
(
t,x(t),x′(t), . . . ,x(n−1)(t)

)
(1.5)

was studied, where f is continuous and f (∗,x0, . . . ,xn−1) is T-periodic with T > 0. The
authors proved that (1.5) has at least one periodic solution if some conditions imposed
on f are satisfied. The main results are as follows.

(i) Let n= 2m and the inequalities

p∗(t)
∣∣x1

∣∣− δ

(
t,

n∑
i=1

∣∣xi∣∣
)

≤ (−1)m f
(
t,x1, . . . ,xn

)
sgnx1 ≤ p∗(t)

∣∣x1
∣∣+ δ

(
t,

n∑
i=1

∣∣xi∣∣
) (1.6)

be valid on R×Rn, where P∗(t), p∗(t)≥ 0( �≡ 0) and δ(t,x) are T-periodic in t. If

∫ T

0
p∗(t)dt ≤ 2

T

(
2π
T

)n−2

,

p∗(t)≤
(

2π
T

)n
,

lim
x→+∞

1
x

∫ T

0
δ(t,x)dt = 0,

(1.7)

then (1.5) has at least one T-periodic solution.
(ii) Let the inequalities

p∗(t)
∣∣x1

∣∣− δ

(
t,

n∑
i=1

∣∣xi∣∣
)

≤ σ f
(
t,x1, . . . ,xn

)
sgnx1 ≤ p∗(t)

∣∣x1
∣∣+ δ

(
t,

n∑
i=1

∣∣xi∣∣
) (1.8)

be valid on R×Rn, where P∗(t), p∗(t) ≥ 0( �≡ 0) and δ(t,x) are T-periodic in t. In ad-
dition, let either n = 2m− 1 or n = 2m and σ = (−1)m−1. Then, (1.5) has at least one
T-periodic solution.
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In a recent paper [6], the author proved the existence of solutions of the following
problem:

x(n) + pn−1(t)x(n−1) + ···+ p1(t)x′ + p0(t)x = e(t),

x(i)(0)= x(i)(T), i= 0, . . . ,n− 1,
(1.9)

where pi : [0,T]→R is continuous and e ∈ C0[0,T]. He proved that if
∫ t

0 p0(t)dt �= 0 and

η0
(
p1
)
l1

∫ T

0

∣∣p1(t)
∣∣dt+

(
1 +η0

(
p1
))n−1∑

l=1

∫ T

0

∣∣pl(t)∣∣dt < 1, (1.10)

then (1.9) has at least one solutions, where

lk = T√
2

(
T

2π

)n−k−1

, k = 1, . . . ,n− 1, ln = 1,

η0(p)=
∫ T

0

∣∣p(t)
∣∣dt∣∣∣∫ T0 p(t)dt
∣∣∣ for

∫ t

0
p(t)dt �= 0.

(1.11)

The solvability of multipoint BVPs of p-Laplacian differential equations were studied by
several authors, we refer the readers to [2, 4, 5, 8, 9, 10, 11]. In addition, in [1], Cabada
and Pouso studied the existence of solutions of the following problem:

[
φ(u′)

]′ = f (t,u,u′), t ∈ [a,b],

0= g
(
u(a),u′(a),u′(b)

)
,

u(b)= h
(
u(a)

)
.

(1.12)

Using the methods of lower and upper solutions and Nagumo conditions, they obtained
existence results for solutions of the above problem.

To the best of our knowledge, the existence of solutions of periodic boundary value
problems for higher-order differential equations with p-Laplacian has not been well stud-
ied till now.

In this paper, we will establish some sufficient conditions for the existence of periodic
solutions of problem (1.1) and (1.2) in Section 2. Our methods and results are different
from the already known ones [6, 7, 14, 15, 16].

2. Main results

In this section, we establish sufficient conditions for the existence of at least one solution
of BVP (1.1)-(1.2). For convenience, we first introduce some notations and an abstract
existence theorem by Gaines and Mawhin [3]. Recently, this theorem has been reported
to be more successful in solving multipoint BVPs for differential equations, see [2, 4, 5, 8,
9, 10, 11].
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Let X and Y be Banach spaces, L : domL⊂ X → Y a Fredholm operator of index zero,
P : X → X , Q : Y → Y projectors such that

ImP = KerL, KerQ = ImL, X = KerL⊕KerP, Y = ImL⊕ ImQ. (2.1)

It follows that

L|domL∩KerP : domL∩KerP −→ ImL (2.2)

is invertible, we denote the inverse of that map by Kp.
If Ω is an open bounded subset of X , domL∩Ω �= ∅, the map N : X → Y will be called

L-compact on Ω if QN(Ω) is bounded and Kp(I −Q)N : Ω→ X is compact.

Theorem 2.1 (see [3]). Let L be a Fredholm operator of index zero and let N be L-compact
on Ω. Assume that the following conditions are satisfied:

(i) Lx �= λNx for every (x,λ)∈ [(domL/KerL)∩ ∂Ω]× (0,1);
(ii) Nx /∈ ImL for every x ∈ KerL∩ ∂Ω;

(iii) deg(ΛQN|KerL,Ω∩KerL,0) �= 0, where Λ : Y/ ImL→ KerL is an isomorphism.

Then, the equation Lx =Nx has at least one solution in domL∩Ω.

We use the classical Banach space Ck[0,T], let X = Cn−2[0,T]× C0[0,T] and Y =
C0[0,T] × C0[0,T]. Y is endowed with the norm ‖y‖ = max{‖y1‖∞,‖y2‖∞}, where
‖yi‖∞ =maxt∈[0,T] |yi(t)|, X is endowed with the norm

‖x‖ =max
{∥∥x1

∥∥∞,
∥∥x′1∥∥∞, . . . ,

∥∥∥x(n−2)
1

∥∥∥∞,
∥∥x2

∥∥∞
}
. (2.3)

Then, X and Y are Banach spaces. Let

domL=
{(
x1,x2

)∈ Cn−1[0,T]×C1[0,T] :

x(i)
1 (0)= x(i)(T) for i= 0, . . . ,n− 2, x2(0)= x2(T)

}
.

(2.4)

Define the linear operator L and the nonlinear operator N by

L : X ∩domL−→ Y , L

(
x1(t)
x2(t)

)
=
(
x(n−1)

1 (t)
x′2(t)

)
for x ∈ X ∩domL,

N : X −→ Y , N

(
x1(t)
x2(t)

)
=

 φq

(
x2(t)

)
f
(
t,x1(t),x′1(t), . . . ,x(n−2)

1 (t),φq
(
x2(t)

))



(2.5)

for x ∈ X , respectively.

Lemma 2.2. The following results hold:

(i) KerL= {(x1(t),x2(t))= (a,b), t ∈ [0,T], a,b ∈R};
(ii) ImL= {(y1(t), y2(t))∈ Y ,

∫ T
0 y1(u)du= 0= ∫ T0 y2(t)dt};

(iii) L is a Fredholm operator of index zero;
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(iv) there are projectors P : X → X and Q : Y → Y such that KerL = ImP and KerQ =
ImL. Furthermore, let Ω⊂ X be an open bounded subset with Ω∩domL �= ∅, then
N is L-compact on Ω;

(v) x(t) is a solution of BVP (1.1)-(1.2) if and only if x is a solution of the operator
equation Lx =Nx in domL.

Proof. The proofs are similar to those of lemmas in [2, 9, 8, 11, 10] and are omitted. For

y1 ∈ C0[0,1], let x(n−1)
1 (t)= y1(t). We get

x(n−2)
1 (t)= an−2 +

∫ t

0
y1(s)ds, x(n−3)

1 (t)= an−2t+ an−3 +
∫ t

0
(t− s)y1(s)ds. (2.6)

It follows from x(n−3)
1 (0)= x(n−3)

1 (T) that

an−2 =− 1
T

(∫ T

0
(T − s)y1(s)ds

)
. (2.7)

Similar to the above argument, we get

an−3 =− 1
T

(∫ T

0

(T − s)2

2!
y1(s)ds+

an−2

2!
T2

)
. (2.8)

So, let

an−2 =− 1
T

(∫ T

0
(T − s)y1(s)ds

)
,

an−3 =− 1
T

(∫ T

0

(T − s)2

2!
y1(s)ds+

an−2

2!
T2

)
,

...

a1 =− 1
T

(∫ T

0

(T − s)n−3

(n− 3)!
y1(s)ds+

n−2∑
i=2

ai
i!
Ti

)
.

(2.9)

We list P, Q, and the generalized inverse Kp : ImL→ domL∩ ImP:

P
(
x1(t),x2(t)

)= (x1(0),x2(0)
)

for
(
x1,x2

)∈ X ,

Q
(
y1(t), y2(t)

)=
(

1
T

∫ T

0
y1(s)ds,

1
T

∫ T

0
y2(s)ds

)
for

(
y1, y2

)∈ Y ,

Kp
(
y1(t), y2(t)

)=
(∫ t

0
(t− s)n−2y1(s)ds+

n−2∑
i=1

ait
i,
∫ t

0
y2(s)ds

)
for

(
y1, y2

)∈ Y.

(2.10)

�
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Theorem 2.3. Suppose the following conditions hold.
(A1) There are continuous functions e(t) and nonnegative functions gi(t,x) (i= 0,1, . . . ,

n− 1) such that f satisfies

∣∣ f (t,x0,x1, . . . ,xn−1
)∣∣≤ ∣∣e(t)

∣∣+
n−1∑
i=0

∣∣gi(t,xi)∣∣ (2.11)

for all t ∈ [0,T] and (x0,x1, . . . ,xn−1)∈Rn and

lim
x→∞

sup
t∈[0,T]

∣∣gi(t,x)
∣∣

φ
(|x|) = ri ∈ [0,∞) for i= 0, . . . ,n− 1. (2.12)

(A2) There is a constant M > 0 such that if x1 ∈ Cn−2[0,T] and x2 ∈ C0[0,T] with
|x1(t)| >M for all t ∈ [0,T] and

∫ T
0 φ−1(x2(s))ds= 0, then

∫ T

0
f
(
s,x1(s), . . . ,x(n−2)

1 (s),φ−1(x2(s)
))
ds �= 0. (2.13)

(A3) There is a constant M∗ > 0 so that for all a,b ∈R either

aφ−1(b) + b
∫ T

0
f
(
u,a,0, . . . ,0,φ−1(b)

)
du > 0 (2.14)

for all |a| >M∗ or |a| ≤M∗ and |b| >M∗, or

aφ−1(b) + b
∫ T

0
f
(
u,a,0, . . . ,0,φ−1(b)

)
du < 0 (2.15)

for all |a| >M∗ or |a| ≤M∗ and |b| >M∗.
Then, BVP (1.1)-(1.2) has at least one solution, provided

r0Tφ
(
Tn−1)+

n−2∑
i=1

riTφ
(
Tn−i−1)+ rn−1T < 1. (2.16)

Proof. To apply Theorem 2.1, we should define an open bounded subset Ω of X so that
(i), (ii), and (iii) of Theorem 2.1 hold. It is based upon three steps to obtain Ω. The proof
of this theorem is divided into four steps.
Step 1. Let

Ω1 =
{
x = (x1,x2

)∈ domL/KerL, Lx = λNx for some λ∈ (0,1)
}
. (2.17)

We prove that Ω1 is bounded.
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For x ∈ Ω1, it is easy to show that there is ξi ∈ [0,T] such that x(i)
1 (ξi) = 0 for i =

1,2, . . . ,n− 1 and thus x2(ξn−1)= 0. Hence, for i= 1, . . . ,n− 2, we get, for t ≥ ξi, that

∣∣∣x(i)
1 (t)

∣∣∣=
∣∣∣∣x(i)

1

(
ξi
)

+
∫ t

ξi
x(i+1)

1 (s)ds
∣∣∣∣≤

∫ T

0

∣∣∣x(i+1)
1 (s)

∣∣∣ds. (2.18)

For t < ξi, similar to the above discussion, we get

∣∣∣x(i)
1 (t)

∣∣∣≤
∫ T

0

∣∣∣x(i+1)
1 (s)

∣∣∣ds. (2.19)

So,

∣∣∣x(i)
1 (t)

∣∣∣≤ Tn−2−i
∫ T

0

∣∣∣x(n−1)
1 (s)

∣∣∣ds≤ Tn−i−1
∥∥∥x(n−1)

1

∥∥∥∞ ≤ Tn−i−1φ−1(∥∥x2
∥∥∞). (2.20)

Furthermore,

∣∣∣x(i)
1 (t)

∣∣∣≤ Tn−i−2
∫ T

0

∣∣∣x(n−1)
1 (s)

∣∣∣ds for i= 1, . . . ,n− 2. (2.21)

On the other hand, L(x1,x2)= λN(x1,x2)∈ ImL implies that

∫ T

0
φ−1(x2(s)

)
ds= 0,

∫ T

0
f
(
s,x1(s), . . . ,x(n−2)

1 (s),φ−1(x2(s)
))
ds= 0. (2.22)

It follows from (A2) that there is t0 ∈ [0,T] so that |x1(t0)| ≤M. Hence, we can get

∣∣x1(t)
∣∣≤M +

∫ T

0

∣∣x′1(s)
∣∣ds≤M +Tn−1

∥∥∥x(n−1)
1

∥∥∥∞ ≤M +Tn−1φ−1(∥∥x2
∥∥∞). (2.23)

It suffices to prove that there is a constant B > 0 such that

∥∥(x1,x2
)∥∥=max

{∥∥x1
∥∥∞,

∥∥x′1∥∥∞, . . . ,
∥∥∥x(n−2)

1

∥∥∥∞,
∥∥x2

∥∥∞
}
≤ B. (2.24)

For x ∈Ω1, we have

x(n−1)
1 (t)= λφ−1(x2(t)

)
,

x′2(t)= λ f
(
t,x1(t),x′1(t), . . . ,x(n−2)

1 (t),φ−1(x2(t)
))
.

(2.25)
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Integrating the second equation in (2.25) from ξn−1 to t, we get, using (A1), that

∣∣x2(t)
∣∣=

∣∣∣∣x2
(
ξn−1

)
+
∫ t

ξn−1

λ f
(
s,x1(s),x′1(s), . . . ,x(n−2)

1 (s),φ−1(x2(s)
))
ds
∣∣∣∣

≤
∫ T

0

∣∣∣ f (s,x1(s),x′1(s), . . . ,x(n−2)
1 (s),φ−1(x2(s)

))∣∣∣ds
≤
∫ T

0

∣∣e(s)
∣∣ds+

n−2∑
i=0

∫ T

0

∣∣∣gi(s,x(i)
1 (s)

)∣∣∣ds+
∫ T

0

∣∣gn−1
(
s,φ−1(x2(s)

))∣∣ds.
(2.26)

Integrating the first equation in (2.25) from ξn−2 to t, we get, similar to the above argu-
ment, that

∣∣∣x(n−2)
1 (t)

∣∣∣≤ ∣∣∣x(n−2)(ξn−2)
∣∣∣+

∫ T

0

∣∣φ−1(x2(s)
)∣∣ds≤ Tφ−1(∥∥x2

∥∥∞). (2.27)

Then,

∥∥∥x(n−2)
1

∥∥∥∞ ≤ Tφ−1(∥∥x2
∥∥∞). (2.28)

Let ε > 0 satisfy, using (2.16),

1− (r0 + ε
)
φ
(

1 +
Mε
Tn−1

)
Tφ
(
Tn−1)− n−2∑

i=1

(
ri + ε

)
Tφ
(
Tn−i−1)− (rn−1 + ε

)
T > 0. (2.29)

For such ε > 0, we find from the third part of (A1) that there is a constant δ >M such that
for every i= 0,1, . . . ,n− 2,

∣∣gi(t,x)
∣∣ < (ri + ε

)
φ
(|x|) uniformly for t ∈ [0,T], |x| > δ,∣∣gn−1

(
t,φ−1(x)

)∣∣≤ (rn−1 + ε
)|x| uniformly for t ∈ [0,T], φ

(|x|) > δ.
(2.30)

Let

∆1,i =
{
t : t ∈ [0,T],

∣∣∣x(i)(t)
∣∣∣≤ δ

}
, i= 0,1, . . . ,n− 2,

∆2,i =
{
t : t ∈ [0,T],

∣∣∣x(i)(t)
∣∣∣ > δ

}
, i= 0,1, . . . ,n− 2,

gδ,i = max
t∈[0,T],|x|≤δ

∣∣gi(t,x)
∣∣, i= 0,1, . . . ,n− 2,

∆1,n−1 =
{
t : t ∈ [0,T], φ

(∣∣x2(t)
∣∣)≤ δ

}
,

∆2,n−1 =
{
t : t ∈ [0,T], φ

(∣∣x2(t)
∣∣) > δ

}
,

gδ,n−1 = max
t∈[0,T],|x|≤δ

∣∣gi(t,φ(∣∣x2
∣∣))∣∣.

(2.31)
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So,

∣∣x2(t)
∣∣=

∫ T

0

∣∣e(s)
∣∣ds+

n−2∑
i=0

∫ T

0

∣∣∣gi(s,x(i)
1 (s)

)∣∣∣ds+
∫ T

0

∣∣gn−1
(
s,φ−1(x2(s)

))∣∣ds

≤
∫ T

0

∣∣e(s)
∣∣ds+

n−2∑
i=0

∫
∆1,i

∣∣∣gi(s,x(i)
1 (s)

)∣∣∣ds+
n−2∑
i=0

∫
∆2,i

∣∣∣gi(s,x(i)
1 (s)

)∣∣∣ds
+
∫
∆1,n−1

∣∣gn−1
(
s,φ−1(x2(s)

))∣∣ds+
∫
∆1,n−1

∣∣gn−1
(
s,φ−1(x2(s)

))∣∣ds
≤
∫ T

0

∣∣e(s)
∣∣ds+T n−1∑

i=0

gδ,i +
n−2∑
i=0

(
ri + ε

)∫ T

0
φ
(∣∣∣x(i)

1 (s)
∣∣∣)ds+

(
rn−1 + ε

)∫ T

0

∣∣x2(s)
∣∣ds

≤
∫ T

0

∣∣e(s)
∣∣ds+T

n−1∑
i=0

gδ,i +
(
r0 + ε

)
Tφ
[
M +Tn−1φ−1(∥∥x2

∥∥∞)]

+
n−2∑
i=1

(
ri + ε

)
Tφ
(
Tn−i−1φ−1(∥∥x2

∥∥∞))+
(
rn−1 + ε

)
T
∥∥x2

∥∥∞
≤
∫ T

0

∣∣e(s)
∣∣ds+T n−1∑

i=0

gδ,i+
(
r0 +ε

)
Tφ
(
Tn−1φ−1(∥∥x2

∥∥∞))φ
(

M

Tn−1φ−1
(∥∥x2

∥∥∞)+1

)

+
n−2∑
i=1

(
ri + ε

)
Tφ
(
Tn−i−1φ(T)

∥∥x2
∥∥∞)+

(
rn−1 + ε

)
T
∥∥(x2(s)

)∥∥∞.
(2.32)

Without loss of generality, suppose ‖x2‖∞ > 1/ε. Hence,

∥∥x2
∥∥∞ ≤

∫ T

0

∣∣e(s)
∣∣ds+T

n−1∑
i=0

gδ,i +
(
r0 + ε

)
φ
(

1 +
Mε
Tn−1

)
Tφ
(
Tn−1)∥∥x2

∥∥∞
+

n−2∑
i=1

(
ri + ε

)
Tφ
(
Tn−i−1)∥∥x2

∥∥∞ +
(
rn−1 + ε

)
T
∥∥(x2(s)

)∥∥∞.
(2.33)

We get

(
1−(r0 + ε

)
φ
(

1+
Mε
Tn−1

)
Tφ
(
Tn−1)−n−2∑

i=1

(
ri + ε

)
Tφ
(
Tn−i−1)− (rn−1 + ε

)
T

)∥∥(x2(s)
)∥∥∞

≤
∫ T

0

∣∣e(s)
∣∣ds+T

n−1∑
i=0

gδ,i.

(2.34)

By the definition of ε, we get that there is constant An−1 > 0 so that ‖x2‖∞ ≤ An−1.
Now, we see that∥∥∥x(i)

1

∥∥∥∞ ≤ Tn−i−1φ−1(∥∥x2
∥∥∞)≤ Tn−i−1φ−1(An−1

)
for i= 1, . . . ,n− 2,∥∥x1

∥∥∞ ≤M +Tn−1φ−1(∥∥x2
∥∥∞)≤M +Tn−1φ−1(An−1

)
.

(2.35)
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This implies that there is B > 0 so that

∥∥(x1,x2
)∥∥≤ B. (2.36)

Hence, Ω1 is bounded. This completes Step 1.
Step 2. Let

Ω2 =
{
x = (x1,x2

)∈ KerL, Nx ∈ ImL
}
. (2.37)

We prove Ω2 is bounded. Suppose x ∈ Ω2, then x(t) = (x1(t),x2(t)) = (a,b) ∈ R2. We
prove that |a| ≤M and |b| ≤M. Suppose that either |a| > M or |a| ≤M and |b| > M.
Nx ∈ ImL implies that

∫ T

0
φ−1(x2(t)

)
dt = 0,

∫ T

0
f
(
t,x1(t), . . . ,x(n−2)

1 (t),φ−1(x2(t)
))
dt = 0. (2.38)

Thus, we get b = 0 and

∫ T

0
f (t,a,0, . . . ,0)dt = 0. (2.39)

From (A2), we know that |a| ≤M, this contradicts |a| >M. It follows that Ω2 is bounded.
Step 3. If the first case in (A3) holds, let

Ω3 =
{
x = (x1,x2

)∈ KerL, λx+ (1− λ)QNx = 0, λ∈ [0,1]
}
. (2.40)

Now, we show that Ω3 is bounded. Suppose that there is sequence yn(t) = (an,bn) ∈Ω3

and |an| → +∞ or |bn| → +∞ as n tends to infinity. Then, there exists λn ∈ [0,1] such that

λn
(
an,bn

)
+
(
1− λn

)( 1
T

∫ T

0
φ−1(bn)ds, 1

T

∫ T

0
f
(
s,an,0, . . . ,φ−1(bn)

)
ds

)
= 0. (2.41)

So,

λnan =−
(
1− λn

)
φ−1(bn),

λnbnT =−
(
1− λn

)∫ T

0
f
(
u,an,0, . . . ,0,φ−1(bn))du. (2.42)

We get

λna
2
n + λnb

2
nT =−

(
1− λn

)(
anφ

−1(bn)+ bn

∫ T

0
f
(
u,an,0, . . . ,0,φ−1(bn))du

)
. (2.43)
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By the definition of yn, we know that either |an| >M∗ or |an| ≤M∗ and |bn| >M∗ for
sufficiently large n. We claim, for this n, that λn �= 1. Suppose that λn = 1. Then, we get
an = bn = 0, a contradiction. So, λn �= 1. Now, using (A3), we get

0≤ λna
2
n + λnb

2
nT =−

(
1− λn

)(
anφ

−1(bn)+ bn

∫ T

0
f
(
u,an,0, . . . ,0,φ−1(bn))du

)
< 0,

(2.44)

a contradiction. Hence, Ω3 is bounded.
If the second case in (A3) holds, let

Ω3 =
{
x = (x1,x2

)∈ KerL, −λx+ (1− λ)QNx = 0, λ∈ [0,1]
}
. (2.45)

Similar to the above argument, we get that Ω3 is bounded by (A3).
In the following, we will show that all conditions of Theorem 2.1 are satisfied. Let Ω

be an open bounded subset of X such that Ω ⊃ ∪3
i=1Ωi. By Lemma 2.2, L is a Fredholm

operator of index zero and N is L-compact on Ω. By the definition of Ω, we have the
following:

(a) Lx �= λNx for x ∈ (domL/KerL)∩ ∂Ω and λ∈ (0,1);
(b) Nx /∈ ImL for x ∈ KerL∩ ∂Ω.

Step 4. We prove deg(QN|KerL,Ω∩KerL,0) �= 0.
In fact, let H(x,λ)=±λx+ (1− λ)QNx. According the definition of Ω, we know H(x,

λ) �= 0 for x ∈ ∂Ω∩KerL, thus by homotopy property of degree,

deg
(
QN|KerL,Ω∩KerL,0

)
= deg

(
H(·,0),Ω∩KerL,0

)
= deg

(
H(·,1),Ω∩KerL,0

)
= deg(±I ,Ω∩KerL,0) �= 0.

(2.46)

Thus, by Theorem 2.1, Lx =Nx has at least one solution in domL∩Ω, which is a solution
of BVP (1.1)-(1.2). The proof is complete.

�

Theorem 2.4. Suppose the following condition holds.
(A′1) There are continuous functions h(t,x0,x1, . . . ,xn−1), e(t), nonnegative functions

gi(t,x) (i= 0,1, . . . ,n− 1) and positive number β and m such that f satisfies

f
(
t,x0,x1, . . . ,xn−1

)= e(t) +h
(
t,x0,x1, . . . ,xn−1

)
+

n−1∑
i=0

gi
(
t,xi

)
, (2.47)

and also that h satisfies

xn−1h
(
t,x0,x1, . . . ,xn−1

)≤−β∣∣xn−1
∣∣m+1

(2.48)
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for all t ∈ [0,T] and (x0,x1, . . . ,xn−1)∈Rn and that gi satisfies

limsup
|x|→∞, t∈[0,T]

∣∣gi(t,x)
∣∣

|x|m = ri, for i= 0,1, . . . ,n− 2,

limsup
|x|→∞, t∈[0,T]

∣∣gn−1(t,x)
∣∣∣∣φ(x)

∣∣m = rn−1

(2.49)

with ri ≥ 0 for i = 0,1, . . . ,n− 1. Furthermore, (A2) and (A3) of Theorem 2.3 hold. Then,
BVP (1.1)-(1.2) has at least one solution provided

r0T
m(n−1) +

n−2∑
i=1

riT
m(n−i−2) + rn−1 < β. (2.50)

Proof. To apply Theorem 2.1, we should define an open bounded subset Ω of X so that
(i), (ii), and (iii) of Theorem 2.1 hold. It is based upon three steps to obtain Ω. The proof
of this theorem is divide into four steps.
Step 1. Let

Ω1 =
{
x ∈ domL/KerL, Lx = λNx for some λ∈ (0,1)

}
. (2.51)

We prove Ω1 is bounded. Similar to the proof of Theorem 2.3, we get (2.25). It suffices to
prove there is a constant B > 0 such that

∥∥(x1,x2
)∥∥=max

{∥∥x1
∥∥∞,

∥∥x′1∥∥∞, . . . ,
∥∥∥x(n−2)

1

∥∥∥∞,
∥∥x2

∥∥∞
}
≤ B. (2.52)

We divide this step into two substeps.
Substep 1.1. We prove that there is constant M > 0 such that

∫ T
0 φ−1(|x2(s)|)m+1ds≤M.

Multiplying the two sides of the second equation in (2.25) by φ−1(x2(t)) and integrat-
ing it from 0 to T , using (A′1), we get

0=
∫ T

0
φ−1(x2(t)

)
x′2(t)dt

= λ
∫ T

0
f
(
s,x1(s),x′1(s), . . . ,x(n−2)

1 (s),φ−1(x2(s)
))
φ−1(x2(s)

)
ds

= λ

(∫ T

0
h
(
s,x1(s),x′1(s), . . . ,x(n−2)

1 (s),φ−1(x2(s)
))
φ−1(x2(s)

)
ds

+
n−2∑
i=0

∫ T

0
gi
(
s,x(i)

1 (s)
)
φ−1(x2(s)

)
ds+

∫ T

0
e(s)φ−1(x2(s)

)
ds

+
∫ T

0
gn−1

(
s,φ−1(x2(s)

))
φ−1(x2(t)

)
ds

)
.

(2.53)
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Thus, from the second part of (A′1),

λβ
∫ T

0

[
φ−1(∣∣x2(s)

∣∣)]m+1
ds

≤−λ
∫ T

0
h
(
s,x1(s),x′1(s), . . . ,x(n−2)

1 (s),φ−1(x2(s)
))
φ−1(x2(s)

)
ds

= λ
n−2∑
i=0

∫ T

0
gi
(
s,x(i)

1 (s)
)
φ−1(x2(s)

)
ds+ λ

∫ T

0
gn−1

(
s,φ−1(x2(s)

))
φ−1(x2(s)

)
ds

+ λ
∫ T

0
e(s)φ−1(x2(s)

)
ds.

(2.54)

Hence,

β
∫ T

0

[
φ−1(∣∣x2(s)

∣∣)]m+1
ds

≤
n−2∑
i=0

∫ T

0

∣∣∣gi(s,x(i)
1 (s)

)∣∣∣∣∣φ−1(x2(s)
)∣∣ds

+
∫ T

0

∣∣gn−1
(
s,φ−1(x2(s)

))∣∣∣∣φ−1(x2(s)
)∣∣ds+

∫ 1

0

∣∣e(s)
∣∣φ−1(x2(s)

)
ds.

(2.55)

Let ε > 0 satisfy

β >
(
r0 + ε

)(
ε+Tn−2Tm/(m+1)

)m
Tm/(m+1) +

n−2∑
i=1

(
ri + ε

)
Tm(n−i−2) +

(
rn−1 + ε

)
. (2.56)

For such a ε > 0, we find from (A′1) that there is a constant δ > M such that for every
i= 0,1, . . . ,n− 2,

∣∣gi(t,x)
∣∣ < (ri + ε

)|x|m uniformly for t ∈ [0,T], |x| > δ,∣∣gn−1(t,x)
∣∣ < (rn−1 + ε

)∣∣φ(x)
∣∣m uniformly for t ∈ [0,T], |x| > δ.

(2.57)

Let, for i= 0,1, . . . ,n− 2,

∆1,i =
{
t : t ∈ [0,T],

∣∣x(i)(t)
∣∣≤ δ

}
,

∆2,i =
{
t : t ∈ [0,T],

∣∣x(i)(t)
∣∣ > δ

}
,

gδ,i = max
t∈[0,T],|x|≤δ

∣∣gi(t,x)
∣∣;

∆1,n−1 =
{
t : t ∈ [0,T], φ

(∣∣x2(t)
∣∣)≤ δ

}
,

∆2,i =
{
t : t ∈ [0,T], φ

(∣∣x2(t)
∣∣) > δ

}
,

gδ,i = max
t∈[0,T],|x|≤δ

∣∣gi(t,φ(∣∣x2
∣∣))∣∣.

(2.58)
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Then,

β
∫ T

0

[
φ−1(∣∣x2(s)

∣∣)]m+1
ds

≤
n−2∑
i=0

∫
∆1,i

∣∣∣gi(s,x(i)
1 (s)

)∣∣∣∣∣φ−1(x2(s)
)∣∣ds

+
n−2∑
i=0

∫
∆2,i

∣∣∣gi(s,x(i)
1 (s)

)∣∣∣∣∣φ−1(x2(s)
)∣∣ds

+
∫
∆1,n−1

∣∣gn−1
(
s,φ−1(x2(s)

))∣∣∣∣φ−1(x2(s)
)∣∣ds

+
∫
∆2,n−1

∣∣gn−1
(
s,φ−1(x2(s)

))∣∣∣∣φ−1(x2(s)
)∣∣ds

+
∫ T

0

∣∣e(s)
∣∣∣∣φ−1(x2(s)

)∣∣ds
≤

n−2∑
i=0

gδ,i

∫ T

0

∣∣φ−1(x2(s)
)∣∣ds+

n−2∑
i=0

(
ri + ε

)∫ T

0

∣∣∣x(i)
1 (s)

∣∣∣m∣∣φ−1(x2(s)
)∣∣ds

+ gδ,n−1

∫ T

0

∣∣φ−1(x2(s)
)∣∣ds+

(
rn−1 + ε

)∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+
∫ T

0

∣∣e(s)
∣∣∣∣φ−1(x2(s)

)∣∣ds.

(2.59)

It is easy to see that there is ξi ∈ [0,T] so that x(i)
1 (ξi) = 0 for i = 1, . . . ,n− 1. Hence, for

i= 1, . . . ,n− 2, we get

∣∣∣x(i)
1 (t)

∣∣∣=
∣∣∣∣x(i)

1

(
ξi
)

+
∫ t

ξi
x(i+1)

1 (s)ds
∣∣∣∣≤

∫ T

0

∣∣∣x(i+1)
1 (s)

∣∣∣ds. (2.60)

So, we have

∣∣∣x(i)
1 (t)

∣∣∣≤ Tn−i−2
∫ T

0

∣∣∣x(n−1)
1 (s)

∣∣∣ds
≤ Tn−i−2

∫ T

0
φ−1(∣∣x2(s)

∣∣)ds for i= 1, . . . ,n− 2.

(2.61)

Similar to that of the proof of Theorem 2.3, from (A2), we see that

∣∣x1(t)
∣∣≤M +

∫ T

0

∣∣x′1(s)
∣∣ds≤M +Tn−3

∫ T

0

∣∣∣x(n−1)
1 (s)

∣∣∣ds≤M +Tn−2
∫ T

0

∣∣φ−1(x2(s)
)∣∣ds.

(2.62)
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Using

∫ T

0
φ−1(∣∣x2(s)

∣∣)ds≤ Tm/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

, (2.63)

we get

β
∫ T

0

[
φ−1(∣∣x2(s)

∣∣)]m+1
ds

≤
n−2∑
i=0

gδ,iT
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+
n−2∑
i=1

(
ri + ε

)
Tm(n−i−2)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣ds

)m+1

+
(
r0 + ε

)(
M +Tn−2

∫ T

0

∣∣φ−1(x2(s)
)∣∣ds

)m∫ T

0

∣∣φ−1(x2(s)
)∣∣ds

+ gδ,n−1T
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+
(
rn−1 + ε

)∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+‖e‖∞Tm/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

≤
n−2∑
i=0

gδ,iT
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+
n−2∑
i=1

(
ri + ε

)
Tm(n−i−2)

∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+
(
r0 + ε

)M +Tn−2Tm/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)


m

×Tm/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+ gδ,n−1T
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+
(
rn−1 + ε

)∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+‖e‖∞Tm/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)
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≤
n−2∑
i=0

gδ,iT
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+
n−2∑
i=1

(
ri + ε

)
Tm(n−i−2)

∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+
(
r0 + ε

)
Tm/(m+1)


 M(∫ T

0

∣∣φ−1
(
x2(s)

)∣∣m+1
ds
)1/(m+1) +Tn−2Tm/(m+1)



m

×
∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds+ gδ,n−1T
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+
(
rn−1 + ε

)∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+‖e‖∞Tm/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

.

(2.64)

Without loss of generality, suppose that

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

≥ M

ε
. (2.65)

So, we get

β
∫ T

0

[
φ−1(∣∣x2(s)

∣∣)]m+1
ds

≤
n−2∑
i=0

gδ,iT
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+
n−2∑
i=1

(
ri + ε

)
Tm(n−i−2)

∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+
(
r0 + ε

)(
ε+Tn−2Tm/(m+1)

)m
Tm/(m+1)

∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+ gδ,n−1T
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+
(
rn−1 + ε

)∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+‖e‖∞Tm/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

.

(2.66)
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It follows that

(
β− (r0 + ε

)(
ε+Tn−2Tm/(m+1)

)m
Tm/(m+1)−

n−2∑
i=1

(
ri + ε

)
Tm(n−i−2)− (rn−1 + ε

))

×
∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

≤
n−2∑
i=0

gδ,iT
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+ gδ,n−1T
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+‖e‖∞Tm/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

.

(2.67)

By the definition of ε, we know that there is M > 0 so that

∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds≤M. (2.68)

It follows that

∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds≤max
{
M, M

}=: A. (2.69)

Substep 1.2. We prove that there is B > 0 such that ‖(x1,x2)‖ ≤ B.
From Substep 1.1, we have

∥∥∥x(i)
1

∥∥∥∞ ≤ Tn−i−2
∫ T

0

∣∣∣x(n−1)
1 (s)

∣∣∣ds
≤ Tn−i−2Tm/(m+1)

(∫ T

0

[
φ−1(∣∣x2(s)

∣∣)]m+1
ds

)1/(m+1)

≤ Tn−i−2Tm/(m+1)A1/(m+1) for i= 1, . . . ,n− 2,

∥∥x1
∥∥∞ ≤M +Tn−3Tm/(m+1)

(∫ T

0

[
φ−1(∣∣x2(s)

∣∣)]m+1
ds

)1/(m+1)

≤M +Tn−3Tm/(m+1)A1/(m+1).

(2.70)
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Now, we consider ‖x2‖∞. Multiplying the two sides of the second equation in (2.25) by
φ−1(x2(t)), integrating it from ξn−1 to t, for ξn−1 < t, and using (A′1), we get

1
2

∣∣φ−1(x2(t)
)∣∣2

= λ
∫ t

ξn−1

f
(
s,x1(s),x′1(s), . . . ,x(n−2)

1 (s),φ−1(x2(s)
))
φ−1(x2(s)

)
ds

= λ
∫ t

ξn−1

h
(
s,x1(s),x′1(s), . . . ,x(n−2)

1 (s),φ−1(x2(s)
))
φ−1(x2(s)

)
ds

+ λ
n−2∑
i=0

∫ t

ξn−1

gi
(
s,x(i)

1 (s)
)
φ−1(x2(s)

)
ds+ λ

∫ t

ξn−1

gn−1
(
s,φ−1(x2(s)

))
φ−1(x2(s)

)
ds

+ λ
∫ t

ξn−1

e(s)φ−1(x2(s)
)
ds

≤−λβ
∫ t

ξn−1

∣∣φ−1(x2(s)
)∣∣m+1

ds+ λ
n−2∑
i=0

∫ t

ξn−1

gi
(
s,x(i)

1 (s)
)
φ−1(x2(s)

)
ds

+ λ
∫ t

ξn−1

gn−1
(
s,φ−1(x2(s)

))
φ−1(x2(s)

)
ds+ λ

∫ t

ξn−1

e(s)φ−1(x2(s)
)
ds

≤ λ
n−2∑
i=0

∫ t

ξn−1

gi
(
s,x(i)

1 (s)
)
φ−1(x2(s)

)
ds+ λ

∫ t

ξn−1

e(s)φ−1(x2(s)
)
ds

+ λ
∫ t

ξn−1

gn−1
(
s,φ−1(x2(s)

))
φ−1(x2(s)

)
ds

≤
n−2∑
i=0

∫ T

0

∣∣∣gi(s,x(i)
1 (s)

)∣∣∣∣∣φ−1(x2(s)
)∣∣ds+

∫ T

0

∣∣e(s)
∣∣∣∣φ−1(x2(s)

)∣∣ds
+
∫ T

0

∣∣gn−1
(
s,φ−1(x2(s)

))∣∣∣∣φ−1(x2(s)
)∣∣ds

≤
n−2∑
i=0

∫
∆1,i

∣∣∣gi(s,x(i)
1 (s)

)∣∣∣∣∣φ−1(x2(s)
)∣∣ds+

n−2∑
i=0

∫
∆2,i

∣∣∣gi(s,x(i)
1 (s)

)∣∣∣∣∣φ−1(x2(s)
)∣∣ds

+
∫ T

0

∣∣e(s)
∣∣∣∣φ−1(x2(s)

)∣∣ds
+
∫
∆1,n−1

gn−1
(
s,φ−1(x2(s)

))∣∣φ−1(x2(s)
)∣∣ds

+
∫
∆2,n−1

gn−1
(
s,φ−1(x2(s)

))∣∣φ−1(x2(s)
)∣∣ds

≤
n−2∑
i=0

gδ,i

∫ T

0

∣∣φ−1(x2(s)
)∣∣ds+

n−2∑
i=0

(
ri + ε

)∫ T

0

∣∣∣x(i)
1 (s)

∣∣∣m∣∣φ−1(x2(s)
)∣∣ds

+ gδ,n−1

∫ T

0

∣∣φ−1(x2(s)
)∣∣ds+

(
rn−1 + ε

)∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+‖e‖∞
∫ T

0

∣∣φ−1(x2(s)
)∣∣ds.

(2.71)
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Similar to Substep 1.1, we can get

1
2

∣∣φ−1(x2(t)
)∣∣2

≤
n−2∑
i=0

gδ,iT
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+
n−2∑
i=1

(
ri + ε

)
Tm(n−i−2)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣ds

)m∫ T

0

∣∣φ−1(x2(s)
)∣∣ds

+ gδ,n−1T
m/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

+
(
rn−1 + ε

)∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

+
(
r0 + ε

)(
M +Tn−2

∫ T

0

∣∣φ−1(x2(s)
)∣∣ds

)m∫ T

0

∣∣φ−1(x2(s)
)∣∣ds

+‖e‖∞Tm/(m+1)

(∫ T

0

∣∣φ−1(x2(s)
)∣∣m+1

ds

)1/(m+1)

≤
n−2∑
i=0

gδ,iT
m/(m+1)A1/(m+1) +

n−2∑
i=1

(
ri + ε

)
Tm(n−i−2)TmAm+1 + gδ,n−1T

m/(m+1)A1/(m+1)

+
(
rn−1 + ε

)
A+

(
r0 + ε

)(
M +Tn−2Tm/(m+1)A1/(m+1)

)m
A1/(m+1)

+‖e‖∞Tm/(m+1)A1/(m+1).
(2.72)

So, there is M
′
> 0 such that |x2(t)| ≤M

′
for t > ξn.

Especially, we get |x2(0)| = |x2(T)| ≤M
′
. Thus, one gets by (2.25), after multiplying

the two sides of the second equation in (2.25) by φ−1(x2(t)) and integrating it from 0 to t,
for t ≤ ξn−1,

1
2

∣∣φ−1(x2(t)
)∣∣2

= 1
2

∣∣φ−1(x2(0)
)∣∣2

+ λ
∫ t

0
f
(
s,x1(s),x′1(s), . . . ,x(n−2)

1 (s),φ−1(x2(s)
))
φ−1(x2(s)

)
ds

≤ 1
2
φ−1(M′)2

+ λ
∫ t

0
h
(
s,x1(s),x′1(s), . . . ,x(n−2)

1 (s),φ−1(x2(s)
))
φ−1(x2(s)

)
ds

+ λ
n−2∑
i=0

∫ t

0
gi
(
s,x(i)

1 (s)
)
φ−1(x2(s)

)
ds+ λ

∫ t

0
gn−1

(
s,φ−1(x2(s)

))
φ−1(x2(s)

)
ds

+ λ
∫ t

0
e(s)φ−1(x2(s)

)
ds
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≤ 1
2
φ−1(M′)2− λβ

∫ t

0

∣∣φ−1(x2(s)
)∣∣m+1

ds+ λ
n−2∑
i=0

∫ t

0
gi
(
s,x(i)

1 (s)
)
φ−1(x2(s)

)
ds

+ λ
∫ t

0
gn−1

(
s,φ−1(x2(s)

))
φ−1(x2(s)

)
ds+ λ

∫ t

0
e(s)φ−1(x2(s)

)
ds

≤ 1
2
φ−1(M′)2

+
n−2∑
i=0

∫ T

0

∣∣∣gi(s,x(i)(s)
)∣∣∣∣∣φ−1(x2(s)

)∣∣ds
+
∫ T

0

∣∣gn−1
(
s,φ−1(x2(s)

))∣∣∣∣φ−1(x2(s)
)∣∣ds

+
∫ 1

0

∣∣e(s)φ−1(x2(s)
)∣∣ds.

(2.73)

Similar to the above discussion, there is M
′′
> 0 such that |x2(t)| ≤M

′′
for t ≤ ξn. It

follows that

∥∥(x1,x2
)∥∥≤max

{
Tn−i−2Tm/(m+1)A1/(m+1), i= 1, . . . ,n− 2,

M +Tn−3Tm/(m+1)A1/(m+1),M,M
′
,M

′′}=: B.
(2.74)

Hence, Ω1 is bounded. This completes Step 1.
Step 2. Let

Ω2 = {x ∈ KerL, Nx ∈ ImL}. (2.75)

Similar to the proof of Step 2 of Theorem 2.3, we can prove Ω2 is bounded.
Step 3. Let

Ω3 =
{
x ∈ KerL, ±λx+ (1− λ)QNx = 0, λ∈ [0,1]

}
. (2.76)

Similar to that of the proof of Step 3 of Theorem 2.3, we can show that Ω3 is bounded.
The remaining step, Step 4, is similar to that of the proof of Step 4 of Theorem 2.3 and

is omitted.
Thus, by Theorem 2.1, Lx = Nx has at least one solution in domL∩Ω, which is a

solution of BVP (1.1)-(1.2). The proof is complete. �

Remark 2.5. In Theorem 2.4, if f is a polynomial, the degrees of the variables x0,x1, . . . ,
xn−1 in function f are m, m may be greater than 1.

Remark 2.6. It is easy to obtain the existence results for solutions of problem (1.9) and
the following periodic boundary value problem:

x(n)(t)= f
(
t,x(t),x′(t), . . . ,x(n−1)(t)

)
, t ∈ [0,T],

x(i)(0)= x(i)(T), i= 0,1, . . . ,n− 1.
(2.77)

We omit the details since they are similar to Theorems 2.3 and 2.4.
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