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We study the numerical solvability of a class of nonlinear weakly singular integral equa-
tions of Volterra-Hammerstein type with noncompact kernels. We obtain existence and
uniqueness results and analyze the product integration methods for these equations un-
der some verifiable conditions on the kernels and nonlinear functions. The convergence
analysis is investigated and finally numerical experiments are given, which confirm our
theoretical results.

1. Introduction

We consider the nonlinear Volterra-Hammerstein integral equation

y(t)= f (t) +
∫ t

0
k
(
t

s

)
g
(
s, y(s)

)1
s
ds, t ∈ [0,T], (1.1)

where g and f are smooth given functions and the kernel k is a weakly singular kernel.
A convenient setting for the analysis of (1.1) is the space Cm[0,T], the Banach space of

m-times continuously differentiable real-valued functions with uniform norm

‖u‖m,∞ = max
0≤ j≤m

max
0≤t≤T

∣∣u( j)(t)
∣∣. (1.2)

The integral equation (1.1) in the operator form may be written as

y(t)= TG
(
y(t)

)
, y ∈ Cm[0,T], (1.3)

where y(t) is the unknown solution and the operator T is defined by

T(w)(t) := f (t) + (Kw)(t), t ∈ [0,T], w ∈ Cm[0,T], (1.4)
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where K , G are the linear integral operator and “substitution” bounded operator, respec-
tively, defined as follows:

(Kw)(t) :=
∫ t

0
k
(
t

s

)
w(s)

1
s
ds, t ∈ [0,T], w ∈ Cm[0,T],

G(x)(t) := g
(
t,x(t)

)
, t ∈ [0,T], x ∈ Cm[0,T].

(1.5)

The difficulty is that the kernel k is not compact, and hence the classical arguments in
the convergence analysis of discretization methods for weakly singular equation (1.1) are
not applicable. Nonlinear Volterra integral equations of the second kind often occur in
Hammerstein form, where the kernel may be weakly singular or otherwise badly behaved.
(For obvious source of such equation, see [2, 6, 7].) Other works that consider problem
(1.1) under various assumptions of k, g are [5, 10, 13].

Equations of type (1.1) can arise in connection with some heat conduction problems
with mixed-type boundary conditions and certain diffusion problems. Detailed descrip-
tions and analysis of these models may be found in [1, 10, 11, 12, 14].

Actually, few theoretical and numerical methods for some classes of (1.1) are known.
Bartoshevich [1], after the application of Watson’s transforms and the use of the convo-
lution theorem [8, 13], considered the following integral equation:

F(t) +
1√
π

∫∞
t

1√
ln(s/t)

1
s
F(s)ds=H(t), t > 0, (1.6)

where the function F(t) is the unknown function and H(t) is a given function. The an-
alytical study of this and other related equations has been pursued by several authors
[8, 10, 12, 13]. In the linear and some particular case of (1.1), it was proved in [5, 13] that
the equation has a unique solution in the continuity class Cm[0,T]. For the numerical
solution of (1.1), in the linear case, certain classes of product integration methods were
studied. Owing to the fact that the kernel k is unbounded in (1.1), the classical arguments
of the convergence analysis of the discretization method for weakly singular equations are
not applicable. Diogo et al. [3] transformed integral equation of the form (1.6) into the
linear form of Volterra integral equation of (1.1) with special noncompact kernel

k(σ)= 1√
π
√

lnσσµ
, µ > 1. (1.7)

In [13], approximations to the solution of (1.6) of orders one and two were obtained
with the Euler and trapezoidal methods, respectively. In [3], a fourth-order Hermite-type
collocation method was applied to (1.1) and the analysis and construction of higher-order
collocation method has been investigated in [4]. Lima and Diogo in [9] were concerned
with the use of a low-order method in conjunction with extrapolation procedures. The
results of Tang et al. in [13] had been extended to linear form of Volterra integral equation
of (1) in [5]. Recently, Lima and Diogo in [10] have been concerned with the numerical
solution of a class of (1.1) with certain values of a real parameter µ and extrapolation
algorithms. They have shown that, although for 0 < µ≤ 1, the equation possesses an infi-
nite set of solutions, the Euler method converges to a particular solution. (For details, see
[10].)
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In the present paper, we further develop the work carried out in [5]. We discuss exis-
tence and uniqueness of a solution of (1.1) under some verifiable conditions on the func-
tions f and g. We then proceed to investigate the numerical solvability of (1.1), by some
classes of product integration methods. Euler-type and product trapezoidal discretiza-
tion schemes and convergence analysis are considered. Finally, some numerical results
are presented in the final section, which support the theoretical results obtained in this
paper.

2. Existence and uniqueness results

For T > 0 and m a nonnegative integer, let Vm[0,T] denote the normed space of the real-
valued function f , such that f ∈ Cm[0,T] with

‖ f ‖m,∞ := max
0≤ j≤m

max
0≤t≤T

∣∣ f ( j)(t)
∣∣. (2.1)

The following result is concerned with existence and uniqueness of the solution of
(1.1).

Theorem 2.1. Consider the nonlinear weakly singular integral equation of Volterra-
Hammerstein type (1.1) and make the following assumptions.

(A1) f (t)∈Vm.
(A2) The kernel k satisfies

α=
∫∞

1

∣∣k(σ)
∣∣

σ
dσ < 1. (2.2)

(A3) The nonlinear function g(t,v) is defined and continuous on [0,T]×R.
(A4) The partial derivative gmv (t,v)= (∂mg/∂vm)(t,v) exists and continuous on [0,T]×

R.
(A5) The function g satisfies the Lipshitz condition∥∥g(t,v1

)− g
(
t,v2

)∥∥
m,∞ ≤ L

∥∥v1− v2
∥∥
m,∞ (2.3)

with constant L, where Lα < 1.

Under these assumptions, (1.1) possesses a unique solution y(t)∈Vm.

Proof. Set s= λt, we have∫ t

0
k
(
t

s

)
g
(
s,v(s)

)1
s
ds=

∫ 1

0
k
(

1
λ

)
g
(
λt,v(λt)

)1
λ
dλ. (2.4)

We define the linear integral operator K for some given kernel function k as follows:

(Kw)(t) :=
∫ 1

0
k
(

1
λ

)
1
λ
w(λt)dλ, t ∈ [0,T], w ∈Vm, (2.5)

and the operator T , differing from K , merely by a nonhomogeneous term as follows:

T(w)(t) := f (t) + (Kw)(t), t ∈ [0,T], w ∈Vm, (2.6)
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and a continuous bounded operator G as follows:

G(v)(t) := g
(
t,v(t)

)
, t ∈ [0,T], v ∈Vm. (2.7)

Let v(t)∈Vm be an arbitrary function. With the above notation, we define

u= TG(v), v ∈ Cm[0,T]. (2.8)

Assumptions (A3) and (A4) ensure that G is continuously Fréchet differentiable on
Vm. Since the operator K is linear, then we have

(KG)( j)(v)= KG( j)(v), v ∈Vm. (2.9)

If, in addition, (A1) holds, then the jth Fréchet derivative of the operator TG at t ∈ [0,T]
is given by[

(TG)( j)(v)
]
(t)= Kg j

(
t,v(t)

)
+ f ( j)(t), t ∈ [0,T], j = 0,1, . . . ,m. (2.10)

The final assumption (A5) implies that for all v1,v2 ∈ Vm, where u1 = TG(v1) and u2 =
TG(v2), the following inequality holds:∣∣∣u( j)

1 −u
( j)
2

∣∣∣= ∣∣(TG)( j)(v1
)− (TG)( j)(v2

)∣∣
≤
∫ 1

0

∣∣∣∣k(1
λ

)∣∣∣∣λj−1
∣∣g j

(
t,v1(t)

)− g j
(
t,v2(t)

)∣∣dλ
≤
∫ 1

0

∣∣∣∣k(1
λ

)∣∣∣∣1
λ
dλ
∥∥g(t,v1

)− g
(
t,v2

)∥∥
m,∞

≤ L
∫ 1

0

∣∣∣∣k(1
λ

)∣∣∣∣1
λ
dλ
∥∥v1− v2

∥∥
m,∞ ( j = 0,1, . . . ,m).

(2.11)

Noting that, according to (A2), the coefficient of the last term in (2.11) equals α, it follows
that ∥∥u1−u2

∥∥
m,∞ ≤ Lα

∥∥v1− v2
∥∥
m,∞. (2.12)

Inequality (2.12) and assumption (A5) imply that the operator TG defines a contraction
mapping. Since Vm is a complete normed space, TG has a unique fixed point y ∈ Vm,
such that y = TG(y). This completes the proof of Theorem 2.1. �

3. Numerical solvability and convergence analysis

In this section, in order to approximate the solution of (1.1), we consider the Euler and
product trapezoidal methods and their convergence analysis.

First of all, let ΠN : 0 = t0 < t1 < ··· < tN = T be a partition for [0,T] and set hn =
tn+1− tn, h :=max{hn : 0≤ n≤N − 1}, In = [tn, tn+1) (n= 0,1, . . . ,N − 1).

For given integers p and d, with p > d ≥ 0, S(d−1)
p−1 (ΠN ) ⊂ Cd−1[0,T] will denote the

space of piecewise polynomial functions of degree p− 1, whose knots are the mesh points
{tn : 1≤ n≤N − 1}. If d = 0, there is no continuity requirements at the knots. Note that
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the dimension of this space is given by dimS(−1)
p−1 (ΠN )= Np. If d = 1, S(0)

p−1(ΠN ) denotes
the space of continuous piecewise polynomials functions of degree p− 1, whose dimen-
sion is equal to N(p− 1) + 1.

In this paper, we will consider only the cases d = 0 and d = 1, namely the spaces whose
elements are piecewise constant functions and continuous linear polynomials, respec-
tively:

S(−1)
0

(
ΠN

)= {u(t) : u(t)= un, t ∈ In, n= 0,1, . . . ,N − 1, u(T)= uN
}

,

S(0)
1

(
ΠN

)= {u(t) : u(t)= l1,n(t)un + l2,n(t)un+1, t ∈ [tn, tn+1
]
, n= 0,1, . . . ,N − 1

}
,

(3.1)

where

l1,n = tn+1− t

hn
, l2,n = t− tn

hn
, (3.2)

and uj = u(t j), j = 0,1, . . . ,N , are constants.

We seek the approximate solution u of (1.1), which belongs to either S(−1)
0 (ΠN ) or

S(0)
1 (ΠN ), which satisfies

u
(
tn
)= ∫ tn

0
k
(
tn
s

)
g
(
s,u(s)

)1
s
ds+ f

(
tn
)
, n= 1,2, . . . ,N , (3.3)

with u(0)= y(0), and

u(0)= f (0) + α̃g
(
0,u(0)

)
, (3.4)

where

α̃=
∫∞

1

k(σ)
σ

dσ. (3.5)

Note that (3.4) is a nonlinear equation for the unknown u(0). Since |α̃gv(0,u(0))| ≤ αL <
1, then relation (3.4) possesses a unique solution.

Also, noting that

lim
t→0+

∫ t

0
k
(
t

s

)
g
(
s, y(s)

)1
s
ds= lim

t→0+

∫ 1

0
k
(

1
σ

)
g
(
tσ , y(tσ)

) 1
σ
dσ

= g
(
0, y(0)

)∫ 1

0
k
(

1
σ

)
1
σ
dσ

= g
(
0, y(0)

)∫∞
1

k(σ)
σ

dσ = α̃g
(
0, y(0)

)
,

(3.6)

we obtain (3.4) by letting t→ 0+ in (1.1).
Now, we consider two cases for the numerical solution of (1.1).

Case 1. u(t)∈ S(−1)
0 (ΠN ).

In this case, the following theorem gives the convergence properties of the Euler
method.
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Theorem 3.1. Let the function g(t, y) ∈ [0,T]×R in (1.1) satisfy the Lipshitz condition
with constant L, where α < 1 and L < 1/α. If the partial derivative gy(t, y) := ∂g(t, y)/∂y
exists and is continuous on [0,T]×R and the function f (t) belongs to C1[0,T], then (3.3)

possesses a unique solution u(t) ∈ S(−1)
0 (ΠN ), moreover, the error function e(t) := y(t)−

u(t) satisfies

‖e‖∞ = max
0≤t≤T

∣∣e(t)
∣∣=O(h). (3.7)

Proof. For any function u∈ S(−1)
0 (ΠN ), (3.3) can be written as

u
(
tn
)= n−1∑

i=0

∫ ti+1

ti
k
(
tn
s

)
1
s
dsg

(
ti,u

(
ti
))

+ f
(
tn
)
, 1≤ n≤N. (3.8)

Since u(0) is given, the above recurrence relation yields a unique solution u∈ S(−1)
0 (ΠN ).

Set t = tn in (1.1) and subtract (3.8) from the resulting equation. Setting en(t) := y(t)−
un(t), t ∈ [tn, tn+1], we obtain

en
(
tn
)= n−1∑

i=0

∫ ti+1

ti
k
(
tn
s

)
1
s

[
g
(
s, y(s)

)− g
(
s,ui(s)

)]
ds, 1≤ n≤N. (3.9)

Therefore,

∣∣en(tn)∣∣≤ n−1∑
i=0

∫ ti+1

ti

∣∣∣∣k( tns
)∣∣∣∣1

s

∣∣g(s, y(s)
)− g

(
s,ui(s)

)∣∣ds
≤ L

n−1∑
i=0

∫ ti+1

ti

∣∣k(tn/s)∣∣
s

ds
∥∥y(s)−ui(s)

∥∥∞
≤ L

n−1∑
i=0

∫ ti+1

ti

∣∣k(tn/s)∣∣
s

ds
∥∥ei(s)∥∥∞.

(3.10)

Note that ∫ tn

0

∣∣∣∣k( tns
)∣∣∣∣1

s
ds=

∫ 1

0

∣∣∣∣k(1
λ

)∣∣∣∣1
λ
dλ=

∫∞
1

∣∣k(σ)
∣∣

σ
dσ = α < 1. (3.11)

Since f (t) ∈ C1[0,T], and the conditions of Theorem 2.1 are satisfied, then we have
y(t)∈ C1[0,T]. Now, for s∈ [ti, ti+1], we have

ei(s)= ei
(
ti
)

+
(
s− ti

)
y′
(
ξi
)
, ξi ∈

(
ti,s
)

= ei
(
ti
)

+O
(
hi
)
.

(3.12)

From (3.10) and (3.12), we obtain

∣∣en(tn)∣∣≤ L
n−1∑
i=0

∫ ti+1

ti

∣∣k(tn/s)∣∣
s

ds
∣∣ei(ti)∣∣+O(h). (3.13)



M. Hadizadeh and M. Mohamadsohi 177

Let E =max1≤n≤N |en(tn)|, then (3.11) and (3.13) give

∣∣en(tn)∣∣≤ (αL)E+O(h), 1≤ n≤N. (3.14)

This inequality implies that

E ≤ (αL)E+O(h) (3.15)

since αL < 1, then E =O(h) and from (3.12), the desired result of the theorem is obtained.
�

Case 2. u(t)∈ S(0)
1 (ΠN ).

The product trapezoidal method is constructed by approximating y(t) by piecewise

linear functions. For any function u∈ S(0)
1 (ΠN ), (3.3) can be written as

u
(
tn
)= n−1∑

i=0

∫ ti+1

ti
k
(
tn
s

)
g
(
s,u(s)

)1
s
ds+ f

(
tn
)
, n= 1,2, . . . ,N (3.16)

or

u
(
tn
)= f

(
tn
)

+αn1g
(
0,u(0)

)
+

n−1∑
j=1

(
αn, j+1 +βn, j

)
g
(
t j ,u

(
t j
))

+βnng
(
tn,u

(
tn
))

, (3.17)

where

αn, j+1 =
∫ t j+1

t j
l1, j(s)k

(
tn
s

)
1
s
ds,

βn, j+1 =
∫ t j+1

t j
l2, j(s)k

(
tn
s

)
1
s
ds.

(3.18)

Note that (3.17) represents a nonlinear system (equation) for the unknown u(tn). Since
0≤ l2,n−1(s)≤ 1 for s∈ [tn−1, tn], we have

∣∣βnn∣∣= ∣∣∣∣∫ tn

tn−1

l2,n−1(s)k
(
tn
s

)
1
s
ds
∣∣∣∣≤ ∫ tn

tn−1

∣∣∣∣k( tns
)∣∣∣∣1

s
ds <

∫ tn

0

∣∣∣∣k( tns
)∣∣∣∣1

s
ds= α,∣∣g′u(tn,u

(
tn
))∣∣≤ L,

(3.19)

then

∣∣βnng′u(tn,u
(
tn
))∣∣ < Lα < 1, (3.20)

and it can be seen that the recurrence relation (3.17) yields a unique solution u(t) ∈
S(0)

1 (ΠN ).
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Theorem 3.2. Let the function g(t, y) ∈ [0,T]×R in (1.1) satisfy the Lipshitz condition
with constant L, where α < 1 and L < 1/α. If the partial derivative g2

y(t, y) := ∂gy(t, y)/∂y
exists and is continuous on [0,T]×R and f (t) ∈ C2[0,T], then (3.3) possesses a unique

solution u(t)∈ S(0)
1 (ΠN ) and the error function e(t) := y(t)−u(t) satisfies

‖e‖∞ = max
0≤t≤T

∣∣e(t)
∣∣=O

(
h2). (3.21)

Proof. Following Theorem 3.1, we obtain (3.9). Similarly to what we have done in the
previous theorem, if we set ei(s)= y(s)−ui(s), then since f (t)∈ C2[0,T] and Lα < 1, we
obtain from Theorem 2.1 that y(t)∈ C2[0,T].

For s∈ [ti, ti+1], we have

ei(s)= l1,i(s)y
(
ti
)

+ l2,i(s)y
(
ti+1

)
+O

(
h2
i

)− l1,i(s)u
(
ti
)− l2,i(s)u

(
ti+1

)
= l1,i(s)ei

(
ti
)

+ l2,i(s)ei+1
(
ti+1

)
+O

(
h2
i

)
.

(3.22)

Noting that for s∈ [ti, ti+1], l1,i(s)≥ 0, l2,i(s)≥ 0, l1,i(s) + l2,i(s)= 1, (3.22) gives∣∣ei(s)∣∣≤ (l1,i(s) + l2,i(s)
)
E+O

(
h2)= E+O

(
h2), (3.23)

where E =max{|en(tn)| : 1≤ n≤N}.
Applying (3.23) and (3.11) to (3.10), we obtain∣∣en(tn)∣∣≤ (αL)E+O

(
h2) (3.24)

which implies that

E ≤ (αL)E+O
(
h2). (3.25)

Since αL < 1, (3.25) yields that E =O(h2). Then, recalling (3.23), we obtain the result of
the theorem. �

4. Numerical experiments

In order to illustrate the theoretical results of Section 3 and for computational purpose,
we consider the following test problems.

Example 4.1. Consider the nonlinear Volterra-Hammerstein integral equation with non-
compact kernel

y(t)= t+
1

t+ 1

(
e−(t+1)− 1

)
+
∫ t

0

1
t
e−s/te−y(s)ds, t ∈ [0,1], (4.1)

where k(σ)= (1/σ)e−1/σ . The exact solution of this equation is y(t)= t.
Note that ∫∞

1

k(σ)
σ

dσ = 1− 1
e
< 1, (4.2)
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Table 4.1

h= 2−k E(0)
N α(0) E(1)

N α(1)

k = 3 3.1812E− 2 0.97303 6.1834E− 4 1.9744

k = 4 1.6206E− 2 0.98641 1.5736E− 4 1.9874

k = 5 8.1797E− 3 0.99318 3.9684E− 5 1.9938

k = 6 4.1092E− 3 0.99658 9.9640E− 6 1.9969

k = 7 2.0595E− 3 0.99829 2.4964E− 6 1.9984

k = 8 1.0310E− 3 0.99914 6.2476E− 7 1.9992

k = 9 5.1579E− 4 0.99957 1.5627E− 7 1.9996

k = 10 2.5797E− 4 0.99979 3.9079E− 8 1.9998

k = 11 1.2900E− 4 — 9.7711E− 9 —

and so the conditions of Theorem 2.1 are satisfied. We choose uniform partitions with
h= 1/N , N = 2k, k = 3, . . . ,11. The solution of this equation will be approximated by the

Euler Method in the space S(−1)
0 (ΠN ) and by the product trapezoidal scheme in the space

S(0)
1 (ΠN ), respectively.

The maximum absolute errors and a summary of the predicted convergence orders are
given in Table 4.1.

Example 4.2. In this example, we consider the nonlinear weakly singular Volterra-
Hammerstein integral equation with algebraic nonlinearity

y(t)=− t4

10
+

5t2

6
+

3
8

+
∫ t

0

1
2t

y2(s)ds, t ∈ [0,1], (4.3)

where k(σ)= 1/2σ . Here, the conditions of Theorem 2.1 are satisfied and we have∫∞
1

k(σ)
σ

dσ = 0.5 < 1. (4.4)

The exact solution of this equation is y(t)= t2 + 1/2.
We refrain from going into details. Using the same notations and methods as imple-

mented in the previous example, we give the errors and the associated rates of conver-
gence of the Euler and product trapezoidal methods in Table 4.2.

All computations are carried out with Mathematica programming. For the ease of
notation, we define the following in Tables 4.1 and 4.2:

E(0)
N =max

{∣∣y(ti)−u
(
ti
)∣∣ : ti ∈ [0,1]

}
, α(0) = log2

(
E(0)
N

E(0)
2N

)
,

E(1)
N =max

{∣∣y(ti)− v
(
ti
)∣∣ : ti ∈ [0,1]

}
, α(1) = log2

(
E(1)
N

E(1)
2N

)
,

(4.5)
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Table 4.2

h= 2−k E(0)
N α(0) E(1)

N α(1)

k = 3 8.0518E− 2 0.85884 7.4244E− 3 1.9824

k = 4 4.4397E− 2 0.92287 1.8789E− 3 1.9826

k = 5 2.3418E− 2 0.95933 4.7540E− 4 1.9866

k = 6 1.2044E− 2 0.97902 1.1996E− 4 1.9902

k = 7 6.1100E− 3 0.98931 3.0194E− 5 1.9931

k = 8 3.0777E− 3 0.99460 7.5850E− 6 1.9951

k = 9 1.5446E− 3 0.99728 1.9027E− 6 1.9965

k = 10 7.7377E− 4 0.99863 4.7683E− 7 1.9976

k = 11 3.8725E− 4 — 1.1941E− 7 —

where u(ti) and v(ti) are the approximate solutions of the Euler and product trapezoidal
schemes, respectively.

5. Concluding remarks

This paper has introduced a class of nonlinear Volterra-Hammerstein integral equations
with noncompact kernels. The existence, the uniqueness, and the numerical solution of
these equations by some product integration methods have been investigated. Owing to
some special properties of the kernel, the classical arguments in the convergence analy-
sis of discretization methods are not applicable. Applying other numerical schemes, for
example, collocation methods and obtaining higher-order convergence give rise to some
difficulties in error analysis, which we will consider in other works.
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