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Steady incompressible flow around a circular cylinder in an external magnetic field that is
aligned with fluid flow direction is studied for Re (Reynolds number) up to 40 and the in-
teraction parameter in the range 0≤N ≤ 15 (or 0≤M ≤ 30), where M is the Hartmann
number related to N by the relation M = √2N Re, using finite difference method. The
pressure-Poisson equation is solved to find pressure fields in the flow region. The multi-
grid method with defect correction technique is used to achieve the second-order accu-
rate solution of complete nonlinear Navier-Stokes equations. It is found that the bound-
ary layer separation at rear stagnation point for Re = 10 is suppressed completely when
N < 1 and it started growing again when N ≥ 9. For Re = 20 and 40, the suppression is
not complete and in addition to that the rear separation bubble started increasing when
N ≥ 3. The drag coefficient decreases for low values of N (< 0.1) and then increases with
increase of N . The pressure drag coefficient, total drag coefficient, and pressure at rear
stagnation point vary with

√
N . It is also found that the upstream and downstream pres-

sures on the surface of the cylinder increase for low values of N (< 0.1) and rear pressure
inversion occurs with further increase of N . These results are in agreement with experi-
mental findings.

1. Introduction

The analytical calculations of the magnetohydrodynamic flow around an obstacle en-
counters difficulties due to the boundary layer separation occurring at high Reynolds
numbers in downstream zone. For the particular case of a cylindrical obstacle with a di-
ameter d, immersed in a liquid metal flow which has a uniform velocityU∞ at infinity and
aligned with the magnetic field B0, Tamada [21] gives a general solution for the vorticity
distribution throughout an inviscid fluid. For the case of very low interaction parameter
N (i.e., N � 1), where the magnetic field effect upon the flow is weak (interaction pa-
rameter signifies the ratio of the electromagnetic to the inertial forces), Tamada applied
a perturbation technique to the nonmagnetic flow and found that the first-order term of
the induced vorticity shows a discontinuity in the downstream region. For the same range
of small values of the nondimensional parameters N and Rm (Rm, the magnetic Reynolds
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number, is given by U∞aµσ), Lahjomri [10] has clearly depicted the flow around a cylin-
drical obstacle for this situation, where the flow and magnetic field are aligned at infinity.
Using the same Oseen-type perturbation technique, but taking the magnetic field per-
turbation into account, he found a vorticity field which is in complete agreement with
that of Tamada at large distances from the cylinder. Lahjomri shows a decrease of the
upstream tangential velocity at the cylinder surface when compared to the potential flow
solution. In contrast, the downstream flow is accelerated by the electromagnetic force re-
ducing the adverse pressure gradient and the tendency of the boundary layer to separate.
The magnetohydrodynamic flow around a circular cylinder for low Re (< 10) is studied
by Bramely [3, 4] using Oseen approximation and the method of series truncation. He
found that for very low values of the interaction parameter N , the drag coefficient de-
creases and then increases with increase of N . Swarup and Sinha [19] investigated the
steady flow of an incompressible, viscous, electrically conducting fluid past a nonmag-
netic and nonconducting circular cylinder for low Reynolds numbers and low Hartmann
numbers M using the method of matched asymptotic expansion. (The Hartmann num-
ber M is defined as µH∞a(σ/η)1/2).

It is known that the flow around a cylinder becomes unstable at Re ≈ 49 due to the
periodic vortex shedding. For the cylinder flow, Lahjomri et al. [11] experimentally ver-
ified that the 2D instability (vortex shedding) can be suppressed by applying an aligned
magnetic field. The conditions needed to facilitate the suppression of von Kármán vor-
tex excitation of a circular cylinder by a second cylinder set downstream in a cruciform
arrangement is investigated by Bae et al. [1]. Recently, Baranyi [2] studied the unsteady
momentum and heat transfer from a fixed cylinder in an aligned magnetic field. It has
been shown by Mutschke et al. [15] that the 3D steady flow does exist. Later Mutschke
et al. [16] found the 3D instabilities of the cylinder wake in an external magnetic field. In
our previous paper [18], we have studied the hydrodynamic flow of a conducting fluid
around a sphere in an aligned magnetic field for moderate values of interaction parameter
and observed the nonmonotonic behavior of the separation angle and separation length.
In the experimental studies on sphere, Maxworthy [13, 14] and Yonas [23] discussed
the pressure distributions in both upstream and downstream zones and the asymptotic
dependence with N of the drag coefficient. Josserand et al. [8] presented pressure dis-
tribution measurements around a cylinder placed in a liquid metal flow aligned with a
constant magnetic field. He found that the pressure is reduced by the electromagnetic
forces for values of the interaction parameterN < 1. For higher values ofN , the rear pres-
sure drag and the global pressure drag exhibit a

√
N dependence and it is also shown that

for a sufficient value of the magnetic field, the von Kármán street behind the cylinder can
be suppressed. In the absence of the magnetic field, the results are given by Takami and
Keller [20], Dennis and Chang [5], Fornberg [6, 7], and Silva et al. [12].

If a fluid is electrically conductive, its flow may be controlled using electromagnetic
forces. Meanwhile, this technique is a recognized tool even on an industrial scale for
handling highly conductive materials like liquid metals and semiconducting melts. How-
ever, fluids of low electrical conductivity like sea water also permit electromagnetic flow
control. Because separation of flow is considered an undesirable feature, a considerable
amount of research has been devoted to the control of flow separation. Besides the control
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by electromagnetic forces, there are techniques like suction, blowing, and wall movement
for the control of separation. A renewed interest in the use of electromagnetic forces to
control the flow of electrolytes arose in the 1990s.

In this paper, we discuss the nature of incompressible conducting fluid flow around
a circular cylinder in the presence of an external magnetic field for a range of Reynolds
numbers from 10–40 and with interaction parameter 0≤N ≤ 15 (or 0≤M ≤ 30), using
the finite difference method. The multigrid method with defect correction technique is
applied to obtain the second-order accurate solution. It is found that the boundary layer
separation length and separation angle behaves in a nonmonotonic way with an increase
in magnetic field. The behavior of drag coefficient and pressure are found to agree with
the experimental findings. The paper is organized as follows. In Section 2, we define the
MHD flow problem and discuss the governing equations. In Section 3, we briefly de-
scribe the applied numerical method. Section 4 discusses our main results on separation
point, separation length, drag coefficient, and pressure. In the conclusion we give a short
summary and an outlook towards further future research.

2. Formulation of the problem

The equations governing the steady MHD flow of an incompressible fluid (with finite
electrical conductivity σ), past a circular cylinder (of radius a), with uniform free-stream
velocity U∞ and uniformly applied magnetic field H∞, at large distances in nondimen-
sional form, is as follows.

(i)Curl of momentum equation:

∇2ω = Re
2

[∇× (ω×q)
]− N Re

2

[∇× {(q×H)×H
}]

(2.1)

in which

ω =∇×q. (2.2)

(ii) Equation of continuity:

∇ ·q= 0, (2.3)

q is the fluid velocity, H the magnetic field, and ω the vorticity. The Reynolds number Re
is given by Re= 2ρU∞a/η andN = σH2∞a/ρU∞ is the interaction parameter. The viscosity
and density of the fluid are η and ρ, respectively. In order to satisfy (2.3), the dimension-
less stream function ψ(r,θ) is introduced so that

u= 1
r

∂ψ

∂θ
, v =−∂ψ

∂r
, (2.4)

where u and v are the dimensionless radial and transverse components of fluid velocity.
Cylindrical polar coordinates (r,θ,z) are used in such a way that the flow is symmetric
about θ = 0◦ and θ = 180◦. As the magnetic field and fluid flow are aligned at infinity, the
electric field can be assumed to be zero. The problem can be simplified by assuming the
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magnetic Reynolds number Rm (ratio of the induced magnetic field to imposed magnetic
field) to be small. We use the low-Rm approximation and replace the magnetic field in all
MHD equations by

H= (−cosθ, sinθ,0) (2.5)

which will eliminate several nonlinear terms of unknown quantities in the governing
equations. Substitution of (2.4) in (2.2) and (2.4), (2.5) in (2.1) with the transformation
r = eπξ and θ = πη yields, in the vorticity-stream function form, the following:

∂2ψ

∂ξ2
+
∂2ψ

∂η2
+π2e2πξω = 0, (2.6)

∂2ω

∂ξ2
+
∂2ω

∂η2
− Re

2

[
∂ψ

∂η

∂ω

∂ξ
− ∂ψ

∂ξ

∂ω

∂η

]

= N Re
2

[
π2e2πξω sin2(πη) + sin2(πη)

∂2ψ

∂ξ∂η
−π sin2(πη)

∂ψ

∂η

− cos2(πη)
∂2ψ

∂ξ2
+π cos2(πη)

∂ψ

∂ξ

]
.

(2.7)

Equations (2.6) and (2.7) must now be solved subject to the following boundary con-
ditions. On the surface of the cylinder, no-slip condition is applied. At far-off distances
(ξ →∞) uniform flow is imposed.

(i) On the surface of the cylinder (ξ = 0) : ψ = ∂ψ/∂ξ = 0, ω =−(1/π2)∂2ψ/∂ξ2.
(ii) At large distances from the cylinder (ξ →∞) : ψ ∼ eπξ sin(πη), ω→ 0.

(iii) Along the axis of symmetry (η = 0 and η = 1) : ψ = 0, ω = 0.
The following pressure-Poisson equation is then solved to find the pressure in the flow

field:

−(pξξ + pηη
)= 2

r2π2

[(
ψξη−πψη

)2− (ψξξ −πψξ)(ψηη +πψξ
)]

+
N

r2π2

[
sin(2πη)

2

(
ψξξ −ψηη− 2πψξ

)
+ cos(2πη)

(
ψξη−πψη

)] (2.8)

with the following boundary conditions.
(i) On the surface of the cylinder (ξ = 0) : pξ =−(2/Re)ωη.

(ii) At large distances from the cylinder (ξ →∞) : p = 1.
(iii) Along the axis of symmetry (η = 0 and η = 1) : pη = 0.

3. Numerical method

The coupled nonlinear Navier-Stokes equations are solved by applying the finite dif-
ference method and the resulting algebraic equations are solved by using the multigrid
method with defect correction technique. The finite difference grid is shown in Figure 3.1,
where the flow is from left to right. Here θ = π and θ = 0 form the axis of symmetry. The
grid is formed by the points of intersection of circles (ξ = constant) and radial lines (θ =
constant). The boundary conditions mentioned in the previous section are applied to the
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Figure 3.1. Figure showing the type of grid used.

boundaries of the grid in Figure 3.1. For this study, the finite computational domain (far
field distance) is taken to be 51 times the radius of the cylinder. All derivative terms in
(2.6) and (2.7) are approximated by central differences, except the convective terms in
(2.7), where first-order upwind difference scheme is used to ensure diagonal dominance.
This can be written as

(
Fθ fξ

)= 1
2

[(
Fθ +

∣∣Fθ∣∣)( fi, j − fi−1, j
)

+
(
Fθ −

∣∣Fθ∣∣)( fi+1, j − fi, j
)]

, (3.1)

where f = ω and F = ψ, Fθ = ∂F/∂θ and fξ = ∂ f /∂ξ, that is, if Fθ > 0, fξ is approximated
by backward difference and if Fθ < 0, fξ is approximated by forward difference, and Fθ
is approximated by central differences. In order to solve the resulting algebraic system of
equations, a recursive multigrid procedure is employed in which the smoother is a point
Gauss-Seidel iteration and the usual coarse grid correction is applied [9].

The initial solution is taken as ψ = 0 and ω = 0 at all inner grid points except for ψ at
ξ =∞, where the boundary condition holds. In finding the solution for higher values of
Re and N , the solution obtained for lower values of Re and N is used as starting solution.
Convergence is said to have been achieved (stop condition) when the absolute difference
between two successive iterationsm andm+ 1, at all interior grid points, is less than 10−7,
that is,

ε = ∣∣ψm+1−ψm∣∣ < 10−7,
∣∣ωm+1−ωm∣∣ < 10−7. (3.2)

We used the injection operator as restriction operator throughout this study. For the
prolongation operator, the simplest form is derived using linear interpolation. The 9-
point prolongation operator defined by Wesseling [22] is used for the present study.

In order to achieve second-order accurate solution, the defect correction method is
employed as follows. For example if B is the operator obtained by first-order upwind
discretization and A is that obtained by second-order accurate discretization, then defect
correction algorithm [9] works as given below in Algorithm 3.1. At the start of defect
correction, ȳ is a solution that is not second-order accurate, and at the end of defect
correction, ȳ is second-order accurate.
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begin Solve B ȳ = b
for i := 1 step 1 until n do

solve By = b−Aȳ +Bȳ
ȳ := y

od
end.

Algorithm 3.1

Usually in practice, it is sufficient to take n= 1 or 2. In this study we considered n= 5
as the stop criterion for defect correction.

4. Results and discussions

We present the results obtained in the range of Reynolds numbers from 10–40 and for
different values of interaction parameter N , using 512× 512 as the finest grid with 256×
256, 128× 128 as coarser grids and 64× 64 as the coarsest grid. The second-order accu-
rate solutions converged with ε < 10−7 obtained from the finest grid 512× 512 are used
for the discussion of the results. The drag coefficient is calculated using the following
relations.

(i) Viscous drag coefficient

CV =−4π
Re

∫ 1

0
ωξ=0 sin(πη)dη. (4.1)

(ii) Pressure drag coefficient

CP = 4
Re

∫ 1

0

(
∂ω

∂ξ

)
ξ=0

sin(πη)dη. (4.2)

(iii) Total drag coefficient

CD = CV +CP. (4.3)

We first verified our results with the case of no magnetic field (N = 0) and found that
they are in accordance with the literature values. In particular, the drag coefficient, sep-
aration length, and separation angle are in agreement with the findings of Takami and
Keller [20], Dennis and Chang [5], Fornberg [6], and Lima E Silva et al. [12]. Here, we
have uniformly chosen 51 times the radius of cylinder as far field distance, which is suffi-
ciently a large domain to obtain accurate results for all values of N and Re. The domains
of similar size have been used in the literature for the problem of flow past a circular
cylinder [5, 20]. A comparison of the drag coefficient values is given in Table 4.1. The
drag coefficient values in two different grids 256× 256 and 512× 512 for certain values
of N are presented in the Table 4.2 to show the grid independence. The effect of mag-
netic field on the streamlines for Re= 10, 20 and 40 are presented in Figures 4.1, 4.2, and
4.3, respectively. From these figures it is evident that as the magnetic field is applied, the
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Table 4.1. Verification of our second-order accurate results converged to ε < 10−7 with the available
literature values for the case of flow with zero magnetic field.

Re
Present results

Reference [20] Reference [5] Reference [6] Reference [12](512× 512 grid)

10 2.83 2.745 2.846 2.81 —

20 2.02 2.003 2.045 2 2.04

40 1.5 1.536 1.522 1.498 1.54

Table 4.2. Comparison of second-order accurate drag coefficient values obtained in 512× 512 and
256× 256 grids.

N
Re= 10 Re= 20 Re= 40

256× 256 512× 512 256× 256 512× 512 256× 256 512× 512

1 3.920 3.922 2.765 2.776 2.194 2.124

2 4.837 4.838 3.419 3.436 2.59 2.626

5 6.802 6.8 4.802 4.807 3.658 3.666

recirculation bubble behind the circular cylinder is completely suppressed for Re = 10
at N = 0.4. But with further increase of the magnetic field for Re = 10, it is found that
the boundary layer separation started growing again at a critical value of N = 9, and the
boundary layer separation length and separation angle are found to increase with fur-
ther increase of N up to 15. For Re = 20 and 40, the suppression is not complete. It is
found that both the length of the recirculation bubble and separation angle decreases up
to N = 2 and increases when N ≥ 3. The variation of the separation angle (θ) and length
of the recirculation bubble (l) with interaction parameter (N) is depicted in Figure 4.4. It
is observed that for higher values of N , the flow becomes straightened in the main stream
direction and the curvature of the recirculation bubble (i.e., ψ = 0) decreases. The flow
inside the recirculation bubble slows down monotonically with increasing magnetic field.
As the magnetic forces are proportional to and resist the flow of fluid in any other direc-
tion than that of the unperturbed magnetic field near the cylinder, they produce changes
in the pattern of the vorticity lines. The length of the standing vortex is reduced slightly
and the strength of the disturbance in front of the cylinder is increased with increasing
magnetic field. These features can be seen from the figures of vorticity lines as shown in
Figure 4.5 for Re= 40. It is clear from Figure 4.6 that the magnetic field tends to suppress
the surface vorticity behind the cylinder.

For very low values of N (< 0.1), a general base pressure increase is found on both the
upstream and downstream faces of the cylinder and with further increase of the mag-
netic field, rear pressure inversion is found, that is, the upstream base pressure increases
continuously while downstream base pressure decreases. The angular evolution of the
surface pressure is presented in Figure 4.7. The surface pressure at θ = 90◦ (the interface
between upstream and downstream regions) is found to first increase with N and then
decrease with further increase of N . It is also found that the pressure at rear stagnation
point varies with

√
N for N ≥ 4. This is shown in Figure 4.8. These results agree with the
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Figure 4.1. Streamlines for Re= 10. (a) N = 0, (b) N = 1, (c) N = 5, (d) N = 10, and (e) N = 15.
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Figure 4.2. Streamlines for Re= 20. (a) N = 0, (b) N = 1, (c) N = 3, (d) N = 10, and
(e) N = 12.
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Figure 4.3. Streamlines for Re= 40. (a) N = 0, (b) N = 2, (c) N = 5, (d) N = 10, and
(e) N = 12.
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Figure 4.5. Isocontours of vorticity for (a) Re= 40, N = 1 and (b) Re= 40, N = 12.
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Figure 4.6. Angular evolution of surface vorticity for (a) Re= 10 and (b) Re= 20.
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Figure 4.7. Angular evolution of surface pressure for (a) Re= 10 and (b) Re= 20.

experimental results of Josserand et al. [8]. From the plots of angular evolution of sur-
face pressure, it is observed that in comparison with the case of no magnetic field, the
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Figure 4.8. (a) Linear dependence of pressure drag coefficient CP and total drag coefficient CD and
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N .

increase of front pressure around the front stagnation point is in line with the hypothesis
of Maxworthy [13, 14] and Josserand et al. [8] that a stagnant flow develops upstream of
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Figure 4.9. Pressure fields for the flow with Re= 10. (a) N = 0, (b) N = 1, and (c) N = 15.

the sphere when the magnetic field is increased. The pressure Poisson equation (2.8) is
solved and the isocontours of pressure fields around the cylinder in presence of magnetic
field for Re= 10,20, and 40 are presented in Figures 4.9, 4.10, and 4.11, respectively. From
these figures, it is evident that the pressure in the downstream region is reduced up to a
certain value ofN and then increases in both upstream and downstream regions with fur-
ther increase in the magnetic field. This behavior can be attributed to the nonmonotonic
behavior in separation length and separation point. For the case of flow past a circu-
lar cylinder, Fornberg [7] has presented the pressure fields for Re = 100–600. The radial
and transverse velocity components at θ = 90◦ (interface of upstream and downstream
regions) are given in Figure 4.12 for Re= 20.
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Figure 4.10. Pressure fields for the flow with Re= 20. (a) N = 0, (b) N = 1, and (c) N = 12.

For very low values of N (< 0.1), the drag coefficient decreases when compared to
the no field case. This is in agreement with Bramely [3, 4]. The drag coefficient increases
with further increase of the magnetic field. The pressure drag coefficient (CP) and viscous
drag coefficient (CV ) versus interaction parameter is shown in Figure 4.13. The total drag
coefficient versus interaction parameter and the drag coefficient versus Re is presented in
Figure 4.14. The pressure drag coefficientCP and the total drag coefficientCD are found to
vary with

√
N for N ≥ 4. This behavior can be seen in Figure 4.8. The linear dependence

with
√
N of the pressure drag coefficient and total drag coefficient is in accordance with
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Figure 4.11. Pressure fields for the flow with Re= 40. (a) N = 0, (b) N = 1, and (c) N = 12.

the experimental findings of Maxworthy [13], Yonas [23], and Josserand et al. [8]. The
constant decrease of the base pressure for high N is the major source of the increase in
the overall drag coefficient CD. For these values of N , the loss in total pressure suffered
along the front streamlines under the effect of the j×B forces are responsible for the rear
pressure drop. This behavior is responsible for the increase of pressure drag coefficient
which in turn increases total drag coefficient.
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Figure 4.12. Variation of radial u and transverse v components of velocityU of the flow with Re= 20.
Lines without symbol represent radial velocity with left y-axis. The lines with symbol represent the
transverse velocity with right y-axis.
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Figure 4.14. Variation of total drag coefficient CD as a function of (a) interaction parameter N and
(b) Reynolds number Re.
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5. Conclusions and outlook

The steady, incompressible, 2D conducting fluid flow around a circular cylinder with an
applied magnetic field parallel to the main flow is investigated for moderate values of the
Reynolds numbers and interaction parameters using the finite difference method. The
pressure-Poisson equation is solved and pressure fields for this flow with magnetic field
are presented for the first time. It is found that the boundary layer separation at rear
stagnation point of the circular cylinder for Re= 10 is completely suppressed at N = 0.4
and again starts growing when N ≥ 9. For Re= 20 and 40, a slight increase in separation
length and separation point is found when N ≥ 3. It is also found that the pressure drag
coefficient, total drag coefficient, and the pressure at rear stagnation point varies with√
N . This is in agreement with experimental findings. This work can be extended for

larger values of Re and N . The effects of the transverse magnetic field on the MHD flow
around circular cylinder and sphere can also be explored. It will be interesting too, to
investigate the problem when the magnetic Reynolds number is also included.
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