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The plane strain problem of determining strain energy release rate, crack energy, and
crack-opening displacement (COD) for a moving Griffith crack at the interface of two
dissimilar orthotropic half-planes is considered. The problem is reduced to a pair of sin-
gular integral equations of second kind which have finally been solved by using Jacobi
polynomials. Graphical plots of the strain energy release rate, crack energy, and crack-
opening displacement for the problem in different particular cases are presented.

1. Introduction

Structures in real life not only experience tensions but encounter forces like shear and
torsional loading. Cracks, therefore, are likely to be subjected to both tension and shear
resulting in mixed mode cracking. The combined effect of tension and shear gives rise to
mixture of modes I and II. Several investigators like Nuismer [15], Erdogan and Sih [7],
Sih [16], and so forth have considered mixed mode fracture problems.

Problems of interfacial Griffith cracks in orthotropic media had been studied by Das
and Patra [2], Das et al. [3], Dhaliwal et al. [4], He et al. [9], Erdogan and Wu [8], Nisi-
tani et al. [14], Liou and Sung [13], Lee [12], and so forth. In this paper, the determina-
tion of strain energy release rate, and crack energy, crack-opening displacement around
a moving Griffith crack at the interface of two dissimilar orthotropic half-planes under
mixed-mode loading is considered. The problem is reduced to solving a pair of singular
integral equations of second kind which are ultimately solved by the technique described
by Erdogan [6] and by Erdogan and Wu [8]. Finally, numerical results for normalized
stain energy release rate, crack energy, and crack-opening displacement have been calcu-
lated for some particular cases. Obtained results are also presented graphically. It has also
been observed that the locus of the fracture is an elliptic contour corresponding to the
critical crack velocity.

2. Formulation of the problem

We consider the plane elastodynamic problem in orthotropic half plane 1 (−∞ < X <∞,
0 ≤ Y <∞) bonded to a dissimilar orthotropic half-plane 2 (−∞ < X <∞, −∞ <Y≤ 0)
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with a moving Griffith crack of finite length situated at the interface of the two materials.
The principal axes of the materials coincide with the Cartesian coordinate axes. As in
Yoffe model [19], it is assumed that the cracks are propagating with constant velocity “c”
and without change in length along the positive X axis. This assumption is justified by the
fact that the stress distribution close to one end of a crack is not influenced by its distance
from the other. In what follows and in the sequel, the quantities with subscripts i = 1,2
refer to those for the half-planes (1) and (2), respectively.

Under the assumption of plane strain in an orthotropic medium, equations of motion
for the displacement fields are
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where t is the time, ρ(i) and C(i)
jk , i = 1,2, are respective densities and elastic constants

of the half-planes (1) and (2). Applying the Gallilean transformation x = X − ct, y = Y ,
t = t, equations (2.1) become independent of t and reduce to
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(2.2)

where u(i)(x, y)=U (i)(X ,Y , t), v(i)(x, y)=V (i)(X ,Y , t), and i= 1,2.
The stress displacement relations are
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(2.3)

It is assumed that the crack, now defined by |x| ≤ a, y =±0, is opened by internal trac-
tions−p1(x) and−p2(x) in such a way as to guarantee the symmetry requirements. Then
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the boundary conditions at the interface y = 0 are

σ (1)
yy (x,0)= σ (2)

yy (x,0)=−p1(x), |x| ≤ a, (2.4)

σ (1)
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In addition, all components of stress and displacement vanish at remote distance from
the crack. For a subsonic propagation, it is assumed that the Mach numbers M(i)

j = c/v(i)
j

(i, j = 1,2) are less than one. v(i)
1 =
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locities of elastic waves. The former is called the velocity of dilatation waves and the latter
is known as velocity of shear waves of the mediums 1 and 2.

3. Solution of the problem

An appropriate integral solution of (2.2) is taken as
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and A(i)
j (s) (i = 1,2 and j = 1,2) are arbitrary functions and B(i)

j (s) are related to A(i)
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by
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292 Moving interfacial Griffith crack

where
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where
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Boundary conditions (2.4) and (2.6) give rise to
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Equations (3.8) and (3.10) lead to
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(3.12)

Boundary conditions (2.8) and (2.9) together with (3.12) yield
∫∞
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Now set

w11A
(1)
1 (s) +w12A

(1)
2 (s)= 1

s

∫ a
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f1(t)cosst dt,
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where f1(t) is an even function of t and f2(t) is an odd function of t. It is observed that
(3.13) is indentically satisfied under the conditions

∫ a

−a
fi(t)dt = 0, i= 1,2. (3.16)

Now form (3.15), A(1)
j (s), j = 1,2, are calculated as
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∫ a

0
f1(t)cosst dt−W12

s
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Now substituting the values of A(1)
k (s) from (3.17) in the boundary condition (2.4) and

(2.5), the following singular integral equations, for the determination of the unknown
functions f1(t) and f2(t), we obtained

a1 f1(x)− 1
πb1

∫ a

−a
f2(t)dt
t− x

= 2
π
p1(x), for |x| ≤ a,

c1 f2(x)− 1
πd1

∫ a

−a
f1(t)dt
t− x

= 2
π
p2(x), for |x| ≤ a,

(3.20)
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where
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Now, setting x/a= Z and t/a= T , (3.20) becomes

a1 f1(aZ)− 1
πb1

∫ 1

−1

f2(aT)dT
T −Z

= 2
π
p1(aZ), |Z| ≤ 1,

c1 f2(aZ)− 1
πd1

∫ 1

−1

f1(aT)dT
T −Z

= 2
π
p2(aZ), |Z| ≤ 1.

(3.22)

As a1, b1, c1, and d1 depend on the material constants and the velocity of propagation
c, the signs of the quantities may be any combination for different types of orthoropic

materials. Varying “c” such that the Mach numbers M(i)
j remain less than unity, if the

signs of these quantities are all positive, then (3.20) can be expressed as

φk(Z) +
1

πiεrk

∫ 1

−1

φk(T)dT
T −Z

=−gk(Z), |Z| < 1, k = 1,2, (3.23)

where
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√
a1b1 f1(aZ) + irk

√
c1d1 f2(aZ),

ε =
√
a1b1c1d1, r1 = 1, r2 =−1,

gk(Z)= 2
π

(√
b1
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p1(aZ) + irk

√
d1

c1
p2(aZ)

)
.

(3.24)

4. Solution of the integral equations

The solution of the integral equations in (3.23) may be assumed as (Erdogan [6])

φk(Z)=wk(Z)
∞∑
n=0

CknP
(αk ,βk)
n (Z), (4.1)

where wk(Z)= (1−Z)αk (1 +Z)βk , αk =−1/2 + iwk, βk =−1/2− iwk, wk = wrk, k = 1,2,
w = (1/2π) ln|(1 + ε)/(1− ε)|, and Ckn are unknown constants. By virtue of (3.16), we
have

Ck0 = 0, k = 1,2. (4.2)



S. Mukherjee and S. Das 295

Using the result

1
πi

∫ 1

−1
wk(T)P

(αk,βk)
n (T)

dT

T −X

=−εrkwk(Z)P
(αk,βk)
n (Z) +

√
1− ε2

2i
P

(−αk ,−βk)
n−1 (Z), −1 < Z < 1,

= (1− εrk
)⌊
wk(Z)P

(αk ,βk)
n (Z)−G∞kn(Z)

⌋
, |z| > 1,

(4.3)

where G∞kn is the principal part of wk(Z)P
(αk ,βk)
n (Z) at infinity, the integral equations (3.23)

with the aid of (4.1) give rise to

√
1− ε2

2iεrk

∞∑
n=1

CknP
(−αk ,−βk)
n−1 (Z)=−gk(Z), k = 1,2. (4.4)

Multiplying both sides of (4.4) by w−1
k P

(−αk ,−βk)
n (Z) and integrating with respect to Z

from −1 to 1 and using orthogonality relation, the values of unknowns Ck j (k = 1,2, j =
0,1,2, . . .) are given by

Ck j+1 =
−iεrkgk j√

1− ε2

( j + 1)!Γ( j + 2)
Γ
(
j− ak + 1

)
Γ
(
j−βk + 1

) , (4.5)

where gk j =
∫ 1
−1 gk(Z)w−1

k (Z)P
(−αk ,−βk)
j (Z)dZ.

The stress intensity factors near the crack tip x = a may be calculated as

√
b1

a1
KI + irk

√
d1

c1
KII = Ltx→a+(x− a)−αk (x+ a)−βk

[√
b1

a1
σ (1)
yy (x,0) + irk

√
d1

c1
σ (1)
xy (x,0)

]

= −aπi
√

1− ε2

2εrk

∞∑
n=1

CknP
(αk ,βk)
n (1).

(4.6)

Considering p1(x)= p and p2(x)= 0, with p being a constant, the stress intensity factors
are calculated as

KI =−ap, KII =−ap

π

√
b1c1

a1d1
ln

∣∣∣∣∣ 1 +
√
a1b1c1d1

1−√a1b1c1d1

∣∣∣∣∣. (4.7)

The crack-opening displacement is given by the following equation:

∆v(x,0)= v(1)(x,0)− v(2)(x,0)= πa2pb1√
1− ε2

(
1 +ω2

)
(
9 + 4ω2

)(
1 + 4ω2

)(1− x

a

)2

. (4.8)
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The strain energy release rate is calculated as (Erdogan and Wu [8])

G

ap2
=
√
a1b1c1d1

2

[
b1

a1
K2
I +

d1

c1
K2
II

]
. (4.9)

The expression for crack energy is given by

W =−
∫ a

−a
p1(x)

[
v(1)(x,0)− v(2)(x,0)

]
dx

= π

2
· b2

1p
2

√
1− ε2

(
1 + 4ω2)sech(πw).

(4.10)

Over the crack, the distance apart of two surfaces is given by

v(1)(x,0)− v(2)(x,0)= Im
πiεa√
1− ε2

(
a− x

2a

)1/2+iw[
1− 3− 2iw

9 + 4w2

(
a− x

2a

)]
. (4.11)

For this problem, the distances of two surfaces should be greater than or equal to zero,
but near the ends of the crack the sign changes infinitely indicating that the upper and
lower surfaces of the crack should wrinkle and overlap each other, which is physically
impossible.

Since we are interested to evaluate the size of the region in which the overlapping
occurs, we consider the crack surfaces first come to rest when

cos
(
w ln

a− x

2a

)
= 0. (4.12)

Thus, contact first takes place at a distance δ from the ends of the crack, where

w ln
(
δ

2a

)
=±π

2
, (4.13)

and hence δ has a maximum value of

δ = 2ae−π/2w. (4.14)

5. Numerical results and discussions

As a particular case of the problem, the orthotropic materials are considered to be α-
uranium and beryllium. The elastic moduli (1011 dynes/cm2) and densities (gm/cm3) of
the materials are taken as in Table 5.1 (Hearman [10]).
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Table 5.1

C11 C22 C66 C12 ρ

α-uranium 21.47 19.36 7.43 4.65 19.07 (Half plane (1))
Beryllium 31.48 36.49 11.24 8.88 1.80 (Half plane (2))

0 0.1 0.2 0.3 0.4 0.5 0.6

c (cm/µs)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

W
/a
p2

an
d
G
/a
p2

W/ap2

G/ap2

Figure 5.1. Plot of W/ap2 and G/ap2 versus c.

For a subsonic propagation considering the crack velocity c = 0 (0.1) 0.6, the strain
energy release rate and crack energy are calculated at the crack tip x = a (Figure 5.1). It is
seen from Figure 5.1 that the strain energy release rate (G/ap2) increases up to c = 0.575
and then this has oscillatory nature, which is expected as there is a change of propagation
phase from subsonic to supersonic.

Similar oscillation phenomena have been observed by England [5], Williams [18],
Sneddon and Lowengrub [17], and so forth. Since we have considered a subsonic propa-

gation where M(i)
j < 1, that is, c < Min(v(1)

1 ,v(1)
2 ,v(2)

1 ,v(2)
2 ), we can conclude that, following

Achenbach [1], Stoneley waves will be observed at the interface outside the crack surface
and Rayleigh waves will be observed at the free surface of the crack. However, it may be
noted that, at any point of the interface, Stonely waves will not propagate in all directions
as noted by Johnson [11]. It is also seen from Figure 5.1 that initially the amplitude of
crack energy G/ap2 curve is less than that of W/ap2 and it oscillates and intersects the
second curve at the point c = 0.5736 cm/µs. (The Mach numbers at this crack velocity

are M(1)
1 = 0.5406, M(1)

2 = 0.9189, M(2)
1 = 0.1372, M(2)

2 = 0.2295.) We know fracture oc-
curs when G≥W . Thus in this mixed mode II loading problem, the fracture condition is
more likely to be

K2
I

K2
Ic

+
K2
II

K2
IIc

= 1, (5.1)

the locus of fracture being an ellipse (Figure 5.2), where KIc =
√

(a1/b1)Wc, KIIc =√
(c1/d1)Wc are critical stress intensity factors, Wc is the critical crack energy at c =

0.5736 cm/µs.
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(KI /KIc)2 + (KII /KIIc)2 = 1

0 0.5 1 1.5 2 2.5 3 3.5 4KIc

KI

0

0.5

1

1.5

2

2.5

3

3.5

4
KIIc

K
II

Figure 5.2. Combined mode fracture at c = 0.5736.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/a

0

0.02

0.04

0.06

0.08
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0.12

∆
v(
x,

0)
/a

2
p

c = 0
c = 0.1
c = 0.2

c = 0.3
c = 0.4
c = 0.5

Figure 5.3. Plot of ∆v(x,0)/a2p versus x/a.

The crack-opening displacement (COD) ∆v(x,0)/a2p versus x/a has been displayed
graphically in Figure 5.3 for different c. It has been observed that the COD is maximum
at the central position of the crack and decreases continuously to become zero at the tip
of the crack.
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