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The distributions of products and ratios of random variables are of interest in many ar-
eas of the sciences. In this paper, the exact distributions of the product |XY | and the
ratio |X/Y | are derived when X and Y are Laplace and Bessel function random variables
distributed independently of each other.

1. Introduction

For given random variables X and Y , the distributions of the product |XY | and the ratio
|X/Y | are of interest in many areas of the sciences.

In traditional portfolio selection models, certain cases involve the product of random
variables. The best examples of this are in the case of investment in a number of different
overseas markets. In portfolio diversification models (see, e.g., Grubel [7]), not only are
prices of shares in local markets uncertain but also the exchange rates are uncertain so
that the value of the portfolio in domestic currency is related to a product of random
variables. Similarly in models of diversified production by multinationals (see, e.g., Rug-
man [23]), there is local production uncertainty and exchange rate uncertainty so that
profits in home currency are again related to a product of random variables. An entirely
different example is drawn from the econometric literature. In making a forecast from an
estimated equation, Feldstein [5] pointed out that both the parameter and the value of
the exogenous variable in the forecast period could be considered as random variables.
Hence, the forecast was proportional to a product of random variables.

An important example of ratios of random variables is the stress-strength model in the
context of reliability. It describes the life of a component which has a random strength Y
and is subjected to random stress X . The component fails at the instant that the stress
applied to it exceeds the strength and the component will function satisfactorily when-
ever Y > X . Thus, Pr(X < Y) is a measure of component reliability. It has many applica-
tions especially in engineering concepts such as structures, deterioration of rocket mo-
tors, static fatigue of ceramic components, fatigue failure of aircraft structures, and the
aging of concrete pressure vessels.
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The distributions of |XY | and |X/Y | have been studied by several authors especially
when X and Y are independent random variables and come from the same family. With
respect to products of random variables, see Sakamoto [24] for uniform family, Harter
[8] and Wallgren [30] for Student’s t family, Springer and Thompson [26] for normal
family, Stuart [28] and Podolski [16] for gamma family, Steece [27], Bhargava and Khatri
[3], and Tang and Gupta [29] for beta family, Abu-Salih [1] for power function family,
and Malik and Trudel [13] for exponential family (see also Rathie and Rohrer [22] for
a comprehensive review of known results). With respect to ratios of random variables,
see Marsaglia [14] and Korhonen and Narula [10] for normal family, Press [17] for Stu-
dent’s t family, Basu and Lochner [2] for Weibull family, Shcolnick [25] for stable family,
Hawkins and Han [9] for noncentral chi-squared family, Provost [18] for gamma family,
and Pham-Gia [15] for beta family. There is relatively little work of the above kind when
X and Y belong to different families. In the applications mentioned above, it is quite pos-
sible that X and Y could arise from different but similar distributions (see below, e.g.).

In this paper, we derive the exact distributions of |XY | and |X/Y | when X and Y are
independent random variables having the Laplace and Bessel function distributions with
pdfs
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respectively, for −∞ < x <∞, −∞ < y <∞, λ > 0, b > 0, |c| < 1, and m> 1, where
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is the modified Bessel function of the third kind. Several of the more standard distribu-
tions in statistics are particular cases of (1.2) for integer and half-integer values of m.
Thus, we also provide particular cases of our results for integer and half-integer values
of m.

Laplace and Bessel function distributions have found applications in a variety of areas
that range from image and speech recognition and ocean engineering to finance. Both are
rapidly becoming distributions of first choice whenever “something” with heavier than
Gaussian tails is observed in the data. Some examples are the following (see Kotz et al.
[11] for further applications):

(1) in communication theory, X and Y could represent the random noise corre-
sponding to two different signals,

(2) in ocean engineering, X and Y could represent distributions of navigation errors,
(3) in finance, X and Y could represent distributions of logreturns of two different

commodities,
(4) in image and speech recognition, X and Y could represent “input” distributions.

In each of the examples above, it will be of interest to study the distribution of the
ratio |X/Y |. For example, in communication theory, |X/Y | could represent the relative
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strength of the two different signals. In ocean engineering, |X/Y | could represent the rel-
ative safety of navigation. In finance, |X/Y | could represent the relative popularity of the
two different commodities. The distribution of the product |XY | is considered here for
completeness.

The exact expressions for the distributions of the product and ratio are given in Sec-
tions 2 and 3 of the paper. The calculations involve the Bessel function of the first kind
defined by

Jν(x)= xν
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the modified Bessel function of the first kind defined by
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and the hypergeometric functions defined by
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where (e)k = e(e+ 1)···(e+ k− 1) denotes the ascending factorial. The properties of the
above special functions can be found in Lebedev [12], Erdelyi et al. [4], Prudnikov et al.
[19, 20, 21], and Gradshteyn and Ryzhik [6].

2. Product

Theorem 2.1 derives an explicit expression for the cdf of |XY | in terms of the hypergeo-
metric functions.

Theorem 2.1. Suppose X and Y are distributed according to (1.1) and (1.2), respectively,
with c = 0. The cdf of Z = |XY | can be expressed as
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(2.1)

where C denotes the Euler constant.
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Proof. The cdf F(z)= Pr
(|XY | ≤ z

)
can be expressed as

F(z)= Pr
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The result of the theorem follows by applying the integration formula (Prudnikov et
al. [20, equation (2.16.8.9)]) that
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(for c > 0 and p > 0) to calculate the integral in (2.2). �

Using the special property of the 0F3 hypergeometric function (Prudnikov et al. [21,
equation (7.16.2.9)]) that
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Figure 2.1. Plots of the pdf of (2.1) for λ= 1, b = 1, and m= 2,3,5,10.

one can derive simpler forms for the distribution of |XY | when m takes half integer val-
ues. For example, if m= 3/2 and m= 5/2, then (2.1) can be reduced to

F(z)=− 1
8y

{
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− 3J0(y)y3C+ 2J0(2y)y3 + 8J1(2y) + 6I1(2y)y2C− 4I1(2y)y2
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}

,
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}

,

(2.5)

respectively, where y =√λz/b and C denotes the Euler constant.
Figure 2.1 illustrates possible shapes of the pdf of (2.1) for λ= 1, b = 1, and a range of

values of m. Note that the shapes are unimodal and that the value of m largely dictates
the behavior of the pdf near z = 0.

3. Ratio

Theorem 3.1 derives an explicit expression for the cdf of |X/Y | in terms of the hypergeo-
metric functions.
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Theorem 3.1. Suppose X and Y are distributed according to (1.1) and (1.2), respectively.
The cdf of Z = |X/Y | can be expressed as
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where F(·) inside the integral denotes the cdf corresponding to (1.1) given by
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Substituting (3.3) for F(·), one can rewrite (3.2) as
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The result in (3.1) follows by applying the integration formula (Prudnikov et al. [20,
equation (2.16.6.3)]) that

∫∞
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(for c+ p > 0 and α > ν) to calculate the two integrals in (3.4). �

Using special properties of the 2F1 hypergeometric function (Prudnikov et al. [21,
equations (7.3.1.137) and (7.3.1.124)]) that
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one can derive elementary forms for the distribution of |X/Y | when m takes integer or
half-integer values. This is illustrated in the corollaries below.

Corollary 3.2. If m≥ 2 is an integer, then (3.1) reduces to
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Corollary 3.3. If m≥ 3/2 is a half-integer, then (3.1) reduces to
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Figure 3.1. Plots of the pdf of (3.1) for λ = 1, b = 1, and (a) c = 0; (b) c = 0.3; (c) c = 0.6; and (d)
c = 0.9. The four curves in each plot correspond to m= 2 (solid curve), m= 3 (curve of dots), m= 5
(curve of dashes), and m= 10 (curve of dots and dashes).
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where

h(z)= (z− 1)m+1/2

(−1/2)m+3/2zm+1/2

{√
π(1− z)−1/2 +

1
z

m+1/2∑
k=1

(−1/2)k

(
z− 1
z

)−k}
. (3.10)

Figure 3.1 illustrates possible shapes of the pdf of |X/Y | for a range of values of c and
m. The densities are unimodal and the effect of the two parameters on the shape of the
densities is evident.
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