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The main theme of this paper is the approximation on the sphere by weighted sums of
spherical harmonics. We give necessary and sufficient conditions on the weights for con-
vergence in both the continuous and the Lp cases. Approximation by spherical convolu-
tion is a particular and important case that fits into our setting.

1. Introduction and basic facts

A standard procedure to approximate a function f in an inner product space is to con-
sider the Fourier series of the function with respect to an orthogonal system. The basic
general results on this topic can be found in many references in the literature, for example,
[2, Chapter VIII].

It is well known that even in the case in which K is a closed interval there always exists
a function f in C(K) for which the corresponding Fourier series does not converge to f
with respect to the uniform norm. Thus, in this and other cases, the common solution
is to consider weighted expansions and to study convergence based on the choice of the
weights. Here is a list of problems that emerges: how to choose the weights in order to
guarantee convergence for every function in the space, to study orders of convergence,
how to choose the weights so that the operators given by the truncated Fourier series
inherit properties of other known operators, and so forth.

In this paper, we consider some of the problems above in the case when K = Sm, the
unit sphere in Rm+1. The focus is on convergence but we intend to study the analysis of
convergence orders in a forthcoming paper. For functions defined on Sm, orthogonality
depends upon dσm, the usual surface measure on Sm. The surface area of Sm will be written
as σm. The uniform norm is then given by

‖ f ‖∞ := sup
x∈Sm

∣∣ f (x)
∣∣, f ∈ C

(
Sm
)
, (1.1)

and as usual, we consider the spaces Lp(Sm) := Lp(Sm,dσm), 1≤ p <∞, with norm given by

‖ f ‖p :=
(

1
σm

∫
Sm

∣∣ f (x)
∣∣pdσm(x)

)1/p

, f ∈ Lp
(
Sm
)
. (1.2)
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Unless stated otherwise, the letter X will denote any of the spaces introduced above and
‖ · ‖X the corresponding norm. Orthogonality is then related to the inner product of
L2(Sm)

〈 f ,g〉2 =
1
σm

∫
Sm

f g dσm, f ,g ∈ L2(Sm). (1.3)

We will write P(Sm) to denote the space formed by polynomials in m+ 1 variables re-
stricted to Sm. The set �k(Sm) of all spherical harmonics of degree k in m+ 1 variables
joint with the zero polynomial is a subspace of P(Sm). Let {Yk1,Yk2, . . . ,YkN(m,k)} be an or-
thonormal basis of �k(Sm). To every function in any of the spaces above, we can associate
the Fourier series

f ∼
∞∑
k=0

N(m,k)∑
l=1

f̂ (k, l)Ykl, (1.4)

in which the Fourier coefficient f̂ (k, l) is given by

f̂ (k, l)=
∫
Sm

f Ykl dσm. (1.5)

The setting introduced above is, up to normalization, the same used in many standard
references on analysis on the sphere. We refer the reader to [1, 4, 7, 11, 12, 13, 14], where
the Addition Formula

N(m,k)∑
l=1

Ykl(x)Ykl(y)= N(m,k)
σm

Pm
k

(〈x, y〉), x, y ∈ Sm, (1.6)

the Funk-Hecke Formula∫
Sm
K
(〈x, y〉)Yk(y)dσm(y)= amk (K)Yk(x), x ∈ Sm, (1.7)

and other results can be found. In (1.6) and (1.7), Pm
k is the Legendre polynomial of

degree k associated to the dimension m + 1, K : [−1,1] → C is an integrable function,
Yk ∈�k(Sm), and

amk (K) := σm−1

∫ 1

−1
K(t)Pm

k (t)
(
1− t2)(m−2)/2

dt. (1.8)

We will deal with approximations of a given function f in X by a sequence {Tn( f )}n∈N, in
which the operators Tn : X → X , n∈N := {0,1, . . .}, are defined by weighted orthogonal
Fourier sums of the form

Tn( f )= 1
σm

n∑
k=0

N(m,k)∑
l=1

akl(n) f̂ (k, l)Ykl, f ∈ X , (1.9)

the weights akl(n), n,k = 0,1, . . . , l = 1,2, . . . ,N(m,k) being all real. In Section 2, we de-
duce some basic properties of the operators Tn, including the computation of their norm
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in the cases X = C(Sm) and X = L1(Sm). In Section 3, we find necessary and sufficient
conditions in order that {Tn}n∈N be an approximate identity in X . Among other things,
this implies that Tn( f ) converges to f in the norm of X , for every f ∈ X . In Section 4,
restricting ourselves to the case X = C(Sm), we introduce the notion of localized approx-
imate identity and study corresponding approximation properties.

2. The operator Tn

In this section, we present some basic properties of the operator Tn, some of independent
interest, other to be used in the subsequent sections. That includes to decide when Tn is
of convolution type and the computation of its norm in some cases.

The orthonormality of the spherical harmonics yields

Tn
(
Ykl
)=


akl(n)Ykl, k ≤ n,

0, k > n.
(2.1)

The linearity of Tn reveals that

Tn(q)=
M∑
k=0

N(m,k)∑
l=1

akl(n)rklYkl, n≥M, (2.2)

whenever

q =
M∑
µ=0

N(m,µ)∑
ν=1

rµνYµν, rµν ∈ C. (2.3)

Writing Tn f (x) := (Tn( f ))(x) and appealing to (1.5), we deduce that

Tn f (x)= 1
σm

n∑
k=0

N(m,k)∑
l=1

akl(n)
(∫

Sm
f (y)Ykl(y)dσm(y)

)
Ykl(x)

= 1
σm

∫
Sm

f (y)
n∑

k=0

N(m,k)∑
l=1

akl(n)Ykl(x)Ykl(y)dσm(y).

(2.4)

Thus, we have proved the following representation formula.

Theorem 2.1. If f ∈ X then

Tn f (x)= 1
σm

∫
Sm
Kn(x, y) f (y)dσm(y), x ∈ Sm, (2.5)

in which

Kn(x, y)=
n∑

k=0

N(m,k)∑
l=1

akl(n)Ykl(x)Ykl(y), x, y ∈ Sm. (2.6)

Formula (2.6) defines a kernel having an expression very close to that on the left-hand
side of the Addition Formula. Since that formula defines a bi-zonal polynomial kernel
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and this type of kernel defines spherical convolution operators on X , the goal in the next
two results will thus be to verify when Tn is an operator of convolution type.

Lemma 2.2. The kernel Kn is bi-zonal if and only if ak1(n) = ak2(n) = ··· = akN(m,k)(n),
k = 0,1, . . . ,n.

Proof. If ak1(n) = ak2(n) = ··· = akN(m,k)(n), k = 0,1, . . . ,n, the Addition Formula im-
plies that

Kn(x, y)=
n∑

k=0

ak1(n)
N(m,k)

σm
Pm
k

(〈x, y〉) := Ln
(〈x, y〉), x, y ∈ Sm, (2.7)

for some function Ln, that is, Kn is bi-zonal. Conversely, fix k ∈ {0,1, . . . ,n} and l in the
set {1,2, . . . ,N(m,k)}. If Kn(x, y)= Ln(〈x, y〉) for some function Ln, (1.7) yields

∫
Sm
Kn(x, y)Ykl(y)dσm(y)=

∫
Sm
Ln
(〈x, y〉)Ykl(y)dσm(y)= amk (Ln)Ykl(x), x ∈ Sm,

(2.8)
while the previous theorem and relation (2.1) imply that

∫
Sm
Kn(x, y)Ykl(y)dσm(y)= σmakl(n)Ykl(x), x ∈ Sm. (2.9)

Thus,

amk
(
Ln
)
Ykl(x)= σmakl(n)Ykl(x), x ∈ Sm. (2.10)

Since Ykl 
≡ 0, we conclude that akl(n)= amk (Ln)/σm, l = 1,2, . . . ,N(m,k). �

Let K : [−1,1]→ C be a function such that

∫ 1

−1

∣∣K(t)
∣∣(1− t2)(m−2)/2

dt <∞. (2.11)

The spherical convolution defined by K is the operator f ∈ X �→ TK ( f )∈ X given by

TK ( f )(x)= 1
σm

∫
Sm
K
(〈x, y〉) f (y)dσm(y), x ∈ Sm. (2.12)

Basic properties of this operator along with some information about bi-zonal kernels are
to be found in [4, 7, 8, 14] and the references therein. We adopt here the most common
notation for the convolution operator, that is, TK ( f )= K ∗ f .

Theorem 2.3. The operator Tn is of convolution type if and only if Kn is bi-zonal.
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Proof. If Kn(x, y) = Ln(〈x, y〉), x, y ∈ Sm, for some Ln, then Tn( f ) = Ln ∗ f , f ∈ X , by
Theorem 2.1. Conversely, if Tn( f )= Ln∗ f , f ∈ X , for some Ln then

∫
Sm
Kn(x, y) f (y)dσm(y)=

∫
Sm
Ln
(〈x, y〉) f (y)dσm(y), x ∈ Sm, f ∈ X , (2.13)

that is,

∫
Sm

[
Kn(x, y)−Ln

(〈x, y〉)] f (y)dσm(y)= 0, x ∈ Sm, f ∈ X. (2.14)

In particular,

∫
Sm

[
Kn(x, y)−Ln

(〈x, y〉)]Ykl(y)dσm(y)= 0, x ∈ Sm, k ∈N, l = 1,2, . . . ,N(m,k).

(2.15)

Since {Ykl : k ∈N, l = 1, . . . ,N(m,k)} is a complete orthonormal subset of L2(Sm), it fol-
lows that

Kn(x, y)−Ln
(〈x, y〉)= 0 a.e. (2.16)

This leads to Kn(x, y)= Ln(〈x, y〉), x, y ∈ Sm, because Kn is polynomial. �

Next, we introduce some notation. Given a kernel K : Sm × Sm → C, we will write
Kx e Ky to denote the functions y ∈ Sm �→ K(x, y) and x ∈ Sm �→ K(x, y), respectively.
It is easily seen that these two functions are in L1(Sm) when K is polynomial. In just one
step of the proof of Theorem 2.4 below we use the space L∞(Sm) as defined in [3, page
184].

Theorem 2.4. An upper bound for ‖Tn‖X is sup{‖Kx
n‖1 : x ∈ Sm}.

Proof. First we consider the case X = C(Sm). If f ∈ X , Theorem 2.1 implies that

∣∣Tn f (x)
∣∣≤ 1

σm

∫
Sm

∣∣Kn(x, y) f (y)
∣∣dσm(y)≤ ∥∥Kx

n

∥∥
1‖ f ‖∞, x ∈ Sm. (2.17)

Hence,

∥∥Tn( f )
∥∥∞ ≤ ‖ f ‖∞ sup

{∥∥Kx
n

∥∥
1 : x ∈ Sm

}
, f ∈ X , (2.18)

and, consequently,

∥∥Tn

∥∥
C(Sm) ≤ sup

{∥∥Kx
n

∥∥
1 : x ∈ Sm

}
. (2.19)
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Next, we consider the case X = Lp(Sm). If f ∈ X then

∥∥Tn( f )
∥∥p
p =

1
σm

∫
Sm

∣∣Tn f (x)
∣∣pdσm(x)

= 1
σm

∫
Sm

∣∣∣∣ 1
σm

∫
Sm
Kn(x, y) f (y)dσm(y)

∣∣∣∣
p

dσm(x)

≤ 1
σm

∫
Sm

[
1
σm

∫
Sm

∣∣Kn(x, y) f (y)
∣∣dσm(y)

]p
dσm(x).

(2.20)

Since (Kx
n )1/p f ∈ Lp(Sm), x ∈ Sm and (Kx

n )1/p′ ∈ Lp′(Sm), x ∈ Sm (p′ is the conjugate ex-
ponent of p), Hölder’s inequality implies that

[
1
σm

∫
Sm

∣∣Kn(x, y) f (y)
∣∣dσm(y)

]p
≤ ∥∥(Kx

n

)1/p′∥∥p
p′
∥∥(Kx

n

)1/p
f
∥∥p
p

= 1
σm

∥∥Kx
n

∥∥p/p′
1

∫
Sm

∣∣Kn(x, y)
∣∣∣∣ f (y)

∣∣pdσm(y).

(2.21)
Picking x0 ∈ Sm such that

sup
{∥∥Kx

n

∥∥
1 : x ∈ Sm

}= ∥∥Kx0
n

∥∥
1 (2.22)

and using Fubini’s theorem, we obtain

∥∥Tn( f )
∥∥p
p ≤

1
σ2
m

∫
Sm

∥∥Kx
n

∥∥p/p′
1

∫
Sm

∣∣Kn(x, y)
∣∣∣∣ f (y)

∣∣pdσm(y)dσm(x)

≤ 1
σ2
m

∥∥Kx0
n

∥∥p/p′
1

∫
Sm

∫
Sm

∣∣Kn(x, y)
∣∣∣∣ f (y)

∣∣pdσm(y)dσm(x)

= 1
σm

∥∥Kx0
n

∥∥p/p′
1

∫
Sm

(
1
σm

∫
Sm

∣∣Kn(y,x)
∣∣dσm(x)

)∣∣ f (y)
∣∣pdσm(y).

(2.23)

Thus,

∥∥Tn( f )
∥∥p
p ≤

1
σm

∥∥Kx0
n

∥∥p/p′
1

∫
Sm

∥∥Ky
n
∥∥

1

∣∣ f (y)
∣∣pdσm(y)≤ ∥∥Kx0

n

∥∥p
1‖ f ‖

p
p, (2.24)

whence

∥∥Tn

∥∥
X ≤ sup

{∥∥Kx
n

∥∥
1 : x ∈ Sm

}
. (2.25)

The proof is complete. �

We would like to observe that the second half of the proof above is very close to that
of [3, Theorem 6.18]. The upper bound given above coincides with ‖Tn‖X in at least two
cases.
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Theorem 2.5. For X = C(Sm) and X = L1(Sm), it holds

∥∥Tn

∥∥
X = sup

{∥∥Kx
n

∥∥
1 : x ∈ Sm

}
. (2.26)

Proof. Due to Theorem 2.4, we need to prove that

∥∥Tn

∥∥
X ≥ sup

{∥∥Kx
n

∥∥
1 : x ∈ Sm

}
. (2.27)

Using the formula [3, page 189]

‖ f ‖1 = sup
{∣∣∣∣ 1

σm

∫
Sm

f g dσm

∣∣∣∣ : ‖g‖∞ = 1
}

, f ∈ L1(Sm), (2.28)

we obtain

∥∥Kx
n

∥∥
1 = sup

{∣∣∣∣ 1
σm

∫
Sm
Kn(x, y) f (y)dσm(y)

∣∣∣∣ : ‖ f ‖∞ = 1
}

= sup
{∣∣∣∣ 1

σm

∫
Sm
Kn(x, y) f (y)dσm(y)

∣∣∣∣ :
∥∥ f ∥∥∞ = 1

}

= sup
{∣∣Tn f (x)

∣∣ : ‖ f ‖∞ = 1
}

≤ sup
{∥∥Tn( f )

∥∥∞ : ‖ f ‖∞ = 1
}

= ∥∥Tn

∥∥
C(Sm), x ∈ Sm,

(2.29)

and, consequently,

sup
{∥∥Kx

n

∥∥
1 : x ∈ Sm

}≤ ∥∥Tn

∥∥
C(Sm). (2.30)

To finish the proof, first observe that

∫
Sm
Tn f (y)g(y)dσm(y)= 1

σm

∫
Sm

n∑
k=0

N(m,k)∑
l=1

akl(n) f̂ (k, l)Ykl(y)g(y)dσm(y)

=
∫
Sm

(
1
σm

n∑
k=0

N(m,k)∑
l=1

akl(n)ĝ(k, l)Ykl(y)

)
f (y)dσm(y)

=
∫
Sm
Tng(y) f (y)dσm(y), f ∈ L1(Sm), g ∈ C

(
Sm
)
.

(2.31)

Finally, using the formula [3, page 223]

‖ f ‖∞ = sup
{∣∣∣∣ 1

σm

∫
Sm

f g dσm

∣∣∣∣ : ‖g‖1 = 1
}

, (2.32)
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we obtain

∥∥Tn

∥∥
L1(Sm) = sup

{∥∥Tn f
∥∥

1 : ‖ f ‖1 = 1
}

= sup
‖ f ‖1=1

(
sup

{∣∣∣∣ 1
σm

∫
Sm
Tn f (y)g(y)dσm(y)

∣∣∣∣ : ‖g‖∞ = 1
})

= sup
‖ f ‖1=1

(
sup

{∣∣∣∣ 1
σm

∫
Sm
Tng(y) f (y)dσm(y)

∣∣∣∣ : ‖g‖∞ = 1
})

= sup
‖g‖∞=1

(
sup

{∣∣∣∣ 1
σm

∫
Sm
Tng(y) f (y)dσm(y)

∣∣∣∣ : ‖ f ‖1 = 1
})

= sup
{∥∥Tn(g)

∥∥∞ : ‖g‖∞ = 1
}

= ∥∥Tn

∥∥
C(Sm).

(2.33)

This completes the proof of the theorem. �

3. Approximate identities

In this section, keeping the notation in (1.9), we will search for conditions in order that
the following approximation property holds:

lim
n→∞

∥∥Tn( f )− f
∥∥
X = 0, f ∈ X. (3.1)

As usual, a sequence {Tn}n∈N satisfying (3.1) is called an approximate identity in X . We
refer the reader to [8] and some references therein, for nice examples of approximate
identities in X , including examples involving spherical convolution, spherical shifting,
and so forth. Since spherical convolution operators belong to the class of operators we
are dealing with here, many results in this section may be considered as generalizations of
those corresponding to approximation by spherical convolution. For results dealing with
approximate identities and spherical convolution, see [5, 6, 8, 9, 10].

Theorem 3.1. If {Tn}n∈N is an approximate identity in X then the following properties
hold:

(i) There exists a positive constant C such that ‖Tn( f )‖X ≤ C‖ f ‖X , n∈N, f ∈ X ;
(ii) limn→∞ akl(n)= 1, k ∈N, l = 1,2, . . . ,N(m,k).

Proof. Assume {Tn}n∈N is an approximate identity in X . Since every sequence
{Tn( f )}n∈N, f ∈ X , is bounded, the Uniform Boundedness Principle implies that

∥∥Tn( f )
∥∥
X ≤ C‖ f ‖X , f ∈ X , n∈N, (3.2)

for some nonnegative constant C. If C = 0 then Tn( f )= 0, f ∈ X , n∈N, whence

‖ f ‖X = lim
n→∞

∥∥Tn( f )− f
∥∥
X = 0, f ∈ X , (3.3)
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a clear contradiction. Thus, C > 0 and (i) is proved. To prove (ii) fix k ∈ N and l ∈
{1,2, . . . ,N(m,k)}. Since

TnYkl(y)= akl(n)Ykl(y), y ∈ Sm, n≥ k, (3.4)

it follows that

lim
n→∞TnYkl(y)=

(
lim
n→∞akl(n)

)
Ykl(y), y ∈ Sm. (3.5)

We split the proof in two cases. If X = C(Sm), our assumption on {Tn}n∈N implies that

lim
n→∞TnYkl(y)= Ykl(y), y ∈ Sm. (3.6)

Since Ykl 
≡ 0, we can choose y0 ∈ Sm such that Ykl(y0) 
= 0. Thus, (3.5) and (3.6) lead to

Ykl(y0)=
(

lim
n→∞akl(n)

)
Ykl(y0). (3.7)

If X = Lp(Sm), 1≤ p <∞, a similar procedure leads to

Ykl(y)= lim
n→∞TnYkl(y)=

(
lim
n→∞akl(n)

)
Ykl(y), y ∈ Sm \Λ, (3.8)

where σm(Λ)= 0. Taking y1 ∈ Sm \Λ such that Ykl(y1) 
= 0, as we certainly can, we con-
clude that

Ykl(y1)=
(

lim
n→∞akl(n)

)
Ykl(y1). (3.9)

In both cases the conclusion is limn→∞ akl(n)= 1. �

Next, we search for some converse results.

Theorem 3.2. Let f ∈ C(Sm) be a function fulfilling the following condition: if q ∈ P(Sm)
then there exists a constant C := C( f − q) ≥ 0 such that ‖Tn( f − q)‖∞ ≤ C( f − q)‖ f −
q‖∞, n∈N. If limn→∞ akl(n)=1, k∈N, l=1,2, . . . ,N(m,k) then limn→∞‖Tn( f )− f ‖∞=0.

Proof. Let ε > 0. We use the Weierstrass approximation theorem to select q ∈ P(Sm) such
that ‖ f − q‖∞ < ε and write q in the form

q =
M∑
k=0

N(m,k)∑
l=1

rklYkl, rkl ∈ C, k = 0,1, . . . ,M, l = 1,2, . . . ,N(m,k). (3.10)



330 Approximation on the sphere by weighted Fourier expansions

Since

Tn(q)=
M∑
k=0

N(m,k)∑
l=1

akl(n)rklYkl, n≥M, (3.11)

defining

B1 :=max
{∣∣rkl∣∣ : k = 0,1, . . . ,M, l = 1,2, . . . ,N(m,k)

}
,

B2 :=max
{∥∥Ykl

∥∥∞ : k = 0,1, . . . ,M, l = 1,2, . . . ,N(m,k)
}

,
(3.12)

it is clear that

∣∣Tnq(y)− q(y)
∣∣=

∣∣∣∣∣
M∑
k=0

N(m,k)∑
l=1

(
akl(n)− 1

)
rklYkl(y)

∣∣∣∣∣

≤
M∑
k=0

N(m,k)∑
l=1

∣∣akl(n)− 1
∣∣∣∣rkl∣∣∥∥Ykl

∥∥∞

≤ B1B2

M∑
k=0

N(m,k)∑
l=1

∣∣akl(n)− 1
∣∣, y ∈ Sm, n≥M.

(3.13)

Consequently,

∥∥Tn(q)− q
∥∥∞ ≤ B1B2

M∑
k=0

N(m,k)∑
l=1

∣∣akl(n)− 1
∣∣, n≥M. (3.14)

If limn→∞ akl(n)= 1, k ∈N, l = 1,2 . . . ,N(m,k), then limn→∞‖Tn(q)− q‖∞ = 0 and there
is an N(ε)∈N such that

∥∥Tn(q)− q
∥∥∞ < ε, n≥N(ε). (3.15)

Therefore,

∥∥Tn( f )− f
∥∥∞ ≤ ∥∥Tn( f )−Tn(q)

∥∥∞ +
∥∥Tn(q)− q

∥∥∞ +‖q− f ‖∞
≤ ∥∥Tn( f − q)

∥∥∞ + 2ε

≤ C( f − q)‖ f − q‖∞ + 2ε

≤ (C( f − q) + 2
)
ε, n≥N(ε),

(3.16)

completing the proof of the theorem. �

Theorem 3.3. Let f ∈ Lp(Sm) be a function fulfilling the following condition: if q ∈ P(Sm)
then there exists a constant C := C( f − q) ≥ 0 such that ‖Tn( f − q)‖p ≤ C( f − q)‖ f −
q‖p, n∈N. If limn→∞ akl(n)= 1, k ∈N, l = 1,2, . . . ,N(m,k) then limn→∞‖Tn( f )− f ‖p =
0.
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Proof. Let ε > 0. Since C(Sm) is dense in Lp(Sm), there exists a function g ∈ C(Sm) such
that ‖ f − g‖p < ε/2. The Weierstrass approximation theorem provides a polynomial q
such that ‖q− g‖∞ < ε/2. Hence,

‖ f − q‖p ≤ ‖ f − g‖p +‖g − q‖p ≤ ε2 +‖g − q‖∞ < ε. (3.17)

As in the proof of the previous theorem, if limn→∞ akl(n)= 1, k ∈N, l = 1,2, . . . ,N(m,k)
then limn→∞‖Tn(q)− q‖∞ = 0. Thus, the inequality ‖Tn(q)− q‖p ≤ ‖Tn(q)− q‖∞ im-
plies that limn→∞‖Tn(q)− q‖p = 0. Now, there exists N(ε)∈N such that

∥∥Tn(q)− q
∥∥
p < ε, n≥N(ε). (3.18)

Therefore, ∥∥Tn( f )− f
∥∥
p ≤

∥∥Tn( f )−Tn(q)
∥∥
p +

∥∥Tn(q)− q
∥∥
p +‖q− f ‖p

≤ ∥∥Tn( f − q)
∥∥
p + 2ε

≤ C( f − q)‖ f − q‖p + 2ε

≤ (C( f − q) + 2
)
ε, n≥N(ε).

(3.19)

This completes the proof. �

Combining the previous three theorems we have the following.

Theorem 3.4. The sequence {Tn}n∈N is an approximate identity in X if and only if the
following conditions hold:

(i) Given f ∈ X , there exists a constant Cf ≥ 0 such that ‖Tn( f )‖X ≤ Cf ‖ f ‖X , n∈N;
(ii) limn→∞ akl(n)= 1, k ∈N, l = 1,2, . . . ,N(m,k).

Next, we investigate the possibility of changing condition (i) by another involving the
kernel Kn. This is suggested by Theorem 2.1.

Theorem 3.5. If limn→∞ akl(n)= 1, k ∈N, l = 1,2, . . . ,N(m,k) and

sup
n∈N

(
sup

{∥∥Kx
n

∥∥
1 : x ∈ Sm

})
<∞ (3.20)

then {Tn}n∈N is an approximate identity in X .

Proof. If sup{‖Kx
n‖1 : x ∈ Sm} ≤ C, n ∈N, for some positive constant C, not depending

on n, then Theorem 2.4 implies that
∥∥Tn( f )

∥∥
X ≤ C‖ f ‖X , n∈N, f ∈ X. (3.21)

The previous theorem closes the proof. �

The converse of this result holds in at least two cases.

Theorem 3.6. Let either X = C(Sm) or X = L1(Sm). Then {Tn}n∈N is an approximate iden-
tity in X if and only if the following properties hold:

(i) supn∈N(sup{‖Kx
n‖1 : x ∈ Sm}) <∞;

(ii) limn→∞ akl(n)= 1, k ∈N, l = 1, . . . ,N(m,k).



332 Approximation on the sphere by weighted Fourier expansions

Proof. One implication is consequence of the previous theorem. As for the other, assume
{Tn}n∈N is an approximate identity in X . Theorem 3.1 yields the existence of a positive
constant C such that

∥∥Tn( f )
∥∥
X ≤ C‖ f ‖X , f ∈ X , n∈N. (3.22)

Hence,

∥∥Tn

∥∥
X = sup

f∈X\{0}

‖Tn( f )‖X
‖ f ‖X ≤ C, n∈N. (3.23)

Under the conditions in the statement of the theorem, Theorem 2.5 is applicable. Hence,

sup
{∥∥Kx

n

∥∥
1 : x ∈ Sm

}= ∥∥Tn

∥∥
X ≤ C, n∈N, (3.24)

and, therefore,

sup
n∈N

(
sup

{∥∥Kx
n

∥∥
1 : x ∈ Sm

})≤ C. (3.25)

This takes care of condition (i). Condition (ii) follows directly from Theorem 3.1. �

If Kn is positive, that is, Kn(x, y) ≥ 0, x, y ∈ Sm, then we can sharpen Theorem 3.6 as
follows.

Theorem 3.7. Let either X = C(Sm) or X = L1(Sm). Assume that every Kn is positive.
Then {Tn}n∈N is an approximate identity in X if and only if limn→∞ akl(n) = 1, k ∈ N,
l = 1,2, . . . ,N(m,k).

Proof. It is sufficient to prove that (ii) implies (i) in Theorem 3.6. The positivity of Kn

and the orthonormality of the spherical harmonics yield

∥∥Kx
n

∥∥
1 =

1
σm

∫
Sm
Kn(x, y)dσm(y)

= 1
σm

∫
Sm

n∑
k=0

N(m,k)∑
l=1

akl(n)Ykl(x)Ykl(y)dσm(y)

=
n∑

k=0

N(m,k)∑
l=1

akl(n)Ykl(x)
1

σmY01(x)

∫
Sm
Y01(y)Ykl(y)dσm(y)

= a01(n), x ∈ Sm, n∈N.

(3.26)

Hence,

sup
x∈Sm

∥∥Kx
n

∥∥
1 = a01(n), n∈N. (3.27)

Since limn→∞ a01(n)= 1, it follows

lim
n→∞ sup

x∈Sm
∥∥Kx

n

∥∥
1 = lim

n→∞a01(n)= 1. (3.28)
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Therefore, there exists a positive constant C such that

sup
n∈N

(
sup

{∥∥Kx
n

∥∥
1 : x ∈ Sm

})≤ C. (3.29)

Thus, the result follows from the previous theorem. �

These are elementary consequences of the above results.

Theorem 3.8. Let either X = C(Sm) or X = L1(Sm). If limn→∞ akl(n) = 1, k ∈ N, l = 1,
. . . ,N(m,k), then the following assertions are equivalent:

(i) limn→∞‖Tn( f )− f ‖X = 0, f ∈ X ;
(ii) there exists a C ≥ 0 such that ‖Tn( f )‖X ≤ C‖ f ‖X , f ∈ X , n∈N;

(iii) supn∈N(sup{‖Kx
n‖1 : x ∈ Sm}) <∞.

Theorem 3.9. The sequence {Tn}n∈N is an approximate identity in C(Sm) if and only if it
is an approximate identity in L1(Sm).

If {Tn}n∈N is an approximate identity in C(Sm) then it is an approximate identity in
Lp(Sm), 1 ≤ p <∞ (Theorems 3.5 and 3.6). Thus, it is quite obvious that the case X =
C(Sm) is the most important among all.

We close the section, giving a method to construct approximate identities. It is based
on a corresponding property of spherical convolution.

Theorem 3.10. Let {Sn}n∈N be another sequence having a representation as in (1.9). If both
{Tn}n∈N and {Sn}n∈N are approximate identities in X then {Tn ◦ Sn}n∈N is an approximate
identity in X .

Proof. Let {Tn}n∈N be as in (1.9) and represent {Sn}n∈N in the form

Sn( f )= 1
σm

n∑
i=0

N(m,i)∑
j=1

ci j(n) f̂ (i, j)Yij , f ∈ X , (3.30)

with ci j(n)∈R, i= 0,1, . . . , j = 1,2, . . . ,N(m, i). Using (2.5), (2.6) and arranging we have
that

(
Tn
(
Sn f

))
(x)= 1

σm

∫
Sm
Kn(x, y)

(
Sn f

)
(y)dσm(y)

= 1
σ2
m

∫
Sm

n∑
k=0

N(m,k)∑
l=1

akl(n)Ykl(x)Ykl(y)
n∑
i=0

N(m,i)∑
j=1

ci j(n) f̂ (i, j)Yij(y)dσm(y),

(3.31)
whence

(
Tn
(
Sn f

))
(x)= 1

σm

n∑
k=0

N(m,k)∑
l=1

n∑
i=0

N(m,i)∑
j=1

akl(n)ci j(n) f̂ (i, j)Ykl(x)
1
σm

∫
Sm
Yi j(y)Ykl(y)dσm(y)

= 1
σm

n∑
k=0

N(m,k)∑
l=1

akl(n)ckl(n) f̂ (k, l)Ykl(x), x ∈ Sm, f ∈ X.

(3.32)
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If {Tn}n∈N and {Sn}n∈N are approximate identities in X , Theorem 3.1 implies that

lim
n→∞akl(n)= lim

n→∞ckl(n)= 1, k ∈N, l = 1,2, . . . ,N(m,k). (3.33)

Hence,

lim
n→∞akl(n)ckl(n)= 1, k ∈N, l = 1,2, . . . ,N(m,k). (3.34)

That same theorem produces constants C1,C2 > 0 such that

∥∥Tn( f )
∥∥
X ≤ C1‖ f ‖X ,

∥∥Sn( f )
∥∥
X ≤ C2‖ f ‖X , n∈N, f ∈ X. (3.35)

Thus,

∥∥Tn
(
Sn f

)∥∥
X ≤ C1

∥∥Sn( f )
∥∥
X ≤ C1C2‖ f ‖X , n∈N, f ∈ X. (3.36)

Now, Theorem 3.4 guarantees that {Tn ◦ Sn}n∈N is an approximate identity in X . �

An important consequence of Theorem 3.10 is this: if {Tn}n∈N is an approximate iden-
tity in X and k ∈N then {Tk

n}n∈N is an approximate identity in X .

4. Localized approximate identities

In this section, we deal with the space C(Sm) only and investigate approximation at one
fixed point. The term localized refers to this and nothing else. To motivate the main defi-
nition in this section, let {Tn} be as in (1.9) and assume that {Tn}n∈N is an approximate
identity in C(Sm). Since

lim
n→∞Tn f (y)= f (y), y ∈ Sm, f ∈ C(Sm), (4.1)

we have that

f (y)= lim
n→∞

1
σm

n∑
k=0

N(m,k)∑
l=1

akl(n) f̂ (k, l)Ykl(y)

= lim
n→∞

1
σm

∫
Sm

n∑
k=0

N(m,k)∑
l=1

akl(n)Ykl(y)Ykl(x) f (x)dσm(x)

= lim
n→∞

1
σm

∫
Sm

( n∑
k=0

N(m,k)∑
l=1

c
y
kl(n)Ykl(x)

)
f (x)dσm(x), y ∈ Sm, f ∈ C(Sm),

(4.2)

in which c
y
kl(n) := akl(n)Ykl(y).
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The definition can now be introduced. Let y ∈ Sm and let {Syn}n∈N be a sequence of
complex functions defined on Sm that depends on y. The sequence is called an approxi-
mate identity in y if

lim
n→∞

1
σm

∫
Sm
S
y
n(x) f (x)dσm(x)= f (y), f ∈ C

(
Sm
)
. (4.3)

Theorem 4.1. If {Tn}n∈N is an approximate identity in C(Sm) then the sequence {Ty
n}n∈N

given by

T
y
n (x) :=

n∑
k=0

N(m,k)∑
l=1

c
y
kl(n)Ykl(x), x ∈ Sm, (4.4)

in which c
y
kl(n)= akl(n)Ykl(y), k = 0,1, . . . , l = 1,2, . . . ,N(m,k), is an approximate identity

in y.

In what follows we will seek for conditions in order that a general sequence {Ty
n}n∈N as

in (4.4), but with arbitrary coefficients c
y
kl(n), be an approximate identity in y. We begin

computing the norm of the operator generated by (4.4).

Theorem 4.2. Let L
y
n denote the linear functional on C(Sm) given by

L
y
n( f )= 1

σm

∫
Sm
T

y
n (x) f (x)dσm(x), f ∈ C

(
Sm
)
. (4.5)

Then L
y
n is continuous and ‖Ly

n‖C(Sm) = ‖Ty
n‖1.

Proof. This is standard but we include a sketch of the proof for the sake of completeness
and because the same arguments are present in the proof of the next result. If f ∈ C(Sm),
then

∣∣Ly
n( f )

∣∣=
∣∣∣∣ 1
σm

∫
Sm
T

y
n (x) f (x)dσm(x)

∣∣∣∣
≤ 1

σm

∫
Sm

∣∣Ty
n (x)

∣∣∣∣ f (x)
∣∣dσm(x)

≤ ‖ f ‖∞
∥∥Ty

n
∥∥

1, f ∈ C
(
Sm
)
,

(4.6)

and, consequently,
∥∥Ly

n
∥∥
C(Sm) = sup

{∣∣Ly
n f
∣∣ : ‖ f ‖∞ ≤ 1

}≤ ∥∥Ty
n
∥∥

1. (4.7)

On the other hand, since F := {x ∈ Sm : T
y
n (x)= 0} is closed, given an ε > 0, there exists

an open set Oε ⊂ Sm such that F ⊂Oε and

1
σm

∫
Oε

∣∣Ty
n (x)

∣∣dσm(x) < ε. (4.8)

Since Sm is a normal space, we can find a continuous function gε : Sm → [0,1] such that
gε(x) = 0, x ∈ F and gε(x) = 1, x ∈ Sm \Oε. Now, it is promptly seen that the func-

tion hε defined by hε(x) = gε signT
y
n (x), x ∈ Sm is continuous and ‖hε‖∞ ≤ 1. Here,
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signz = z/|z|, z 
= 0 and sign0= 0. In addition,

L
y
n
(
hε
)= 1

σm

∫
Sm
T

y
n (x)gε(x)signT

y
n (x)dσm(x)

≥ 1
σm

∫
Sm\Oε

∣∣Ty
n (x)

∣∣dσm(x)≥ ∥∥Ty
n
∥∥

1− ε.
(4.9)

Thus, ‖Ly
n‖C(Sm) ≥ ‖Ty

n‖1− ε. This completes the proof. �

The existence of localized approximate identities follows from the results in the pre-
vious sections along with the comments we have made at the beginning of this section.
Theorem 4.3 provides an independent proof of this same result.

Theorem 4.3. Given y ∈ Sm, there always exists an approximate identity in y.

Proof. Let y ∈ Sm and let O
y
n be the set formed by the elements of Sm which are within

1/n of y. Since O
y
n is open in Rm+1, Urysohn’s lemma implies that we can find a sequence

{g yn}n∈N ⊂ C(Sm) such that g
y
n (x)≥ 0, x ∈ Sm, g

y
n (x)= 0 for x ∈ Sm \Oy

n and

1
σm

∫
Sm
g
y
n (x)dσm(x)= 1. (4.10)

On the other hand, the Weierstrass approximation theorem allows us to find a family
{qyn}n∈N of polynomials in m+ 1 variables such that

∥∥g yn − q
y
n
∥∥∞ <

1
n

, n∈N. (4.11)

Let f ∈ C(Sm) and fix ε > 0. From the continuity of f , we can find an n0 = n0(ε) ∈ N
such that

∣∣ f (y)− f (x)
∣∣ < ε, x ∈O

y
n0 . (4.12)

In addition, we can choose n1 ≥ n0 such that

∣∣ f (y)− f (x)
∣∣ < ε, x ∈O

y
n1 (4.13)

and ‖ f ‖∞ < εn1. Since

∣∣∣∣ f (y)− 1
σm

∫
Sm
q
y
n(x) f (x)dσm(x)

∣∣∣∣≤
∣∣∣∣ 1
σm

∫
Sm

[
f (y)− f (x)

]
g
y
n (x)dσm(x)

∣∣∣∣
+
∣∣∣∣ 1
σm

∫
Sm

[
g
y
n (x)− q

y
n(x)

]
f (x)dσm(x)

∣∣∣∣
≤ 1

σm

∫
Sm

∣∣ f (y)− f (x)
∣∣g yn (x)dσm(x)

+
1
σm

∫
Sm

∣∣g yn (x)− q
y
n(x)

∣∣∣∣ f (x)
∣∣dσm(x),

(4.14)
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we deduce that∣∣∣∣ f (y)− 1
σm

∫
Sm
q
y
n(x) f (x)dσm(x)

∣∣∣∣
≤ 1

σm

∫
O

y
n

∣∣ f (y)− f (x)
∣∣g yn (x)dσm(x) +

∥∥g yn − q
y
n
∥∥∞‖ f ‖∞

≤ ε 1
σm

∫
O

y
n

g
y
n (x)dσm(x) +

‖ f ‖∞
n

≤ 2ε, n≥ n1.

(4.15)

Since q
y
n is representable in the form

q
y
n(x)=

Mn∑
k=0

N(m,k)∑
l=1

c
y
kl(n)Ykl(x), x ∈ Sm, (4.16)

for some Mn, the result follows. �

The main result of this section is as follows.

Theorem 4.4. Let y ∈ Sm. The sequence {Ty
n}n∈N is an approximate identity in y if and

only if the following conditions hold:
(i) There exists a positive constant C such that ‖Ty

n‖1 ≤ C, n∈N;
(ii) limn→∞ c

y
kl(n)= Ykl(y), k ∈N, l = 1,2, . . . ,N(m,k).

Proof. Assume {Ty
n}n∈N is an approximate identity in y. Since limn→∞L

y
n( f )= f (y), f ∈

C(Sm), it follows that each sequence {Ly
n( f )}n∈N is bounded. Hence, for every f ∈ C(Sm),

we can find a constant Cf ≥ 0 such that

sup
{∣∣Ly

n( f )
∣∣ : n∈N}≤ Cf . (4.17)

The Uniform Boundedness Principle implies that

∥∥Ty
n
∥∥

1 =
∥∥Ly

n
∥∥
C(Sm) ≤ C, n∈N, (4.18)

for some C ≥ 0. It is an easy matter to verify that C is in fact positive. Since

L
y
n
(
Yµν

)= 1
σm

∫
Sm
T

y
n (x)Yµν(x)dσm(x)

=
µ∑

k=0

N(m,k)∑
l=1

c
y
kl(n)

(
1
σm

∫
Sm
Yµν(x)Ykl(x)dσm(x)

)

= c
y
µν(n), n≥ µ.

(4.19)

then

lim
n→∞c

y
µν(n)= lim

n→∞L
y
n
(
Yµν

)= Yµν(y), µ∈N, ν= 1,2, . . . ,N(m,µ). (4.20)
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Conversely, assume that (i) and (ii) hold. Let f ∈ C(Sm) and fix ε > 0. By the Weier-
strass approximation theorem we can find a polynomial q in m + 1 variables so that
‖q− f ‖∞ < ε. Writing q in the form

q =
M∑
µ=0

N(m,µ)∑
ν=1

rµνYµν, rµν ∈ C, (4.21)

and observing that L
y
n(q)=∑M

k=0

∑N(m,k)
l=1 c

y
kl(n)rkl, n≥M, condition (ii) implies that

lim
n→∞L

y
n(q)= lim

n→∞

M∑
k=0

N(m,k)∑
l=1

c
y
kl(n)rkl =

M∑
k=0

N(m,k)∑
l=1

rklYkl(y)= q(y). (4.22)

Choosing N(ε) so that

∣∣Ly
n(q)− q(y)

∣∣ < ε, n≥N(ε), (4.23)

we can use condition (i) to reach

∣∣Ly
n( f )− f (y)

∣∣≤ ∣∣Ly
n( f )−L

y
n(q)

∣∣+
∣∣Ly

n(q)− q(y)
∣∣+

∣∣q(y)− f (y)
∣∣

≤ ∣∣Ly
n( f − q)

∣∣+ ε+‖q− f ‖∞
<
∥∥Ly

n
∥∥
C(Sm)

∥∥( f − q)
∥∥∞ + 2ε

= ∥∥Ty
n
∥∥

1

∥∥( f − q)
∥∥∞ + 2ε

< (C+ 2)ε, n≥N(ε).

(4.24)

This completes the proof. �

We close the paper stating a theorem that includes a positiveness hypothesis on T
y
n .

Theorem 4.5. Let y ∈ Sm and assume that every T
y
n is positive. Then {Ty

n}n∈N is an ap-
proximate identity in y if and only if limn→∞ c

y
kl(n)= Ykl(y), k ∈N, l = 1,2, . . . ,N(m,k).

Proof. The positivity of T
y
n and the orthonormality of the spherical harmonics yield

∥∥Ty
n
∥∥

1 =
1
σm

∫
Sm
T

y
n (x)dσm(x)

= 1
σm

∫
Sm

n∑
k=0

N(m,k)∑
l=1

c
y
kl(n)Ykl(x)dσm(x)

=
n∑

k=0

N(m,k)∑
l=1

c
y
kl(n)

1
σmY01(y)

∫
Sm
Y01(x)Ykl(x)dσm(x)

= c
y
01(n)

Y01(y)
.

(4.25)

Hence, condition (ii) in Theorem 4.4 implies condition (i) there. The rest follows. �



V. A. Menegatto and A. C. Piantella 339

References

[1] S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Graduate Texts in Mathemat-
ics, vol. 137, Springer, New York, 1992.

[2] P. J. Davis, Interpolation and Approximation, Dover, New York, 1975, Republication, with minor
corrections, of the 1963 original, with a new preface and bibliography.

[3] G. B. Folland, Real Analysis. Modern Techniques and Their Applications, 2nd ed., Pure and Ap-
plied Mathematics (New York), A Wiley-Interscience Publication. John Wiley & Sons, New
York, 1999.

[4] W. Freeden, T. Gervens, and M. Schreiner, Constructive Approximation on the Sphere. With
Applications to Geomathematics, Numerical Mathematics and Scientific Computation, The
Clarendon Press, Oxford University Press, New York, 1998.

[5] W. Freeden, O. Glockner, and R. Litzenberger, A general Hilbert space approach to wavelets and
its application in geopotential determination, Numer. Funct. Anal. Optim. 20 (1999), no. 9-
10, 853–879.

[6] W. Freeden and K. Hesse, On the multiscale solution of satellite problems by use of locally sup-
ported kernel functions corresponding to equidistributed data on spherical orbits, Studia Sci.
Math. Hungar. 39 (2002), no. 1-2, 37–74.

[7] H. Groemer, Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia of
Mathematics and Its Applications, vol. 61, Cambridge University Press, Cambridge, 1996.

[8] V. A. Menegatto, Approximation by spherical convolution, Numer. Funct. Anal. Optim. 18
(1997), no. 9-10, 995–1012.

[9] V. Michel, A multiscale approximation for operator equations in separable Hilbert spaces—case
study: Reconstruction and description of the Earth’s interior, Habilitation thesis, Shaker,
Aachen, 2002.

[10] , Regularized wavelet-based multiresolution recovery of the harmonic mass density dis-
tribution from data of the Earth’s gravitational field at satellite height, Inverse Problems 21
(2005), no. 3, 997–1025.

[11] M. Morimoto, Analytic Functionals on the Sphere, Translations of Mathematical Monographs,
vol. 178, American Mathematical Society, Rhode Island, 1998.

[12] C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, vol. 17, Springer, Berlin, 1966.
[13] , Analysis of Spherical Symmetries in Euclidean Spaces, Applied Mathematical Sciences,

vol. 129, Springer, New York, 1998.
[14] M. Reimer, Constructive Theory of Multivariate Functions. With an Application to Tomography,

Bibliographisches Institut, Mannheim, 1990.
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