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A one-dimensional model is proposed for the simulations of resistance spot welding,
which is a common industrial method used to join metallic plates by electrical heating.
The model consists of the Stefan problem, in enthalpy form, coupled with the equation
of charge conservation for the electrical potential. The temperature dependence of the
density, thermal conductivity, specific heat, and electrical conductivity are taken into ac-
count, since the process generally involves a large temperature range, on the order of
1000 K. The model is general enough to allow for the welding of plates of different thick-
nesses or dissimilar materials and to account for variations in the Joule heating through
the material thickness due to the dependence of electrical resistivity on the temperature.
A novel feature in the model is the inclusion of the effects of interface resistance between
the plates which is also assumed to be temperature dependent. In addition to construct-
ing the model, a finite difference scheme for its numerical approximations is described,
and representative computer simulations are depicted. These describe welding processes
involving different interface resistances, different thicknesses, different materials, and dif-
ferent voltage forms. The differences in the process due to AC or DC currents are depicted
as well.

Copyright © 2006 K. T. Andrews et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The process of resistance spot welding (RSW) of metal sheets is commonly used in many
industrial settings. For example, it is often used to bind body panels in the automotive in-
dustry, and the mechanical and structural integrity of cars depends on the quality of the
welds. In this work, we construct and numerically simulate a one-dimensional model for
the process. The model is derived from first principles, and, in view of the large tempera-
ture range typically involved in the process, the temperature dependence of the electrical
conductivity, the density, the specific heat, and thermal conductivity are all taken into
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account. Our aim is to gain a deeper understanding of the processes involved and to pro-
vide reasonable quantitative predictions of the process evolution.

In a typical spot welding process, an electrical current is passed through two adjacent
metal plates which induces melting of the plates’ material. When the electrical power
input is shut off, the plates cool down and the molten material solidifies into a nugget,
forming a material bond between the two plates. In industry, the process is performed by
robot welders with preset “time schedules,” that is, the time intervals, usually measured in
cycles, for positioning the electrodes in place, passing the current and cooling the plates.
It is often the case that these schedules are based simply on trial and error together with
experimental verification. The latter is expensive and time consuming since it requires the
dismantling of a statistical sample of the plates in order to inspect the strength and form
of the nuggets. Clearly, a reliable scientific model can reduce considerably the number of
experimental verifications, and cut costs and effort.

Heat conduction with phase change is the main physical mechanism behind RSW,
which involves melting and solidification of the workpieces. One of the main difficulties
associated with the solution of this type of problem is the appearance of a free boundary
where the material changes phase. This boundary appears and expands as the material
melts and contracts and disappears as it solidifies. The numerical methods used for this
type of problems have generally been categorized as either being front-tracking methods
or enthalpy methods [3, 6]. In the case of a front tracking method, the Stefan condition
must be satisfied on the free boundary, while the heat conduction equation is solved on
each side of the boundary [14]. This requires accurate knowledge of the location of the
boundary. In the case of the enthalpy formulation, explicit knowledge of the boundary
location is not required and can be determined after the fact. Moreover, when there are
internal heat sources, the front tracking method is likely to generate superheating in the
solid while the enthalpy method would generate a so-called “mushy region” [12, 17].

A “mushy region” is a two-phase solid/liquid mixture region where the temperature is
constant and is equal to the melting temperature of the material. Such two-phase regions
appear during melting processes which start in the interior of the solid and are associated
with the appearance of superheating which is unstable, changing a solid material into a
stable solid/liquid mixture. As energy is added, it is absorbed as latent heat and so the
proportion of liquid to solid increases in the region and the temperature remains con-
stant at the melting temperature until all of the material has liquified, at which point the
temperature can begin to increase again [4, 12, 13].

Many studies have been devoted to resistance spot welding and commercial finite-
element-based software packages such as ABAQUS� and Sysweld� now have capabilities
to simulate certain aspects of phase-change and welding processes. An extensive literature
survey of solidification and melting heat transfer can be found in [20]. A review of the
welding literature shows many numerical simulations (usually finite-element-based) of
RSW processes, only a few of which are referenced here. These include one-dimensional
[8], two-dimensional [2, 5, 11, 16, 18], and three-dimensional [10] simulations of differ-
ent aspects of RSW. For instance, Feulvarch et al. [5] developed a numerical model for the
welding of sheets of the same thickness and material that incorporates electrothermal and
mechanical effects to investigate the effects of process variables on the RSW nugget size.
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Others, such as [11, 16], used the commercial finite element software ABAQUS to cou-
ple thermal, electrical, and mechanical modules in the simulation of RSW or to compare
the effect of single phase AC and multiphase DC on the weld size and energy consump-
tion [18]. By and large, a temperature-based formulation was used to model the process
[2, 5, 11, 16, 18], and an assumption of symmetry was made (hence not allowing for
the modeling of plates of dissimilar thicknesses or materials). In many cases, the current
density applied at the electrode or the Joule heating responsible for the melting of the
material was assumed to be uniform [10, 11, 16]. Mathematical analysis of related mod-
els, which couple melting with current flow, can be found in [7, 9, 12, 15, 17, 19] and in
the references therein.

In this work, we construct a model using the enthalpy formulation to describe the
evolution of the melting process and using the charge conservation equation to describe
the evolution of the electrical potential. We allow for the temperature dependence of the
density, thermal conductivity, specific heat, and electrical conductivity, since the process
temperature range is quite large, on the order of 1000 K. The model is general enough to
allow for the welding of plates of different thicknesses or different materials and accounts
for variations in the Joule heating through the material thickness due to the dependence
of electrical resistivity on temperature. A novel feature in the model is the use of interface
resistance between the plates which is also assumed to be temperature dependent. We
also introduce the nugget function which keeps track of the molten and mushy regions
and which, therefore, measures the size of the solidified nugget. Moreover, it can be used
to determine when the electrical and thermal resistances between the two plates vanish.
This happens when one of the plates starts melting and the gap between the two fills with
molten material, thus reducing the interface resistance.

The rest of the paper is structured as follows. In Section 2, we develop the model. A
finite difference algorithm is described in Section 3, while results of its implementation
can be found in Section 4. Here we consider simulations which involve different resis-
tances, different thicknesses, different materials, and different voltage forms. The paper
concludes in Section 5, which also points out directions for future work.

2. The model

A schematic setting of the spot welding process is depicted in Figure 2.1 with further de-
tails presented in Figure 2.2. Two metal sheets are pressed together, two cooled electrodes
are applied on both outer surfaces, and an electrical potential V0 is switched on across
a transformer. The resulting electrical current generates heat in the plates via the Joule
effect. The temperature increases and eventually a molten region appears and grows. At
a preset time, the electrical potential is switched off, the heating ceases, and the molten
region solidifies into a solid nugget which bonds the plates.

In industry, this operation is performed by robots on a very large scale. The program-
ming, or the so called “welding schedule,” consists of the specification of the potential
drop and the time of current flow and contact force. In more sophisticated settings, there
is continuous monitoring of the process parameters, and some types of control are ap-
plied in “real time.” Welding times which are too short may lead to weak welding bonds,
while times which are too long are expensive, slow down the operation, and may cause
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Figure 2.1. The spot welding setting.
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Figure 2.2. Expanded view of the plates and electrodes.

substantial thermal deformations. Even worse, if the molten zone reaches the outer sur-
face of a plate, it may cause flow of liquid metal (also known as expulsion), damaging the
electrodes and possibly the robot and causing a safety hazard. Therefore, there is a con-
siderable interest in the optimization of the process “schedule;” the model presented here
is a step towards this goal. We assume that the plates are made of different materials and
have different thicknesses. However, we describe the case with only two plates; it is easy
and straightforward to modify the model to consider the case of three or more plates.

As shown in Figure 2.2, the first plate has thickness l and occupies the interval 0 < x < l;
the second plate has thickness L− l and occupies the interval l < x < L. We use subscripts
i= 1 and i= 2 to denote quantities related to the first and second plate, respectively, and
everywhere below i= 1,2. The two electrodes are situated at x = 0 and x = L. For plate i,
we let θ denote the temperature, so that θi = θi(x, t) refers to the temperature distribution
at location x and time t in plate i. Similarly, the enthalpy per unit mass is hi = hi(x, t). To
simplify the notation from this point on we will not use the subscript i unless we wish
to describe a specific property of plate i. Thus, for example, we will use h to denote the
enthalpy of the system, with the understanding that restricted to plate i it is hi.

To describe the process of melting, we use not only the thermodynamic enthalpy per
unit mass function, h, but also the enthalpy per unit volume, H = ρh. Here ρ = ρi(hi)
denotes the material density. We also let c = ci(θi) denote the temperature dependent
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Figure 2.3. The graph of Ĥ ; θ∗ is the melting temperature.

specific heat (we note that c = dh/dθ), let k = ki(hi) denote the thermal conductivity, and
let σi = σi(hi) denote the local electrical conductivity. Finally, we let λi denote the latent
heat of melting, and let θ∗i denote the melting temperature of plate i, for i= 1,2. Both of
these latter quantities are constant, but we assume that the density, thermal conductivity,
and local electrical conductivity depend on the enthalpy, while the specific heat c depends
on the temperature, as well as on the phase (solid, liquid, or mixture) of the material. We
will describe the dependence on the phases in detail below. We will use subscripts s and l
to denote a property value for the solid or liquid (melted) material, respectively.

To describe the relationship between the enthalpy per unit volume H , and the temper-
ature θ, we introduce the enthalpy graphs Ĥ :

Ĥi
(
θi
)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρiscis

(
θi
)
θi, θi < θ∗i ;[

ρ∗is c
∗
is θ

∗
i ,ρ∗il

(
c∗is θ

∗
i + λi

)]
, θi = θ∗i ;

ρil
(
cil
(
θi
)
θi +Λi

)
, θi > θ∗i .

(2.1)

Here c∗is = cis(θ∗i ) and similar definitions are used for the other ∗ variables, while the
definition Λi = λi + (c∗is − c∗il )θ

∗
i ensures the continuity of the function past the melting

point.
The enthalpy per unit volume function H is then a selection out of the enthalpy graph

Ĥ(θ) given in Figure 2.3. The zone where θi < θ∗i represents the solid phase and the zone
where θ > θ∗i the liquid phase in plate i. The jump at the melting temperature equals the
total latent heat ρλ needed to melt a unit volume of the material.

The zone where the enthalpy per unit volume Hi belongs to the interval [ρ∗is c
∗
is θ

∗
i ,

ρ∗il (c
∗
is θ

∗
i + λi)] is the so-called mushy region, in which the temperature is constant and

is equal to the melting temperature. This region is of considerable importance in the
process; however, what actually happens in it depends on the material microstructure and
is not yet well understood. Although the temperature in the mushy region is identically
θ∗, the enthalpy per unit mass h changes from c∗s θ∗ to c∗s θ∗ + λ as the material changes
from solid to liquid phase. Consequently, we can use this change in enthalpy to measure
the change in the ratio of the solid and liquid phases in the region. Indeed, if we denote
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by βi the spatially and temporally varying liquid mass fraction in the mushy region

βi = hi− c∗is θ
∗
i

λi
= 1

λi

(
Hi

ρi
− c∗is θ

∗
i

)
, (2.2)

then when βi = 0 the grain at location x and time t in the ith plate is fully solid (at the
temperature θ∗i ); when βi = 1, it is completely molten; and when 0 < βi < 1 the fraction βi
of the grain is liquid and 1−βi is solid. Note that this definition is only valid at locations
where θi(x, t)= θ∗i .

We can now use β to take into account the changes which occur in σ , ρ, and k as the
material changes phase. Specifically, we assume that the electrical conductivity σi in the i
plate is given by

σi
(
hi
)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σis
(
θi
)
, θi < θ∗i ;

βiσil
(
θ∗i
)

+
(
1−βi

)
σis
(
θ∗i
)
, θi = θ∗i ;

σil
(
θi
)
, θi > θ∗i ,

(2.3)

where σis and σil are the electrical conductivities in the solid and liquid phases of plate i.
This choice assumes that in the mushy region the electrical conductivity is determined by
the fraction of the liquid and solid phases that are present. We make a similar assumption
on the thermal conductivity k and the specific heat c. In the case of material density, we
use

1
ρi
= 1

ρ∗is
+βi

(
1
ρ∗il
− 1
ρ∗is

)
(2.4)

when θi = θ∗i . This ensures that the volume of the solid/liquid mixture is equal to the sum
of the liquid and solid volumes.

Clearly, these are the simplest choices for σ , k, and c; other and more complex choices
are possible, and, ultimately, the electrical and thermal conductivities in the mushy zone
must be determined experimentally. Moreover, since they depend on the microstructure
of the material grains, they are likely to be complex and specific to the material being
used.

Finally, we let the electrical potential be denoted by ϕi = ϕi(x, t), and note that the elec-
trical current through the two plates can be expressed in terms of the electrical conduc-
tivity and electrical potential as I = σ(h)ϕx, where the subscript x represents the spatial
partial derivative, while the Joule heating is given by J = σ(h)(ϕx)2. We can now describe
the equations governing the process.

The enthalpy function, in each plate, is a pointwise selection out of the graph

H ∈ Ĥ(θ). (2.5)

The energy equation is

∂H

∂t
− ∂

∂x

(
k(H)

∂θ

∂x

)
= σ(H)

(
∂ϕ

∂x

)2

, x =/ l, (2.6)
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and the charge conservation equation is

∂

∂x

(
σ(H)

∂ϕ

∂x

)
= 0, x =/ l. (2.7)

These latter two equations hold in the interior of the plates {x =/ l}, but not at the interface
{x = l}.

To complete the model we need to prescribe the initial and boundary conditions, as
well as the transmission conditions across the interface x = l.

The initial conditions take the form Hi(x,0) = Hi0(x) in plate i. However, when the
process starts with two solid plates, which is the case in the industrial setting under con-
sideration, we need only prescribe the initial temperature θi0, which is usually just the
ambient temperature θa. Then, the enthalpy is found from condition (2.5), that is,

Hi(x,0)= ρisciθi0(x). (2.8)

The temperature at the outer surfaces is taken as the ambient temperature θ1 = θa at
x = 0 and θ2 = θa at x = L. It is straightforward to replace this condition with the more
realistic heat exchange condition

q =−ki ∂θi
∂x
= kex

(
θi− θie

)
, x = 0,L, (2.9)

where kex is the heat exchange coefficient, and θie is the electrode temperature. Even more
sophisticated conditions may be used, but, for the sake of simplicity, we consider only the
Dirichlet condition given above.

Before we continue with the transmission conditions at the interface x = l, we intro-
duce the nugget function Ψ, which allows us to describe the disappearance of the resis-
tance between the plates at the initiation of melting at x = l. But, more importantly, it is
designed to keep track of the melting process and to describe the growth of the nugget.
We define it in terms of the enthalpy (and not just temperature), since in this manner it
provides a more detailed picture of the melting process; thus,

Ψ(x, t)= max
0≤τ≤t

H(x,τ). (2.10)

Then the set

N(t)= {x ∈ [0, l]; Ψ(x, t)≥ ρ∗1sc
∗
1sθ

∗
1

}∪ {x ∈ [l,L]; Ψ(x, t)≥ ρ2sc
∗
2sθ

∗
2

}
(2.11)

describes all the locations at which melting occurred at any time up to and including t.
This includes all the mushy and molten regions (note: “molten” refers to {θ > θ∗}) and
therefore gives the maximal extent of the nugget. The part of the nugget that was at some
time up to and including t completely molten is given by

Ncm(t)= {x ∈ [0, l]; Ψ(x, t)≥ ρ∗1l
(
c∗1sθ

∗
1 + λ1

)}∪ {x ∈ [l,L]; Ψ(x, t)≥ ρ∗2l
(
c∗2sθ

∗
2 + λ2

)}
,

(2.12)



8 A one-dimensional spot welding model

and so the part of the nugget that was never fully molten is given by

Nmush(t)=N(t)−Ncm(t). (2.13)

An important use of the nugget function Ψ occurs in the case when the solidified
nugget material has a different microscopic structure than the material of the original
plates. In this situation, the nugget region will be clearly distinct from the surrounding
region formed by the original two plates.

We turn next to model the resistance of the interface between the plates. This resistance
may be affected by the microscopic gaps that occur due to imperfect contact between the
two plates and by the insertion of thin coats of materials between the plates. Indeed, a
new version of the process was announced in [1] in which a thin layer of a special highly
resisting material is inserted between the zinc-coated plates. The purpose of the coating
is to speed up the melting process and to use smaller currents. We incorporate this option
into the model by including an adjustable interface resistance term.

To conform to industrial practice, we assume that a potential drop V0 is applied to the
transformer and we allow it to be time dependent, that is, V0 = V0(t). Let R0 denote the
resistance of the cables and electrodes. We denote by Rg the interface resistance attrib-
utable to microscopic gaps and possible coatings, and we assume that it is a function of
the interface temperature. Moreover, we assume that, as melting commences, the gap fills
with material and the resistance drops essentially to zero. We assume that it actually does
vanish when melting starts at the interface (on the side with the lower melting tempera-
ture), and that the process is irreversible, so that once melting takes place, the interface
resistance vanishes for all subsequent times. Thus, we assume that Rg is a function of the
temperature and of the maximum interface temperature

ϑ= ϑ(t)= max
0≤τ≤t

θ(l,τ), (2.14)

and that Rg vanishes when ϑ(t)≥ ϑ∗min, where

ϑ∗min =min
{
θ∗1 ,θ∗2

}
. (2.15)

Thus,

Rg = Rg
(
θ(l, t),ϑ(t)

)
, Rg = 0, if ϑ(t)≥ ϑ∗min. (2.16)

A typical graph of Rg versus θ(l, t) is given in Figure 2.4. The assumption that Rg depends
on θ(l, t) is made for the sake of generality, since the interface temperature may fluctuate
while ϑ is constant. However, in a process where the interface temperature rises steadily,
this may be redundant. We note that when the two plates are made of the same material,
then ϑ∗min = θ∗, and Rg vanishes when the interface starts to melt, that is, θ(l, t)= θ∗.
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Figure 2.4. The graph of Rg versus θ(l, t).

Recalling that the electrical resistivity is given by 1/σ(H), the total resistance per unit
area in the transformer loop is R0 +R(H ,θ), where

R(t)= R(H ,θ)=
∫ l

0

1
σ1
(
H1(x, t)

)dx+
∫ L

l

1
σ2
(
H2(x, t)

)dx+Rg
(
θ(l, t),ϑ(t)

)
(2.17)

is the combined resistance of the two plates and the interface. Note that R(t) is time
dependent via the dependence of H , θ, and Rg on t and, moreover, these two have the
dimensions of resistance per unit area (say Ω/cm2), as we deal with a one-dimensional
setting. For the sake of simplicity, we assume that R0 = const.; however, it would cause
only minor changes below to assume that it depends on time or even on temperature.
We conclude that the current in the loop is I =V0/(R0 +R(H ,θ)), and the potential drop
between the electrodes is

V = IR(t)= V0(t)R(t)
R0 +R(t)

. (2.18)

We are now ready to specify the transmission conditions at x = l. We assume that
the temperature and the electric current are continuous across the gap, while the electric
potential and heat flux jump because of the resistance at the interface. Thus, the following
transmission conditions hold:

θ1(l, t)= θ2(l, t), (2.19)

ϕ1(l, t) + IRg = ϕ2(l, t), (2.20)

k1θ1x(l, t)− I2Rg = k2θ2x(l, t), (2.21)

σ1
(
θ1(l, t)

)
ϕ1x(l, t)= σ2

(
θ2(l, t)

)
ϕ2x(l, t). (2.22)

The term IRg in (2.20) is the potential drop due to interface resistance, and I2Rg in (2.21)
is the corresponding interface Joule heating term. Both terms vanish upon the initiation
of melting at the interface.
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We summarize the mathematical problem as follows.
Find a triple {H ,θ,ϕ} such that (2.5)–(2.7), (2.19)–(2.22) hold, together with the ini-

tial conditions

H1(x,0)=H10(x), 0≤ x ≤ l, H2(x,0)=H20(x), l ≤ x ≤ L, (2.23)

and the boundary conditions

θ1(0, t)= θ2(L, t)= θa, (2.24)

ϕ1(0, t)= 0, (2.25)

ϕ2(L, t)= V0(t)R(t)
R0 +R(t)

(2.26)

for 0≤ t ≤ T , where T is the final time.
We now show that the one-dimensional model (2.5)–(2.26) decouples, resulting in

a problem for the temperature and enthalpy only. Once these are found, the electrical
potential can be obtained in closed form by integration. To achieve the decoupling, we
integrate (2.7), for i= 1, from 0 to x and obtain that

(
σ1
(
h1
)
ϕ1x
)
(x, t)= (σ1

(
h1
)
ϕ1x
)
(0, t)= I1(t), (2.27)

that is, the current is independent of x. Similarly, we integrate, for i= 2, from l to x and
find that

(
σ2
(
h2
)
ϕ2x
)
(x, t)= (σ2

(
h2
)
ϕ2x
)
(l, t)= I2(t). (2.28)

Then, it follows from (2.22) that I1(t) = I2(t) = I(t). Furthermore, another integration
over 0 ≤ x ≤ L and simple manipulations using the transmission conditions (2.21) and
(2.22) yield I(t) = V0/(R0 +R(t)), where the total resistance R(t) is given in (2.17). The
Joule heating terms in (2.6) then become

σi
(
Hi
)(
ϕix
)2 = I2(t)

σi
(
Hi
) , i= 1,2. (2.29)

For notational convenience, let

F
(
σ(H),θ

)= V 2
0 (t)

σ
(
H(x, t)

)(
R0 +R(t)

)2 . (2.30)

The decoupled problem may now be stated.
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Find a pair {H ,θ} such that

H ∈ Ĥ(θ), x =/ l, (2.31)

∂H

∂t
− ∂

∂x

(
k(H)

∂θ

∂x

)
= F

(
σ(H),θ

)
, x =/ l, (2.32)

I(t)= V0(t)
R0 +R(t)

, (2.33)

k1θx(l−, t)− I2Rg = k2θx(l+, t), 0≤ t ≤ T , (2.34)

h(x,0)= h0(x), 0≤ x ≤ L, (2.35)

θ1(0, t)= θ2(L, t)= θa, 0≤ t ≤ T. (2.36)

Here F is given in (2.30) and R in (2.17).
We note that the decoupled problem is nonlinear and nonlocal, since F depends on the

integral of the solution.
Once a solution {H ,θ} has been found, the electrical potential ϕ is given by

ϕ1(x, t)= I(t)
∫ x

0

1
σ1
(
θ1(ξ, t)

)dξ, 0≤ x ≤ l,

ϕ2(x, t)= I(t)

(
Rg +

∫ l

0

1
σ1
(
θ1(ξ, t)

)dξ +
∫ x

l

1
σ2
(
θ2(ξ, t)

)dξ), l ≤ x ≤ L.

(2.37)

A formal existence proof for solutions to problem (2.31)–(2.36) is at present an unre-
solved issue. The nonlinearities in the problem and its lack of smoothness make it a very
hard problem for mathematical analysis.

3. Numerical discretization

Equations (2.32)–(2.36) were discretized using finite difference approximations. Second-
order central differencing was used for second derivatives, while forward and backward
differencing were used to evaluate first derivatives in the first and second plate, respec-
tively. An explicit forward Euler scheme was used for the temporal discretization.

Let nx represent the number of grid points in plate 1 and let (Nx −nx) be the number
in plate 2. A uniform grid spacing was assumed for each plate, that is,

Δx1 = l

nx − 1
, Δx2 = L− l

Nx −nx
. (3.1)

Let subscript j denote the value of a function at a grid point xj , let Δt denote the time
step size and let superscript n denote the discretized time level. Note that j = 1, j = nx,
and j = Nx, respectively, correspond to the locations x = 0, x = l (interface), and x = L.
Equation (2.32) was discretized at the interior points, excluding the interface between the
two plates, as follows:

Hn+1
j −Hn

j

Δt
= 1

Δx2
i

((
knj + knj+1

)(
θnj+1− θnj

)− (knj−1 + knj
)(
θnj − θnj−1

))
+Fn

j (3.2)

for 2≤ j ≤ nx − 1 (in plate 1, i= 1) and for nx + 1≤ j ≤Nx − 1 (in plate 2, i= 2).
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The Joule heating terms were evaluated as

Fn
j =

(
Vn

0

)2

σnj
(
R0 +Rn

) , (3.3)

where a trapezoidal numerical integration was used to evaluate (2.17), that is,

Rn =
nx−1∑
j=1

Δx1

2

(
1
σnj

+
1

σnj+1

)
+

Nx−1∑
j=nx

Δx2

2

(
1
σnj

+
1

σnj+1

)
+Rn

g . (3.4)

The temperatures of the outside surfaces were set at all times to the ambient value, that is,
θn+1

1 = θn+1
Nx

= θa. The interior grid point temperatures were evaluated by comparing the
Hn+1

j values to the melting temperature solid and liquid enthalpy per unit volume values,
H∗

is = ρ∗is c
∗
is θ

∗
i and H∗

il = ρ∗il (c
∗
is θ

∗
i + λi), respectively, using (2.1).

At the interface j = nx, the transmission condition was discretized as shown below in
(3.5) to obtain the interface temperature, θnx , at time level n+ 1:

kn+1
nx−1

θn+1
nx − θn+1

nx−1

Δx1
= I2Rg + kn+1

nx+1

θn+1
nx+1− θn+1

nx

Δx2
. (3.5)

The interface resistance Rn
g was, for the sake of simplicity, taken to vary linearly with

the interface temperature, starting from an initial value Rg0 and ending at zero according
to (2.16). Once the value of Rg reaches zero, it is not allowed to return back to a nonzero
value, even when the voltage is shut off and solidification occurs.

In locations where the temperature is equal to the melting temperature, the liquid
mass fraction, βi, is evaluated. This fraction is needed to evaluate the various material
properties in the mushy zone. As can be seen from (2.2) and (2.4), finding βi requires
knowing ρi, which in turn depends on βi. This problem is circumvented by substituting
(2.4) into (2.2) and solving for βi,

βi = Hi/ρ
∗
is − c∗is θ

∗
i

λi−Hi
(
1/ρ∗il − 1/ρ∗is

) . (3.6)

In the nonmushy zones, the solid and liquid material property values are determined
at each time level and at every grid point using linear interpolation of property values
with respect to reference temperatures in the solid and liquid phases, as well as at the
melting temperature.

4. Numerical experiments

In this section, we discuss numerical experiments that were conducted to test the model
implementation and that depict the behavior of the resulting numerical solutions.

Unless otherwise specified, the plate material used was aluminum, which has a melting
temperature of 933.2 K and a latent heat of melting (or fusion) of 3.97× 105 J/kg. Alu-
minum was selected for this study in part because of the difficulties encountered when
trying to weld aluminum sheets. The ambient temperature was assumed to be 300 K. In
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Figure 4.1. Temperature dependent properties for Aluminum. The melting temperature is 933.2 K.

all cases, a spatial and temporal grid independence study was conducted to ensure that
the results were grid independent. For a plate thickness of 6 mm, 31 grid points were
used, that is, nx = 31 and Nx = 61. In most cases, the voltage was shut off when the in-
terface temperature reached 1050 K, the two plates were allowed to cool back down and
the nugget to solidify, thus binding the two plates. The resistance R0 of the cables and
electrodes was taken as 10−7 Ω/m2, and the voltage was set at V0 = 70 V.

Before proceeding to a discussion of the various test cases, it seems worthwhile to de-
scribe the effect of temperature on the aluminum material properties used in this study.
Figure 4.1 shows the variation of thermal conductivity, specific heat, density, and electri-
cal resistivity with temperature. We note that all of the properties exhibit a sudden jump
in value at the melting temperature. The values on either side of the drop represent the
solid and liquid properties at the melting temperature, that is, k∗l and k∗s in the case of
thermal conductivity. All of the properties, except for electrical resistivity (the inverse of
electrical conductivity), experience a drop in value as the aluminum melts. It must be
noted that locating solid and molten property values in the engineering literature was
quite difficult. In the cases of specific heat and electrical resistivity, only one property
value could be found in the liquid phase, so these two properties were assumed to be
constant for temperatures above the melting temperature.
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Figure 4.2. Example 1: temporal variation of interface temperature for two values of Rg .

As was mentioned above, a heat exchange condition might be more realistic. But, this
requires experimental determination of the heat exchange coefficient, which we may do
in future work.

4.1. Example 1: interface resistance. The first parameter examined is the process de-
pendence on the interface resistance Rg . This resistance is meant to represent the effect of
the microscopic gap between the two sheets of metal, as well as the effect of any coatings
that may be applied by the user to improve the welding process. A number of tests were
conducted, but only two representative cases are shown here. In both cases, two 6 mm
aluminum plates were used.

In the first case, we set interface resistance Rg = 0. As can be seen in Figure 4.2, the
interface temperature in this case increases steadily with time until it reaches the melting
temperature. The temperature then stays constant and is equal to the melting temperature
for a short while before starting to increase again. The constant temperature period indi-
cates the presence of a mixture of solid and liquid phases that characterizes the mushy re-
gion. As time increases, the fraction of liquid in the mixture increases until all of the solid
has melted, at which point the temperature can increase again. In this case, the power was
numerically shut off (by setting V0 = 0) once the interface temperature reached a value
of 1050 K. The top two plots of Figure 4.3 show the spatial and temporal evolution of the
temperature distribution through the plates during the melting and solidification phases.
The lines show the temperature distribution for equal time intervals.
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Figure 4.3. Example 1: spatial and temporal variation of temperature: Rg = 0 (top), Rg = 10−9 initially
(bottom). The curves represent equal time increments.

A number of observations can be made. First, the temperature profiles seem to be
symmetrical as would be expected, and the peak temperature occurs at the interface be-
tween the two plates, that is, at x = 6 mm. Due to a lack of a centralized “energy source,”
the temperature is almost uniform through the central portions of the plates. The devel-
opment of mushy zones is apparent from the plateaus at 933.2 K. The solidification plot
shows the temperature dropping to the melting temperature and below once the voltage
is turned off. The extent of the mushy and molten zones as a function of time can be seen
in Figure 4.4. Melting is seen to first take place at the interface and then propagates into
the plates as time increases. The darker symbols represent the maximum extent of the
molten or liquid region ({θ > θ∗}). The interface is the first to become fully liquid. The
effect of voltage shut-off and solidification can be observed in the shrinking of the mushy
and molten regions until no more liquid or mushy points are visible at later times, and
the plates and the nugget are fully solid.

In the second case, we consider a resistance Rg that is initially set equal to 10−9 and
then decreases linearly to zero at the melting temperature. As can be seen from Figure 4.2,
the interface temperature increases more rapidly than in the previous case and melting
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Figure 4.4. Example 1: extent of mushy and molten regions as a function of time for Rg = 0 (top),
Rg = 10−9 initially (bottom). Darker markers indicate molten zone; lighter markers indicate mushy
zone.

occurs sooner. Also, the graphs are slightly different as the temperature approaches the
melting point. The meeting of the graphs at time 0.005 second seems to be coincidental.
Hence, it appears that the addition of an interface resistance results in faster melting. In
Figure 4.3, the temperature profile is seen to vary significantly from the Rg = 0 case. The
extra interface resistance results in localized heating and sharper temperature gradients
at the interface. As in the previous case, a mushy zone can be observed. However, the
maximum extent of the mushy and molten regions is lower by the time the voltage is
shut off. In the case of Rg = 0, the maximum extent of the mushy and molten regions,
as measured from the interface, were 3 mm and 2.6 mm, respectively. In the case of Rg =
10−9, initially, these values dropped to 2.8 mm and 1.8 mm, respectively. This molten
region is what forms a weld nugget upon solidification. Thus increasing the interface
resistance results in faster melting, but smaller nuggets, if the voltage shut-off point is set
based on the interface temperature.

Figure 4.5 shows the spatial distribution of Fn
j , the discretized Joule heating source

term F, through the two plates at a time instant prior to melting. It is clear that the Joule
heating term is not uniformly distributed. The maximum Joule heating term occurs, as
expected, at the location of the interface between the two plates. Indeed, according to
(3.3), the Joule heating term is highest at the location with the lowest value of electrical
conductivity, σ . As can be seen in Figure 4.1, the electrical resistivity increases with tem-
perature, hence the electrical conductivity decreases with temperature. At any given time,
the lowest electrical conductivity occurs at the location of maximum temperature, that
is, the interface in this case. This clearly indicates that assuming some averaged uniform
heat source is somewhat unrealistic.
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Figure 4.5. Example 1: the Joule heating source term as a function of x at a fixed time for the case
Rg = 10−9 initially.

For the sake of completeness, we depict in Figure 4.6 the development of the mushy
and molten regions when there is no voltage shut-off. Then, as is to be expected [4, 12],
the mushy region shrinks to a sharp interface, while the molten region reaches close to
the outer boundary. As mentioned earlier, such growth of the molten region may lead
to expulsion of molten metal, which causes considerable damage to the system. In the
present formulation, expulsion does not occur due to the Dirichlet boundary condition
used at the outer surfaces.

4.2. Example 2: plates of unequal thickness. The next test examined the effect of asym-
metry on the temperature evolution. Here, the two aluminum plates had different thick-
nesses: plate 1 had a thickness l = 3 mm and plate 2 had a thickness L− l = 6 mm. Two
values of Rg were again considered, again Rg = 0 and Rg = 10−9 initially.

Figure 4.7 shows the spatial and temporal evolution of the temperature distribution
through the plates during the melting and solidification phases. In the case of Rg = 0,
the temperature profile remains symmetrical and peak temperatures are observed at the
midpoint, x = 4.5 mm, instead of at the interface (indicated by the dashed line). This
would be undesirable in a real application. As observed in the case of plates of equal
thickness, the temperature profile is almost uniform over a significant portion of the
two plates until melting starts to occur. However, when an initial resistance of 10−9 is
introduced at the interface, peak temperatures and sharp gradients are once again first
observed between the two plates at the interface, but eventually shift to the right (towards
the center of the second plate). In fact, melting first occurs at a point slightly to the right
of the interface. As time progresses, the peak temperature is seen shifting further away
from the interface, and most of the melting occurs in the thicker plate.
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Figure 4.6. Example 1: extent of mushy and molten regions as a function of time for Rg = 10−9 initially
without voltage shut-off. Darker markers indicate molten zone; lighter markers indicate mushy zone.

The development of the mushy and molten regions is shown in Figure 4.8. In the case
of Rg = 0, a mushy and molten material first appears at x = 4.5 mm, the midpoint. Most
of the nugget is located in the second plate and the liquid regions are symmetrical about
the midpoint, not the interface. When a nonzero resistance Rg is introduced at the inter-
face, the melting shifts closer to the interface, and the nugget does not extend as deeply
into the second plate. However, since Rg is set to zero once the interface reaches the melt-
ing temperature, the two formulations (zero and nonzero initial Rg values) become iden-
tical, and one would expect to see the peak temperature slowly shift towards the center-
point, away from the interface.

Welding plates of different thickness seem to not be an easy task. These results indicate
that the nugget location and size may be controlled to some extent by varying the interface
resistance.

4.3. Example 3: comparison of DC and AC. The next test compared the effect of using
a direct (DC) current with a 60 Hz alternating (AC) current on the welding process. Two
aluminum plates, each with a thickness of 6 mm, were considered. A linearly decreasing
interface with an initial resistance value of 10−9 was assumed in both cases. In order to
make the comparison more meaningful, the AC rms voltage was set equal to the DC
constant voltage, that is, a constant voltage input of 50 V was used for the DC case, while
an alternating voltage equal to 70.7sin(120πt) V was used in the AC case.

As can be seen in Figure 4.9, the interface temperature is seen to increase steadily in
the DC case, while small oscillations can be seen in the AC case. The melting and volt-
age shut-off temperatures are reached sooner in the DC case. For the parameter values
used, the preheat time (the time taken for the interface to reach the melting temper-
ature) is 0.118 second for the DC case, versus 0.121 second for the AC case. The weld
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Figure 4.7. Example 2: spatial and temporal variation of temperature for Rg = 0 (top), Rg = 10−9

initially (bottom). The curves represent equal time increments. Dotted line indicates location of in-
terface.

time (the length of time that voltage or current is applied to the workpieces) drops from
0.171 second in the AC case to 0.165 second for the DC case. No further degradation of
the AC input due to the power factor was considered here. However, these preliminary
results indicate that a DC power input might be faster and more effective than an AC
power input. Clearly, a more thorough investigation is needed, since the differences ob-
served in this example are rather small. We note that the small difference may be also
attributed to the fact that the time scale associated with the AC current input, on the or-
der of 0.02 second, is much smaller than the melting time scale, which is on the order of
0.1 second.

This model is clearly a tool which may be used to investigate more thoroughly the
possible differences in the use of AC or DC currents in spot welding.

4.4. Welding of dissimilar materials. The final simulations deal with the welding of
plates made of dissimilar materials. The plates were assumed to have equal thickness of
6 mm. The left plate was made of steel with melting temperature of 1809 K and electrical
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Figure 4.8. Example 2: extent of mushy and molten regions as a function of time for Rg = 0 (a),
Rg = 10−9 initially (b). Darker markers indicate molten zone; lighter markers indicate mushy zone.
Dotted line indicates location of interface.
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Figure 4.10. Example 4: spatial and temporal variation of temperature. The dotted line is the interface
between the plates. The curves represent equal time increments.

resistivity of 1.225× 10−7 Ω ·m at 300 K, while the right plate was made of aluminum
with electrical resistivity of 5.42× 10−6 Ω ·m at 300 K. The DC voltage was shut off when
the interface temperature reached 1900 K.

The results of the simulations are depicted in Figure 4.10, where the curves of temper-
ature versus x are plotted for different times with equal increments.

Compared to the earlier examples, the behavior of the system is quite different. Alu-
minum starts melting first, and a mushy region develops in that plate. The steel plate
starts melting later, and also develops a mushy region. The important features seen in the
figure are the steep temperature gradient in the molten aluminum, as well as the extent
of the mushy and molten regions in each plate. Since the extent of the molten region is
substantial, as compared to the plate thickness, there may be mixing of the liquid metals,
a fact that is likely to have some influence on the nugget composition and strength, as
well as on the liquid metal properties. Moreover, if the boundary condition is changed to
heat exchange form, it is very likely that expulsion of the molten material will occur.

The asymmetry and the extent of the molten and mushy regions in the steel and the
aluminum are clearly depicted in Figure 4.11. Moreover, it is seen that the melting of the
steel starts in the interior of the steel plate and reaches the other plate only some time
later, while the aluminum starts melting at the interface.

5. Conclusions

This work constructs a sophisticated one-dimensional model for the spot-welding pro-
cess. It is based on the enthalpy approach and takes into account the temperature de-
pendence of the various process parameters, and, in particular, their variation in the
mushy region. It also takes into account the resistance of the outer electrical circuit, the
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Figure 4.11. Example 4: the mushy (+ signs) and molten (other signs) regions in the steel (left of the
broken line) and the aluminum (right of the broken line) plates.

electrodes, and the surface resistance between the plates. The latter can be attributed to
the imperfect thermal and electrical contacts between the solid plates and to the possible
addition of a thin layer of a higher resistance material between the plates. This addition is
done to enhance and better control the welding outcome. These features are rarely found
in the usual models and computer software for spot welding.

This model is meant as a tool for the design engineer to obtain quickly a reasonable
estimate of the performance of the welding process under design, as well as a good indi-
cation of an efficient welding schedule.

A numerical algorithm, based on finite differences, is presented and the results of com-
puter simulations obtained from a code, based on the algorithm, are depicted. It is clear
from the simulations that the model and the algorithm are very useful tools in the study
of the process dependence on the setting and the parameters. In this work, because of
lack of experimental data, we used simple interpolation of the parameters, especially in
the mushy region. However, in view of Figure 4.1, this maybe somewhat simplistic.

We performed a large number of numerical simulations. Here we report on four of
them. In Example 1, we see that increasing the interface resistance results in faster melt-
ing but smaller nuggets. Example 2 shows that welding of plates of different thickness
present special difficulties in nugget location and size which may be partially controlled
by interface resistance. In the setting of Example 3, there seems to be very little difference
between using AC or DC currents in the spot welding process. Finally, Example 4 illus-
trates the difficulties that one may encounter when welding materials with very different
melting temperatures and properties.

In the construction of the model, we have encountered the usual problem that some
of the desired parameter values could not be found in the literature. In particular, there is
essentially no information about the variation of the process parameters such as specific
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heat or electric resistance in the mushy region. Such information needs to be obtained if
accurate process control is to be achieved, and there is also a need to experimentally and
theoretically study in detail the evolution and structure of mushy regions. Furthermore,
work needs to be done to reasonably quantify the values of temperature dependence of
the interface resistance Rg .

Because the model is one-dimensional, it is likely that the description of the electric
current flow is rather inaccurate, as compared to a three-dimensional formulation. How-
ever, this simplification may introduce only a small distortion. This issue will be studied
in the following stages of this work where we will extend the model and the numerical
algorithm to two and three dimensions.

Although the literature on spot welding is extensive, this work clearly indicates that
much still needs to be done. In addition to the mathematical analysis of the model, and
proofs of the convergence of the numerical scheme, the following issues need to be ad-
dressed.

(i) The dependence of the parameters on temperature, and their values in the mushy
region are needed.

(ii) The contact resistance between the plates depends also on the contact pressure that
the electrodes exert on the plates, which was not taken into account in the model. This
contact pressure may cause deformation of the plates and the heating of the electrodes
may cause distortions.

(iii) A heat exchange condition between the electrodes and the plates may be a more
realistic description of the process. The use of this condition may show that under certain
operating conditions expulsion of the molten metal may occur.

(iv) Quantification of the contribution of surface coatings to the interface resistance
Rg is needed.
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