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We consider a general nonlinear age-structured population model with n interacting
species. We deduce the characteristic function in the form of a determinant of an n-by-
n matrix. Then we formulate some biologically meaningful sufficient conditions for the
stability (resp., instability) of positive stationary solutions of the system.
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1. Introduction

In [13] Prüß investigated a very general nonlinear age-structured model consisting of
n species. He proved the principle of linearized stability, which means that the asymp-
totic behavior of stationary solutions of the nonlinear system is determined by the spec-
trum of the linearized operator. In other words the stability is determined by the roots
of a complex valued characteristic function as it is claimed in [2] for general physiologi-
cally structured population models, as well. More recently Kato [11] proved the principle
of linearized stability for more general abstract nonlinear evolution equations of type
(d/dt)u(t) +Au(t)= 0 where A is a quasi m-accretive operator.

In the present paper, we extend the approach first used in [5] then later in [6–8], to
actually deduce the characteristic function and show that it can be obtained as a determi-
nant of an n-by-n matrix as claimed in [2]. We restrict ourselve to the frequently studied
case where the vital rate functions depend on the total population quantity, but it should
be clear that the method can be extended to more general cases of multispecies structured
population models.

In [13], Prüß discussed the stability of stationary solutions with trivial components
and established stability conditions for a very special two-species system. He also derived
conditions for the positivity of the governing linear semigroup and he used it to prove an
instability result.
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In the case when the linearized system is governed by a positive semigroup one has
that the spectral bound of the operator is real and belongs to the spectrum (see, e.g., [4]).
In other words, there is a strictly dominant real root of the corresponding characteristic
function.

Prüß and others in the literature used the positivity of the governing semigroup to
prove instability results. This might be natural since instability often occurs in the case
of a dominant real root. On the other hand one can prove the instability results without
imposing the technical and rather restrictive positivity conditions, as we will see later, and
use the positivity conditions to prove stability results. The main advantage of the positiv-
ity is that we can restrict ourselves to real calculus when addressing stability questions.

In fact, using the characteristic function we are able to prove a more general instability
result, compared to the one in [13], without imposing any of the positivity conditions.
Then we establish a stability criterion under rather restrictive conditions which impose
the positivity conditions given in [13].

We mention here the works [1, 3, 9, 10, 12, 14] and the references therein for develop-
ments in structured population dynamics.

Consider the system describing the dynamics of an age-structured population with n
interacting species,

pia(a, t) + pit(a, t)=−μi(a,P)pi(a, t),

pi(0, t)=
∫∞

0
βi(a,P)pi(a, t)da, P= (P1, . . . ,Pn

)
, Pi =

∫∞
0
pi(a, t)da,

pi(a,0)= pi0(a), a, t ≥ 0, i= 1, . . . ,n,

(1.1)

with sufficiently smooth (see [13]) vital rate functions βi,μi ≥ 0, i= 1, . . . ,n.
Stationary solutions (p1∗(a), . . . , pn∗(a)) of the system (1.1) can be obtained as (this is a

standard calculation, see, e.g., [5])

pi∗(a)= Pi∗ exp
{− ∫ a0 μi(s,P∗

)
ds
}

∫∞
0 exp

{− ∫ a0 μi(s,P∗
)
ds
}
da
=:

Pi∗πi
(
a,P∗

)
∫∞

0 πi
(
a,P∗

)
da

= pi∗(0)πi
(
a,P∗

)
, i= 1, . . . ,n,

(1.2)

where P∗ = (P1∗, . . . ,Pn∗) is the solution of the equations

1= Ri(P)=
∫∞

0
βi(a,P)πi(a,P)da, i= 1, . . . ,n. (1.3)

Here Ri denotes the so-called net reproduction function, the expected number of new-
borns to be produced by an individual. Existence of nonnegative stationary solutions (of
a more general system) is discussed in detail in [13].
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2. The linearized system and stability

We introduce the variation ui(a, t) = pi(a, t)− pi∗(a), i = 1, . . . ,n, in (1.1) and use the
approximations

μi(a,P)= μi
(
a,P∗

)
+

n∑
j=1

μiPj

(
a,P∗

)(
P j −P

j
∗
)

+ higher-order terms, i= 1, . . . ,n,

βi(a,P)= βi
(
a,P∗

)
+

n∑
j=1

βiPj

(
a,P∗

)(
P j −P

j
∗
)

+ higher-order terms, i= 1, . . . ,n,

(2.1)

to obtain the linear system

ui(a, t)a +ui(a, t)t =−μi
(
a,P∗

)
ui(a, t)− pi∗(a)

( n∑
j=1

μiPj

(
a,P∗

)∫∞
0
uj(a, t)da

)
,

ui(0, t)=
∫∞

0
βi
(
a,P∗

)
ui(a, t) + pi∗(a)

( n∑
j=1

βiPj

(
a,P∗

)∫∞
0
uj(a, t)da

)
da, i= 1, . . . ,n.

(2.2)

Now substituting ui(a, t) = eλtUi(a), i = 1, . . . ,n, into the linearized system (2.2) and

making use of the notation U
j = ∫∞0 U j(a)da, j = 1, . . . ,n, we obtain

Ui(a)′ +Ui(a)
(
λ+μi

(
a,P∗

))=−pi∗(a)

( n∑
j=1

μiPj

(
a,P∗

)
U

j

)
, (2.3)

Ui(0)=
∫∞

0
βi
(
a,P∗

)
Ui(a) + pi∗(a)

( n∑
j=1

βiPj

(
a,P∗

)
U

j

)
da, i= 1, . . . ,n. (2.4)

Using the relation (1.2), the solution of (2.3)-(2.4) can be written as

Ui(a)= e−λaπi
(
a,P∗

)(
Ui(0)− pi∗(0)

∫ a

0
eλs

n∑
j=1

μiPj

(
s,P∗

)
U

j
ds

)
, i= 1, . . . ,n. (2.5)

Integration of (2.5) yields

U
i =A1,i(λ)Ui(0) +

n∑
j=1

Ai
j(λ)U

j
, i= 1, . . . ,n, (2.6)

with

A1,i(λ)=
∫∞

0
e−λaπi

(
a,P∗

)
da, i= 1, . . . ,n,

Ai
j(λ)=−pi∗(0)

∫∞
0
e−λaπi

(
a,P∗

)∫ a

0
eλsμiPj

(
s,P∗

)
dsda, i, j = 1, . . . ,n,

(2.7)
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while substituting (2.5) into (2.4) yields

Ui(0)= A2,i(λ)Ui(0) +
n∑
j=1

A
i
j(λ)U

j
, i= 1, . . . ,n, (2.8)

where

A2,i(λ)=
∫∞

0
e−λaβi

(
a,P∗

)
πi
(
a,P∗

)
da, i= 1, . . . ,n,

A
i
j(λ)= pi∗(0)

∫∞
0
βiPj

(
a,P∗

)
πi
(
a,P∗

)
,

−e−λaπi
(
a,P∗

)
βi
(
a,P∗

)∫ a

0
eλsμiPj

(
s,P∗

)
dsda, i, j = 1, . . . ,n.

(2.9)

Rewrite the linear system (2.6)–(2.8) in the form K(λ)U= 0, where U=(U1(0), . . . ,Un(0),

U
1
, . . . ,U

n
)T , 0= (0, . . . ,0)T and the 2n-by-2n matrix K(λ) is as follows:

K(λ)=
⎛
⎝M1(λ) M2(λ)

M3(λ) M4(λ)

⎞
⎠ , (2.10)

where

M1(λ)= diag
(
A1,1(λ), . . . ,A1,n(λ)

)
,

M3(λ)= diag
((
A2,1(λ)− 1

)
, . . . ,

(
A2,n(λ)− 1)

) (2.11)

are n-by-n diagonal matrices, while

M2(λ)(i· j) =
⎧⎪⎨
⎪⎩
Ai

j(λ) if i �= j, i, j = 1, . . . ,n,

Ai
i(λ)− 1 if i= j, i= 1, . . . ,n,

M4(λ)(i, j) =
{
A
i
j(λ), i, j = 1, . . . ,n

}
.

(2.12)

Thus [13, Theorem 2] takes the following form.

Theorem 2.1. The stationary solution (p1∗(a), . . . , pn∗(a)) is stable if all the roots of the (con-
tinuous) function det(K(λ))= |K(λ)| : C→ C are in the left-hand plane and it is unstable if
there is a root with positive real part.

In the following, we treat the stability of (strictly) positive stationary solutions that is
Pi∗ > 0, i= 1, . . . ,n.

Theorem 2.2. One has

lim
λ→∞

∣∣K(λ)
∣∣=−1n, (2.13)

the limit being taken in R.
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Proof. Straightforward calculations show that

lim
λ→∞

A1,i(λ)= lim
λ→∞

A2,i(λ)= lim
λ→∞

Ai
j(λ)= 0, i, j = 1, . . . ,n, (2.14)

which means that

lim
λ→∞

M1(λ)= 0, lim
λ→∞

M2(λ)= lim
λ→∞

M3(λ)=−In, (2.15)

that is,

lim
λ→∞

K(λ)=
(

0 −In

−In M4

)
, (2.16)

with M4 = limλ→∞M4(λ), and we have

∣∣∣ lim
λ→∞

K(λ)
∣∣∣=

∣∣∣0M4−
(− In

)2
∣∣∣=−1n. (2.17)

�

Next we note that

A1,i(0)=
∫∞

0
πi
(
a,P∗

)
da= Pi∗

pi∗(0)
, i= 1, . . . ,n,

A2,i(0)= Ri
(

P∗
)= 1, i= 1, . . . ,n,

Ai
j(0)=−pi∗(0)

∫∞
0
πi
(
a,P∗

)∫ a

0
μiPj

(
s,P∗

)
dsda, i, j = 1, . . . ,n,

A
i
j(0)=

(
Pi∗∫∞

0 πi
(
a,P∗

)
da

)
Ri
Pj

(
P∗
)
, i, j = 1, . . . ,n,

(2.18)

which yields

∣∣K(0)
∣∣=

∣∣∣(Pi
∗R

i
Pj

(
P∗
))

(i, j)

∣∣∣. (2.19)

Theorem 2.3. The stationary solution (p1∗(a), . . . , pn∗(a)) is unstable if

sign
∣∣∣(Pi

∗R
i
Pj

(
P∗
))

(i, j)

∣∣∣= sign
∣∣∣(Ri

Pj

(
P∗
))

(i, j)

∣∣∣ �= sign
(− 1n

)
. (2.20)

Proof. Theorem 2.2 and the continuity of |K(λ)| implies the existence of a positive solu-
tion of |K(λ)| = 0. �

As an easy consequence of Theorem 2.3 in the case of n= 2, we have the following.

Remark 2.4. Two-species competitive (R1
P2

,R2
P1
< 0) or cooperative (R1

P2
,R2

P1
> 0) systems

where the interspecific interaction is stronger than the intraspecific interaction (R1
P1
R2
P2
<

R1
P2
R2
P1

) do not admit stable positive steady states.
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Next we note that we have M1(λ)M3(λ)=M3(λ)M1(λ) in general; thus we can rewrite
|K(λ)| as a determinant of an n-by-n matrix:

∣∣K(λ)
∣∣= ∣∣(M1(λ)M4(λ)−M3(λ)M2(λ)

)∣∣= ∣∣(K(λ)(i, j)
)∣∣, (2.21)

where K(λ)(i, j) is denoting the i jth entry of the matrix K(λ) and

K(λ)(i· j) =
⎧⎪⎨
⎪⎩
A1,i(λ)A

i
j(λ)− (A2,i(λ)− 1

)
Ai

j(λ) if i �= j, i, j = 1, . . . ,n,

A1,i(λ)A
i
j(λ)− (A2,i(λ)− 1

)(
Ai

j(λ)− 1
)

if i= j, i= 1, . . . ,n.
(2.22)

Observe that in the diagonal of K(λ) (i.e., K(λ)(i,i), i= 1, . . . ,n) we have the exact copies of
characteristic functions of the one-dimensional age-structured problem as in [5].

According to [13], the linear system (2.2) is governed by a positive semigroup if

n∑
j=1

P
j
∗μiPj

(
a,P∗

)≤ 0, i= 1, . . . ,n, a∈ [0,∞), (2.23)

βi
(
a,P∗

)
+

n∑
j=1

P
j
∗βiPj

(
a,P∗

)≥ 0, i= 1, . . . ,n, a∈ [0,∞). (2.24)

Remark 2.5. The positivity of the governing linear semigroup assure the existence of a
dominant real root of the characteristic function. As we pointed out in [8] obtaining sta-
bility results is much harder than instability ones because we need to impose the technical
and rather restrictive positivity conditions to stay in the framework of real calculus.

Consider the system (1.1) with the following vital rates:

β1(P1, . . . ,Pn
)
, μ1(P1, . . . ,Pn

)
, . . . ,βn−1(Pn−1,Pn

)
,

μn−1(Pn−1,Pn
)
, βn

(
Pn
)
, μn

(
Pn
)
,

(2.25)

which can represent a food chain, for instance.

Theorem 2.6. The stationary solution (p1∗(a), . . . , pn∗(a)) is asymptotically stable if

μiPi
(·,P∗

)= 0, μiPj

(·,P∗
)
< 0, j > i= 1, . . . ,n, (2.26)

−βi
(·,P∗

)
Pi∗

≤ βiPi
(·,P∗

)
< 0, βiPj

(·,P∗
)
> 0, j > i= 1, . . . ,n. (2.27)

Proof. By (2.25) we have A
i
j(λ)= Ai

j(λ)= 0 for j < i= 1, . . . ,n which means that K(λ) is
an upper triangular matrix (by (2.22)), that is,

∣∣K(λ)
∣∣=

n∏
i=1

K(λ)(i,i) =:
n∏
i=1

Ki(λ). (2.28)

First observe thatKi(0)=Pi∗R
i
Pi(P∗)<0, i=1, . . . ,n, by (2.26)-(2.27) that is sign(|K(0)|)=

−1n.



Jozsef Z. Farkas 7

Now we want to show that Ki(λ), i= 1, . . . ,n, is monotone for λ > 0,

Ki(λ)′ = A1,i(λ)′A
i
i(λ) +A2,i(λ)′

= −pi∗(0)
∫∞

0
ae−λaπi

(
a,P∗

)
da
∫∞

0
βiPi
(
a,P∗

)
π
(
a,P∗

)
da

−
∫∞

0
aeλaβi

(
a,P∗

)
πi
(
a,P∗

)
da

=
∫∞

0
ae−λaπi

(
a,P∗

)(
pi∗(0)

∫∞
0

(−βiPi
(
s,P∗

))
πi
(
s,P∗

)
ds−βi

(
a,P∗

))
da

=
∫∞

0
ae−λaπi

(
a,P∗

)(∫∞
0

(−βiPi
(
s,P∗

))
pi∗(s)ds−βi

(
a,P∗

))
da≤ 0.

(2.29)

The last inequality follows from

βi
(·,P∗

)≥−Pi
∗β

i
Pi

(·,P∗
)≥−

∫∞
0
βiPi
(
s,P∗

)
pi∗(s)ds (2.30)

by (2.27). Observe that by (2.26)-(2.27) all the positivity conditions (2.23)-(2.24) are sat-
isfied thus we just need to consider the characteristic function along the reals. Applying
Theorem 2.2 one has that the characteristic function (2.21) does not have a nonnega-
tive real root, since sign(|K(0)|) = limλ→∞ |K(λ)| = −1n, thus applying Theorem 2.1 the
stability of the stationary solution follows. �

Remark 2.7. In the case of vital rates as in (2.25) Ri
Pi(P∗) > 0 for any i∈ {1, . . . ,n} implies

instability.
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