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1. Introduction

Over the past decade, networks have played a prominent role in many different disciplines
including theoretical physics, technology, biology, and sociology [1–9]. Particularly in biology,
networks have become fundamental for the description of complex data structures. The appeal
of networks may, at least partly, be due to the fact that in addition to being based on a rigorous
mathematical base [10–14], they also provide a convenient graphical representation of the data
which allows for visual interpretation. Examples of complex data structures that can be de-
scribed by networks include food webs in ecology, sexual partner networks in sociology, and
protein interaction networks in biology.

The canonical model in random graph theory has been Erdös-Renyi random graphs,
where each of a fixed number of vertices has a Poisson-distributed number of links to other
vertices. A Poisson number of links have turned out barely to be realistic for many empirically
observed networks, and other models have been suggested to accomodate the discrepancies
between theory and observation. Barabási and Albert [2] proposed a simple stochastic model,
the preferential attachment (PA) model, whereby the network gradually is built up by adding
one vertex at a time until the network reaches the desired size. This model is able to account for
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the scale-free degree distribution that is observed in some empirical networks, but not many
of the other features and motifs that are found in real networks (e.g., [15–18]). Therefore, for
mathematical and statistical analysis of network data, many other stochastic models have been
proposed, in particular models that fall in the class of randomly grown graphs (RGGs; see
next section for a definition) which share the property of the PA model of gradual growth.
Overviews of different models and their properties can be found in [13, 16, 19, 20].

While the PA model has been under close mathematical scrutiny (e.g., [20]), other RGGs
have been treated less extensively (e.g., [19, 21]) and mostly in the context of considering a
continuous time approximation to the original discrete time Markov process (e.g., [13, 22, 23]).
In this paper, we specifically address the question of the behavior of the vertex degrees as the
number of vertices grows large. For a class of RGGs (including the PA model), the existence of
a limiting degree distribution has been proven and its analytical form has been derived [21].
However, for most RGGs applied in biology, it is not known whether a limiting distribution
exists, letting alone its form.

Biologically, it is of great interest to know whether the network stabilizes as it grows, or
whether the degree distribution is a function of the size of the network, even for large network
sizes. It relates to the question whether the network in an evolutionary perspective reaches
an equilibrium, such that adding new vertices does not change the overall connectivity of the
network. For example, in relation to protein interaction networks where vertices represent pro-
teins and edges represent physical interactions between proteins, both scenarios seem a priori
possible. Proteins may be able to engage in an unlimited number of interactions, or the number
of interactions may be restricted by a number of factors such as space, time, and protein pro-
duction rates. With the increasing statistical interest in analyzing complex biological networks
with respect to evolutionary and functional properties [1, 5, 9, 13, 14, 24], it is also becoming of
interest to understand the mathematical properties of the models.

We study a large class of RGGs that allows the construction of a simple, but time-
inhomogeneous, Markov chain. For a given RGG, the corresponding Markov chain can be used
to address questions about the RGG, for example, questions about the degree distribution. In
particular, we focus on a special RGG, the partial duplication model, which has recently been
used in the study of biological protein interaction networks [16, 18, 25, 26] and has formed
the basis for new and more biologically realistic models (e.g., [16, 27]). The partial duplica-
tion model has two parameters (p and q) and we give conditions under which the chain is
ergodic or transient. Further, based on the time-inhomogeneous Markov chain, we define a
time-homogeneous Markov chain and a continuous time, time-homogeneous Markov process,
and demonstrate that these, in general, are easier to study and apply than the original chain.
Proofs rely on general theory of discrete Markov processes, which makes it easy to prove sim-
ilar results for other RGGs.

Finally, we apply our results to a collection of real protein interaction data.

2. RGGs

An RGG is a Markov chain {Gt}t≥s on undirected graphs such that Gt has exactly t vertices,
and the set of vertices of Gt is a subset of the set of vertices of Gt+1 for all t ≥ s. Note that we do
not require the set of edges of Gt to be a subset of the set of edges of Gt+1.

Denote by nt(k) the expected number of vertices of degree k at time t. Since, by assump-
tion, the graph Gt has exactly t vertices, the expected relative frequency of vertices of degree
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k at time t is ft(k) = nt(k)/t. For many RGGs, one can derive a recursive formula for nt(k),
often referred to as the master equation [13]. Here, we consider a very general class of master
equations given by

nt+1(k) =
∑

j≥0

A(t)k,jnt(j), (2.1)

where A(t) for all t ≥ s is an infinite real matrix with A(t)k,j = 0 for k > j + 1, and such that
all columns sum to the same number a(t). Furthermore, assume for suitable real numbers bk,j
that

A(t)k,j =

⎧
⎪⎪⎨

⎪⎪⎩

1 − bk,k
t

for k = j,

bk,j

t
for k /= j

(2.2)

with bk,j = 0 for k > j + 1. The latter condition guarantees that the vertex degree can increase
by at most one. By construction, nt(k) = 0 for k + 1 > t, and hence A(t) is effectively a t × (t − 1)
matrix. We assume that the entries (2.2) in this submatrix are positive.

One particular example of a model fulfilling the conditions above is the partial duplica-
tion model (details are found in Section 4). The master equation is given by

nt+1(k) =
(

1 − q + kp
t

)
nt(k) + (1 − q)

∑

j≥k

(
j
k

)
pk(1 − p)j−k nt(j)

t

+
q + (k − 1)p

t
nt(k − 1) + q

∑

j≥k−1

(
j

k − 1

)
pk−1(1 − p)j−k+1nt(j)

t
.

(2.3)

For several other models, the master equation takes a similar form. Among these models are the
duplication-divergence model [16], an approximation to the duplication-mutation model [22,
23], and the models discussed in [21] after a suitable modification (see Section 5.2). Generally,
(2.1) is fulfilled whenever the expected degree change in a vertex depends on the degree only,
and not on the degrees of the other vertices.

It follows immediately from (2.1) that

ft+1(k) =
∑

j≥0

B(t)j,kft(j), (2.4)

where B(t) is the transpose of (t/(t + 1))A(t), and by assumption all rows of B(t) sum to b(t) =
(t/(t + 1))a(t). It follows that

1 =
∑

k≥0

ft+1(k) =
∑

k≥0

∑

j≥0

B(t)j,kft(j) = b(t)
∑

j≥0

ft(j) = b(t), (2.5)

that is, b(t) = 1 and the matrices {B(t)}t≥s describe a Markov chain with time-dependent tran-
sition probabilities.

Proposition 2.1. Assume that
∑

k≥0bj,k <∞ for all j ≥ 0. If ft(j) → f(j) pointwise for all j ≥ 0, then
{f(j)}j≥0 satisfies

0 =
∑

k /= j

bj,kf(k) − (1 + bj,j)f(j),
∑

j≥0

f(j) ≤ 1. (2.6)
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Proof. The second part of the proposition is a simple application of Fatou’s lemma. By using
(2.4), the definition of B(t), and

∑
k≥0bj,k <∞, it follows that

(t + 1)
(
ft+1(j) − ft(j)

)
=
∑

k /= j

bj,kft(k) −
(
1 + bj,j

)
ft(j) −→ dj for t −→ ∞ (2.7)

for some real number dj , and it remains to prove that dj = 0. Note that

t∑

n=s
dj(n) = (t + 1)ft+1(j) − sfs(j) −

t∑

n=s
fn(j), (2.8)

and by using Cesaro’s lemma, we get

dj = lim
t→∞

1
t

t∑

n=s
dj(n) = f(j) − f(j) = 0.

(2.9)

Consider the jump chain corresponding to the Markov chain {B(t)}t≥s, that is, the Markov
chain with transition probabilities B(t)j,k/(1 − B(t)j,j) for j /= k, unless B(t)j,j = 1 in which case
the probability is put to 0. The jump chain has time-independent transition probabilities given
by

pj,k =
bk,j

1 + bj,j
for k /= j, (2.10)

and pj,j = 0 for all j ≥ 0. If 1 + bj,j = 0, then pj,k = 0. Occasionally, we consider a slightly
modified jump chain (still with time-independent transition probabilities) which is allowed to
stay in the same state with positive probability.

If a stationary distribution {πj}j≥0 for the jump chain exists, it fulfills

πj =
∑

k /= j

πk

bj,k

1 + bk,k
∀j ≥ 0. (2.11)

Assume that inf j≥0(1 + bj,j) > 0 and put π ′
j = πj/(1 + bj,j). Then we obtain that

0 =
∑

k /= j

bj,kπ
′
k −
(
1 + bj,j

)
π ′
j ∀j ≥ 0, (2.12)

and hence {π ′
j}j≥0 is a solution to the equation in Proposition 2.1. Furthermore, we may nor-

malize {π ′
j}j≥0 to get a distribution, and hence (2.11) and (2.12) may be used to transfer a sta-

tionary distribution for the jump chain to the limit of the time-inhomogeneous Markov chain
and vice versa.

In our main example, the partial duplication model (see Section 4 for details), we have
b0,0 = 2q − 1 and

bj,j = q + jp − (1 − q)pj − qjpj−1(1 − p) for j ≥ 1, (2.13)

and hence the assumption inf j≥0(1 + bj,j) > 0 is fulfilled if q > 0.
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3. A continuous time approximation

In this section, we show that the time-inhomogeneous Markov chain converges to a continuous
time, time-homogeneous Markov process after a suitable time transformation.

Denote by Ti the time of the ith jump in the time-inhomogeneous chain after a given time
t0, and let Ji be the state to which it jumps. Set T0 = t0 and J0 = j0, the state of the chain at time
t0. To simplify notation further, introduce si = (ti, ji) and Si = (Ti, Ji).

Note that at time t, the probability of staying in state j is B(t)j,j = 1 − (bj,j + 1)/(t + 1). In
particular, if we let αi = bji−1,ji−1 + 1, then

P
(
Ti > ti | Si−1 = si−1

)
=

ti∏

u=ti−1+1

(
1 − αi

u + 1

)
≈
(

ti
ti−1

)−αi
(3.1)

for large ti−1 and ti. Now consider the transformation Zi = log Ti − log Ti−1 = log Ti/Ti−1. It
follows that

P
(
Zi > z | Si−1 = si−1

)
= P
(
Ti > ti−1e

z | Si−1 = si−1
) −→ e−αiz (3.2)

as ti−1 → ∞. That is, in the limit, the transformed waiting time is exponentially distributed with
parameter αi.

Proposition 3.1. Let Xs0(z), z ≥ 0, take the value of the time-inhomogeneous Markov chain at time t,
where t = 	t0ez
 and 	x
 denotes the integer part of x. At time 0, Xs0(0) = j0. For fixed j0, the process
Xs0(z) converges to a continuous time, time-homogeneous Markov process as t0 → ∞.

Proof. Clearly, the process Xs0(z), z ≥ 0, is Markovian by definition. Let Z�
i be the time of the

ith jump, that is, Ti = 	t0eZ�
i 
 = t0e

Z�
i and Zi = Z�

i − Z�
i−1 in the notation above. It follows from

(3.2) that

Ps0

(
Z�
i > z | Z�

i−1 = z�i−1, Ji−1 = ji−1
) −→ e−αi(z−z

�
i−1) (3.3)

for t0 → ∞. (Subscript s0 in Ps0 is used to underline the implicit dependency of s0 = (t0, j0).)
Recall the transition probabilities (2.10) in the original jump chain. It follows immediately that

Ps0

(
Ji = ji | Z�

i−1 = z�i−1, Ji−1 = ji−1
)
= Ps0

(
Ji = ji | Ji−1 = ji−1

)
=
βi
αi
, (3.4)

where βi = bji−1,ji . Combined with (3.3) this shows that, in the limit as t0 → ∞, the rate of
jumping to ji from ji−1 is βi. More precisely, it demonstrates that Xs0(z), z ≥ 0, converges to a
continuous time, time-homogeneous Markov process with transition rate matrix Q = {qj,k}j,k≥0
given by qj,k = bk,j for j /= k, and qj,j = −qj =

∑
k /= jqj,k. This sum is indeed finite because by

assumption bk,j = 0 for k > j + 1 (see Section 2).

Note that a stationary equation {πj}j≥0 for the continuous-time Markov chain fulfills the
equation in Proposition 2.1 with f(j) replaced by πj .



6 Journal of Applied Mathematics

4. The partial duplication model

Consider the model {Gt}t≥s, where Gs is a simple graph with s vertices, and where Gt+1 is
obtained from Gt in the following way: introduce a new vertex v and choose u ∈ Gt uniformly.
With probability q, connect v and u. Independently of each other, connect each neighbor of u
to v with probability p.

In this section, we follow the path outlined in the previous section. That is, we first find
the jump chain corresponding to the partial duplication model. As already stated in Section 1,
the master equation is given by

nt+1(k) =
(

1 − q + kp
t

)
nt(k) + (1 − q)

∑

j≥k

(
j
k

)
pk(1 − p)j−k nt(j)

t

+
q + (k − 1)p

t
nt(k − 1) + q

∑

j≥k−1

(
j

k − 1

)
pk−1(1 − p)j−k+1nt(j)

t
.

(4.1)

It can be seen in the following way: the first term corresponds to the case where a vertex
of degree k keeps its degree, and this is the case unless one of two things happens: (i) the
vertex is copied and receives a link to the new vertex, or (ii) it receives a link because one of
its k neighbors is copied. The probabilities of these two events are q/t and kp/t, respectively.
Similarly, the third term corresponds to the case where a vertex of degree k − 1 gets a new
link in one of the above-mentioned ways. The two remaining terms correspond to the cases
where the new vertex has degree k. The new vertex has degree k when a vertex of degree ≥ k
is copied and receives exactly k links to the neighbors of the copied vertex and no link to the
copied vertex, or if a vertex of degree ≥ k − 1 is copied and receives a link to the copied vertex
and exactly k − 1 links to the neighbors of the copied vertex.

The cases q = 0 and q = 1 have been studied in [19, 26], respectively. Note, however, that
the master equation given in [26] is incorrect. For general q, the model has been discussed in
[18]. It follows immediately that

ft+1(k) =
(

1 − q + kp
t

)
t

t + 1
ft(k) +

1 − q
t + 1

∑

j≥k
bj(k)ft(j)

+
q + (k − 1)p

t + 1
ft(k − 1) +

q

t + 1

∑

j≥k−1

bj(k − 1)ft(j),

(4.2)

where we, in order to simplify notation, define

bj(k) =
(
j
k

)
pk(1 − p)j−k. (4.3)

From (4.2), we may read off the description of the matrix B(t). Its entries satisfy that

(t + 1)B(t)j,k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − q)bj(k) + qbj(k − 1) for k < j,

t − (q + jp) + (1 − q)bj(j) + qbj(j − 1) for k = j,

q + jp + qbj(j) for k = j + 1,

(4.4)
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and B(t)j,k = 0 otherwise. An easy calculation shows that

(t + 1)
∑

k /= j

B(t)j,k = 1 + q + jp − [(1 − q)bj(j) + qbj(j − 1)
]

(4.5)

from which it follows that the probability of jumping from state j is

1 − B(t)j,j =
1 + q + jp
t + 1

+
(1 − q)bj(j) + qbj(j − 1)

t + 1
. (4.6)

Motivated by this formula, we allow the jump chain to stay in state j with probability (1 −
q)bj(j) + qbj(j − 1), and it follows that the transition probabilities pj,k in the modified jump
chain satisfy that

(1 + q + jp)pj,k =

{
(1 − q)bj(k) + qbj(k − 1) for k ≤ j,
q + jp + qbj(j) for k = j + 1,

(4.7)

and pj,k = 0 otherwise.
In particular, the chain is irreducible if and only if 0 < q < 1. If q = 0, the state 0 is

absorbing, and if q = 1, the state 0 is not reachable from any other state. If state 0 is ignored,
the resulting chain is irreducible for q = 1.

4.1. Classification of states

We first recall a theorem from [28]. The theorem is reformulated in [29], and we will use that
formulation. If q = 1, then we ignore the state 0, and since in this case all pj,0 are zero, the
conditions stated in theorems below stay the same.

Theorem 4.1. Let {pj,k}j,k≥0 be a Markov chain. If there exist a sequence of non-negative real numbers
{xj}j≥0 and an integerN ≥ 1 such that

∞∑

k=0

pj,kxk ≤ xj ∀j ≥N, xj −→ ∞ for j −→ ∞, (4.8)

then the chain is ultimately recurrent.

Applied to the partial duplication model the theorem states that if there is a sequence
{xj}j≥0 of nonnegative real numbers with xj → ∞ such that

j+1∑

k=0

xkpj,k ≤ xj ∀j � 0, (4.9)

then, if q = 0, the probability of ultimate absorption in 0 is 1. If q /= 0, the conclusion of the
theorem is that all states are persistent.

The solution p of log (p) + p = 0, where log denotes the natural logarithm, is known as
the omega constant, and we denote it by Ω. We have Ω ≈ 0.5671.
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Proposition 4.2. Let p < Ω in the partial duplication model. If q = 0, the probability of ultimate
absorption in 0 is 1, and if q > 0, the Markov chain is persistent.

In [26] it is claimed that for q = 0 there exists a limiting distribution different from the
one we find.

Proof. Let xj = log (j + 1). Then {xj}j≥0 is a nonnegative sequence of real numbers with
xj → ∞, and hence it suffices to show that, for the choices of p and q in the proposition,
the sequence satisfies (4.9). Since log is a concave function, Jensen’s inequality implies that
E(log (X + 1)) ≤ log (E(X) + 1) for a positive random variable X. In particular, using this for
binomially distributed random variables, we get

j+1∑

k=0

xkpj,k ≤
(1 − q) log (jp + 1) + q log (jp + 2) + (q + jp) log (j + 2)

1 + q + jp
, (4.10)

and hence we need only prove that the right-hand side of this inequality is less than or equal
to log (j + 1) for j � 0. This may, for j � 0, be rewritten as

q log
(
jp + 2
jp + 1

)
+ q log

(
j + 2
j + 1

)
+ log

(
jp + 1
j + 1

)
+ jp log

(
j + 2
j + 1

)
≤ 0, (4.11)

and here the first two log -terms converge to 0, while the two remaining terms converge to
log (p) and p, respectively. Here we have used that

jp log
(
j + 2
j + 1

)
= p

j

j + 1
log (1 + 1/(j + 1))

1/(j + 1)
−→ p for j −→ ∞. (4.12)

Note that since p < Ω by assumption, we have log (p)+p < 0, and hence the inequality in (4.11)
holds for all j � 0.

Since zero is the only absorbing state, it follows that for p ≥ Ω, a limiting distribution
takes the form (a0, 0, 0, . . . ), with a0 ≤ 1. To infer the behaviour of the Markov chain for other
values of q, we first recall a result proved in [30].

Theorem 4.3. Let {pj,k}j,k≥0 be an irreducible, aperiodic Markov chain. If there exist a sequence of
positive real numbers {xj}j≥0 and an integerN ≥ 1 with

∞∑

k=0

pj,kxk ≤ xj ∀j ≥N, xj −→ 0 for j −→ ∞, (4.13)

then the chain is transient.

Let Φ denote the golden ratio conjugate. That is, Φ is the unique positive real number p
satisfying that 1/p = p + 1. We have Φ ≈ 0.6180.

Proposition 4.4. Let q > 0 in the partial duplication model. Then the Markov chain is transient for all
p > Φ.
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Proof. Put xj = 1/(j + 1) for all j ≥ 0. Then xj > 0 for all j ≥ 0, and xj → 0. Thus, in order to
apply Theorem 4.3, we only need to verify that {xj}j≥0 is a solution to the inequalities in (4.9).

It follows from a straightforward calculation that

(1 + q + jp)
j+1∑

k=0

pj,kxk ≤ 1
(j + 1)p

+
q + jp
j + 2

(4.14)

such that {xj}j≥0 is a solution if the right-hand side of this inequality is less than or equal to
(1 + q + jp)/(j + 1) for j � 0. This is equivalent to

1
p
− q + jp
j + 2

≤ 1 for j � 0, (4.15)

and the left-hand side converges to 1/p − p as j → ∞. Since p > Φ, it follows that 1/p − p < 1,
and hence the inequality in (4.15) holds for all j � 0.

Let q > 0 such that the chain is irreducible. One may ask for which p the chain is ergodic.
By Proposition 4.4, a necessary condition is p < Φ. However, as we will see, this may not be
sufficient. To see this, we first recall another theorem from [28].

Theorem 4.5. Let {pj,k}j,k≥0 be an irreducible, aperiodic Markov chain. If there exist an N ≥ 1 and a
nonnegative sequence {xj}j≥0 of real numbers such that

∞∑

k=0

pj,kxk ≤ xj − 1 for j ≥N,
∞∑

k=0

pj,kxk <∞ for j < N, (4.16)

then the chain is ergodic.

In the partial duplication model, the second condition in the theorem is always fulfilled
since pj,k = 0 for k > j + 1. Let Xt denote the state of the chain at time t. If there exists N ≥ 0
and ε > 0 such that

E
[
Xt | Xt−1 = j

] ≤ j − ε ∀j ≥N, (4.17)

then this N, together with xj = j/ε, will work in Theorem 4.5. This is pointed out in [28].

Proposition 4.6. Let q > 0. Then the Markov chain is ergodic for all p < 1/2.

Proof. We find

E
[
Xt | Xt−1 = j

] − j = j(2p − 1) + 2q
1 + q + jp

−→ 2 − 1
p

for j −→ ∞. (4.18)

Note that p < 1/2 implies 2 − 1/p < 0, and hence 2 − 1/p ≤ − ε for all sufficiently small ε > 0.
That is, for a large N, (4.17) is fulfilled.
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Figure 1: Shown is the distribution of vertex degrees of 50 simulated networks (solid) and that of numbers
simulated from the corresponding Markov chain (dashed), using parameters estimated for the P. falciparum
dataset. In addition, the observed degree distribution for P. falciparum is shown (dot-dashed).

In general, it is not an easy task to actually find the stationary distribution of the jump
chain or the time-inhomogeneous Markov chain. For q = 1, an attempt to solve (2.4) has been
made in [19]. They assume that {ft(j)}j≥0 converges and show that, under this assumption, the
limit (for p > 0) has a power-law tail. However, this does not establish the existence of a sta-
tionary distribution. Further, the power-law they provide for p > Ω is in fact not a distribution.
In the special case p = 0, the stationary distribution is πj = (1/2)j for j ≥ 1.

It is natural to ask what happens for the values of p not covered in the proposi-
tions above. In general, this is difficult. However, if Ω is not the maximal upper bound in
Proposition 4.2, the culprit must be the particular choice of {xj}j≥0. Indeed, the damage pro-
vided by the use of Jensen’s inequality is not severe. This may be seen in the following way:
denote by μk(j) the kth central moment of a binomially distributed random variable X with
parameters j and p. From [31], we get μk(j) = O(j−k/2), and by expanding log (X + 1) as a
Taylor series around jp, it follows that E[log (X + 1)] = log (jp + 1) +O(j−1).

4.2. Application to protein interaction networks

We used the computer program developed for [18] to estimate the parameters under the par-
tial duplication model for different protein interaction networks. The Plasmodium falciparum
(P. falciparum) dataset is obtained from [32], and the remaining datasets are downloaded from
the Database of Interacting Proteins (http://dip.doe-mbi.ucla.edu). Curiously, we note that ac-
cording to Proposition 4.6, all pairs of p and q correspond to ergodic Markov chains, indicating
that the networks stabilize as the number of vertices becomes large.

For one of the networks, P. falciparum, we conducted some further experiments where
50 networks were simulated with the same number of vertices as in P. falciparum (1271) and
the degree distribution was computed. All simulations were started from an initial network
of two vertices connected by an edge. Furthermore, 1271 runs of the corresponding Markov
chain were performed, and the degree distribution was calculated and compared to the degree
distribution obtained from the simulated networks. Here, the initial state of the Markov chain
is 1. The length of the runs was varied, as shown in Figure 1.

The simulations indicate that the Markov chain approach may be used to approximate
the degree distribution. This is particularly useful for simulation of large networks in terms
of memory usage; storing the connections between vertices requires memory capacity propor-
tional to the number of vertices times the average number of connections. Simulation of the

http://dip.doe-mbi.ucla.edu
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Table 1: Parameters estimated from protein interaction data.

Species Vertices Edges p q

H. pylori 675 1291 0.263 0.052
P. falciparum 1271 2642 0.026 0.789
C. elegans 2368 3767 0.315 0.105
S. cerevisiae 4968 17530 0.131 0.263

corresponding Markov chain requires memory capacity proportional to the current value of
the chain.

The empirical degree distribution for P. falciparum shows that the partial duplication
model does not provide a perfect fit. For example, no zero-degree vertices are included in the
dataset (experimenter’s choice), and this needs to be incorporated into the model.

5. Other models

We have applied the Markov chain approach to other models, and in this section we briefly
present some of the results.

5.1. The duplication-divergence model

The duplication-divergence model is an extension of the partial duplication model, and it has been
used for analysis of protein interaction networks as well [15, 16, 27, 33]. However, the model
is slightly more complicated than the partial duplication model, and it has three parameters
p, q, and r. A step in this model is as follows: p ick a vertex u in the graph uniformly, and
add a new vertex v. Connect u and v with probability q, and create an edge ew between v
and w whenever there is an edge e′w between the vertices u and w. Now modify the pairs
(ew, e′w) independently of each other in the following way: with probability p, keep both edges;
otherwise, with probability r, keep ew and delete e′w, and with probability 1 − r, keep e′w and
delete ew.

One can derive a master equation and go through the construction of the modified jump
chain. In this case, the transition probabilities pj,k satisfy that

(jp + 2)pj,k =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − q)bj(k, 1 − ψ) + qbj(k − 1, 1 − ψ)
+ (1 − q)bj(k, p + ψ) + qbj(k − 1, p + ψ) for k ≤ j,

jp + qbj(j, 1 − ψ) + qbj(j, p + ψ) for k = j + 1,

(5.1)

and pj,k = 0 otherwise. Here ψ = (1 − p)(1 − r), and bj(k, s) is the binomial probability from
(4.3) with p replaced by s.

In order to apply Theorem 4.1, we put xj = log (j+1). It follows from simple calculations,
again using Jensen’s inequality, that {xj}j≥0 is a solution to (4.9) if p and r satisfy that

log (1 − ψ) + log (p + ψ) + p < 0. (5.2)

Note that in the special cases r = 0 and r = 1, the left-hand side of the inequality reduces
to log (p) + p, the same inequality as seen earlier. Actually, for r = 0 the model is the partial
duplication model. It follows that if r = 0 or r = 1, a solution p of (5.2) must satisfty that p < Ω.
For 0 < r < 1 an exact upper bound on p is harder to derive. For these values of r, the solution
p is less than Ω and attains a minimum p ≈ 0.5235 for r = 1/2.
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5.2. Another class of models

We believe that the Markov chain approach presented in this paper may be used to infer the
behavior of other classes of models. In [21], simple models with master equations on the form

nt+1(k) =
(

1 − ak
t

)
nt(k) +

ak−1

t
nt(k − 1) + ck, (5.3)

where ak and ck are nonnegative numbers, are studied. The resulting master equation for the
relative frequencies ft(k) may be written in matrix form as

1
t + 1

(
t 1
c A(t)

)(
1
ft

)
=
(

1
ft+1

)
, (5.4)

where 1 = (1 1 1 · · · ), and c and ft are the column vectors consisting of all the numbers ck
and ft(k), respectively. The matrix A(t) is given by

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

t − a0 0 0 0 · · ·
a0 t − a1 0 0 · · ·
0 a1 t − a2 0 · · ·
0 0 a2 t − a3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
. (5.5)

Note that columns of the partitioned matrix in (5.4) sum to t + 1. That is, when divided
by t+1, the transpose of this matrix represents a Markov chain with time-dependent transition
probabilities. We identify the countable set of states with N ∪ {−∞} where the artificial state
−∞ accounts for the first row and the first column in the partitioned matrix.

We may compute the corresponding jump process, and again it turns out that its transi-
tion probabilities pj,k are time-independent. We may get rid of the state −∞ by simply forget-
ting the time we spend there. That is, for j, k ≥ 0, we replace pj,k by the sum pj,k + pj,−∞p−∞,k ,
and this leads to a Markov chain with transition probabilities given by

pj,k =

⎧
⎪⎪⎨

⎪⎪⎩

aj + cj+1

1 + aj
for k = j + 1,

ck
1 + aj

otherwise.
(5.6)

These jump chains are in fact all ergodic, and the stationary distribution of the time-
inhomogeneous Markov chains has been derived in [21].

5.3. Other extentions

Still other models do not fall under the conditions and assumptions introduced in this paper.
For example, the master equation of the most general form of the duplication-mutation model
[22, 23] depends on terms O(1/t2), and the columns of A(t) do not sum to the same number
a(t) because of O(1/t2) terms, and because the requirement A(t)k,j = 0 for k > j + 1 is not
fulfilled.
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Some of these problems may be circumvented at the cost of a more technical and elab-
orate exposition, but often the results need to be stated as limiting results. For example, if the
columns ofA(t) do not sum to the same number, the jump chain in (2.10) should be considered
as emerging in the limit t→ ∞.

Furthermore, one may choose to ignore terms of order O(1/t2) in the master equation.
As t → ∞, the influence from higher-order terms often becomes insignificant, justifying such
an approximation. This is, for example, the case for the duplication-mutation model.
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