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1. Introduction and Motivation

This paper addresses an application of the well-known fixed point theorem for nonexpansive
mappings in Hilbert spaces (see, e.g., [1, 2]) to a class of dynamical systems. The main aim of
our contribution is to characterize the set of solutions (trajectories) of the dynamical systems
under consideration and to establish the convexity property of this set. First, let us consider
a nonlinear closed-loop system given by

ẋ(t) = f(x(t), u(x(t))), a.e. on
[
0, tf

]
,

x(0) = x0,
(1.1)

where f : R
n × R

m → R
n is Lipschitz continuous in both components. Let U be a compact

and convex subset of R
m and consider measurable feedback control functions u : R

n → U.
Assume that for every such feedback control function u(·), there exists a solution xu(·)

of (1.1), for uniqueness conditions and for some constructive existence conditions for systems
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(1.1) we refer to [3, 4]. Given an initial value x0 ∈ R
n and such a feedback control function

u(·), the solution of (1.1) is an absolutely continuous function. Let W
1,1
n (0, tf) be the Sobolev

space of all absolutely continuous R
n-valued functions y(·) such that the derivative ẏ(·) exists

almost everywhere and belongs to the Lebesgue space L
1
n(0, tf) of all measurable functions

y : [0, tf] → R
n with

∥∥y(·)
∥∥

L
1
n(0,tf )

=
∫ tf

0

∥∥y(t)
∥∥dt <∞. (1.2)

Recall that W
1,1
n (0, tf) equipped with the norm ‖ · ‖

W
1,1
n (0,tf ), defined by

‖w(·)‖
W

1,1
n (0,tf ) := ‖w(·)‖

L
1
n(0,tf ) + ‖ẇ(·)‖

L
1
n(0,tf ) (1.3)

for w(·) ∈ W
1,1
n (0, tf) is a Banach space. Moreover, W

1,1
n (0, tf) is the completion of the space

of all continuously differentiable R
n-valued functions C

1
n(0, tf) with respect to the norm

‖ · ‖
L
1
n(0,tf ) (see, e.g., [5, 6]). The initial value problem (1.1) can also be considered as a problem

in the space W
1,1
n (0, tf).

The reachable set K̃(t, x0) at time t is the set of states of (1.1) which can be reached at
time t, when starting at x0 at time t = 0, using all possible controls (see, e.g., [7]). That is,
K̃(t, x0) := {xu(t) | u(·) ∈ L

1
m(R

n), u(x) ∈ U}, where L
1
m(R

n) denotes the Lebesgue space of
all measurable functions u : R

n → R
m. We now formulate our standing hypothesis.

(H1) The reachable sets K̃(t, x0) are contained in an open bounded superset Ω ⊂ R
n for

t ∈ [0, tf].

This is for example the case if Ω is a positively invariant set for the system (1.1). Recall that
a set in the state space is said to be positively invariant for a given dynamical system if any
trajectory initiated in this set remains inside the set at all future time instants. Besides, for a
dynamical system (1.1) with bounded right-hand side, the reachable set K̃(t, x0) is trivially
bounded.

Given l ∈ R+, we introduce the space Uf

l of admissible feedback control functions
u : Ω → U as the space of all Lipschitz functions with Lipschitz constants lu ≤ l on Ω. Under
the above-mentioned boundedness assumption for the reachable set, we can now consider
the reachable set K(t, x0) of (1.1) with respect to Uf

l given by K(t, x0) := {xu(t) | u(·) ∈ Uf

l }.
For the given control system (1.1), we address the task of formulating sufficient conditions
for the convexity of the reachable set K(t, x0) for every t ∈ [0, tf]. Note that the convexity
of the reachable set or the existence of convex approximations for the 1 reachable set bear a
close relation to a computational method for determining positively invariant sets, namely,
the ellipsoidal technique (see [8, 9]). In this paper, we also derive conditions for the set of
trajectories of (1.1) on [0, tf] , that is,

T(x0) :=
{
xu(·) :

[
0, tf

]
−→ Ω | u(·) ∈ Uf

l

}
, (1.4)

to be convex. The main convexity result for system (1.1) is based on an abstract fixed
point theorem for nonexpansive mappings in Hilbert spaces (see, e.g., [1, 2]). For some
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abstract convexity results for nonlinear mappings we refer to [10], for some applications to
optimization and optimal control to [10, 11]. For an analysis of reachable sets of dynamical
systems in an abstract or hybrid setting, see also [8].

While the main topic of our paper is the estimation of reachable sets for closed-loop
systems of type (1.1), we also consider open-loop control systems:

ẋ(t) = g(x(t), u(t)), a.e. on
[
0, tf

]
,

x(0) = x0,
(1.5)

where g is a Lipschitz continuous function (in both components) andwhere u(t) belongs toU
for t ∈ [0, tf]. Let U := {u(·) ∈ L

2
m(0, tf) | u(t) ∈ U} be the space of admissible control signals

for system (1.5). Here, L2
m(0, tf) denotes the Lebesgue space of all square-integrable functions

u : [0, tf] → R
m with the corresponding norm. It is assumed that for every admissible time-

dependent control u(·) ∈ U system (1.5) has a unique solution xu(·) ∈ W
1,1
n (0, tf). As for the

closed-loop system (1.1), we will obtain estimates for the reachable sets of (1.5) provided the
right-hand sides are bounded.

The paper is organized as follows. In Section 2, we provide the necessary definitions
and mathematical results. Section 3 contains the convexity result for the sets of trajectories
and for reachable sets of the closed-loop control system (1.1). Section 4 discusses overap-
proximation of reachable sets for some classes of closed-loop and open-loop control systems
with bounded right-hand sides. We also use some techniques from optimal control theory
to obtain general approximations of convex reachable sets under consideration. In Section 5,
we discuss a possible application of our convexity criterion to optimal control problems with
constraints. Section 6 summarizes the paper.

2. Preliminary Results

We first provide some relevant definitions and facts. LetX and Y be two Banach spaces with
X ⊂ Y. We say that the space X is compactly embedded in Y and write X↪→cY, if ‖v‖Y ≤
c‖v‖X for all v ∈ X and each bounded sequence inX has a convergent subsequence in Y. We
recall a special case of the Sobolev Embedding Theorem (cf. [5, 6]) in Proposition 2.1 and list
some interpolation properties of Lebesgue spaces (cf. [6]) in Proposition 2.2.

Proposition 2.1. It holds that W
1,1
n (0, tf)↪→cL

2
n(0, tf).

Proposition 2.2. If 1 ≤ p ≤ q ≤ ∞, then L
q
n(Ω) ⊂ L

p
n(Ω) and

‖v‖
L
p
n(Ω) ≤ meas(Ω)1/p−1/q‖v‖

L
q
n(Ω), ∀v ∈ L

q
n(Ω), (2.1)

where 1/∞ is understood to be 0. In particular one has L
2
n(0, tf) ⊂ L

1
n(0, tf) and, for all functions

y(·) ∈ L
2
n(0, tf),

∥∥y(·)
∥∥

L
1
n(0,tf )

≤
√
tf
∥∥y(·)

∥∥
L
2
n(0,tf). (2.2)



4 Journal of Applied Mathematics

We now consider the concept of a nonexpansive mapping in Hilbert spaces and present
a fundamental fixed point theorem for such mappings in Proposition 2.3 (cf. [1, 2, 12]). Let
C be a subset of a Hilbert space H with norm ‖ · ‖H. A mapping T : C → H is said to be
nonexpansive if

‖T(h1) − T(h2)‖H ≤ ‖h1 − h2‖H (2.3)

holds true for all h1, h2 ∈ C.

Proposition 2.3. Let C be a nonempty, closed, and convex subset of a Hilbert space H and let T be a
nonexpansive mapping of C into itself. Then the set F(T) of fixed points of T is nonempty, closed, and
convex.

Now, we return to the given control system (1.1) for which we introduce the system
operator

P : Uf

l
× W

1,1
n

(
0, tf

)
−→ Uf

l
× W

1,1
n

(
0, tf

)
(2.4)

defined by the following formula:

P(u(·), x(·))(t) :=

⎛

⎜⎜⎜
⎝

u(x(t))

x0 +
∫ t

0
f(x(τ), u(x(τ)))dτ

⎞

⎟⎟⎟
⎠
. (2.5)

Using the Sobolev Embedding Theorem (as stated in Proposition 2.1), we extend P to the
operator:

P̃ : Uf

l × L
2
n

(
0, tf

)
−→ Uf

l × L
2
n

(
0, tf

)
(2.6)

with P̃ still being given by the right-hand side of formula (2.5).
We now consider the set of admissible feedback controls Uf

l , which is contained in

Cm(Ω), as a subset of the space L
2
m(Ω). The following result specifies properties of the setUf

l
.

Lemma 2.4. The set Uf

l is a closed convex subset of the Hilbert space L
2
m(Ω).

Proof. The set AU of all continuous functions u(·) with range in U and the set Al of all
Lipschitz continuous functions with Lipschitz constants lu ≤ l are both convex subsets of
Cm(Ω). Therefore, the intersection Uf

l := AU
⋂
Al is also convex.

Because of Cm(Ω) ⊂ L
2
m(Ω), the set Al is a closed set in the sense of the supnorm.

Hence Al is also closed in the sense of the norm of the space L
∞
m(Ω). Using Proposition 2.2,

we deduce that this set is a closed subset of the space L
2
m(Ω). Now let us consider a sequence

{uk(·)} of functions from Uf

l
such that

lim
k→∞

‖uk(·) − û(·)‖L
2
m(Ω) = 0, (2.7)
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where û(·) ∈ L
2
m(Ω). Then there exists a subsequence {us(·)} of {uk(·)} satisfying

lims→∞‖us(x) − û(x)‖Rm = 0 for almost all x ∈ Ω (see [13]). The assumption û(·)/∈Uf

l
implies

the existence of a set I ⊆ Ω of positive measure with û(x)/∈U for all x ∈ I. On the other
hand, we have for a fixed x ∈ I :

lim
s→∞

‖us(x) − û(x)‖Rm = 0. (2.8)

Since U is a compact set, û(x) belongs to U for the considered x ∈ I, contradicting our
assumption. Thus, we obtain û(·) ∈ Uf

l showing that the setUf

l is closed. The proof is finished.

By Lemma 2.4, the setUf

l ×L
2
n(0, tf) is a closed convex subset of the Hilbert spaceH :=

L
2
m(Ω) × L

2
n(0, tf). Note that the scalar product and the norm in this space can be introduced

as follows:

〈(u1(·), x1(·)), (u2(·), x2(·))〉H := 〈u1(·), u2(·)〉L
2
m(Ω) + 〈x1(·), x2(·)〉L

2
n(0,tf ),

‖(u(·), x(·))‖H :=
√
‖u(·)‖2

L
2
m(Ω) + ‖x(·)‖2

L
2
n(0,tf )

.
(2.9)

Using the triangle inequality and the Schwarz inequality for the Hilbert spaces L
2
m(Ω) and

L
2
n(0, tf), one can verify the standard properties of the introduced scalar product and norm.

3. Convexity Criteria for Reachable Sets of Closed-Loop Systems

We next state and prove our main result concerning the operator P̃ from (2.6) and (2.5) under
our standing hypothesis (H1). It will be the basis for formulating sufficient conditions for the
convexity of the set T(x0) of trajectories and of the reachable setK(t, x0).

Theorem 3.1. Assume that f satisfies the Lipschitz condition:

∥∥f(x1, u1) − f(x2, u2)
∥∥ ≤ l1‖x1 − x2‖ + l2‖u1 − u2‖ ∀x1, x2 ∈ Ω, ∀u1, u2 ∈ U, (3.1)

where tf
√
l2 + (l1 + l2l)

2 ≤ 1. Then the operator P̃ of the corresponding system is nonexpansive, and

the set F(P̃) of fixed points of P̃ is nonempty closed and convex.

Proof. We claim that P̃ is a nonexpansive mapping. To see this, consider

∥∥∥P̃
(
u1(·), y1(·)

)
− P̃

(
u2(·), y2(·)

)∥∥∥
2

H
=
∥∥u1

(
y1(·)

)
− u2

(
y2(·)

)∥∥2
L
2
m(Ω) +

∥∥∥∥

∫ ·

0
δ(τ)dτ

∥∥∥∥

2

L
2
n(0,tf )

(3.2)
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with δ(τ) := f(y1(τ), u1(y1(τ))) − f(y2(τ), u2(y2(τ))) where control functions u1(·), u2(·) are
from L

2
m(Ω), and y1(·), y2(·) are elements of L

2
n(0, tf). Consider the second term of the right-

hand side of (3.2). We obtain

∥∥∥∥

∫ ·

0
δ(τ)dτ

∥∥∥∥

2

L
2
n(0,tf )

=
∫ tf

0

∥∥∥∥∥

∫ t

0
δ(τ)dτ

∥∥∥∥∥

2

Rn

dt

≤
∫ tf

0

(∫ t

0
‖δ(τ)‖

Rndτ

)2

dt ≤
∫ tf

0

(∫ tf

0
‖δ(τ)‖

Rndτ

)2

dt

= tf

(∫ tf

0
‖δ(τ)‖

Rndτ

)2

.

(3.3)

From (3.3) and from the Lipschitz condition for the function f it follows that

∥∥∥∥

∫ ·

0
δ(τ)dτ

∥∥∥∥

2

L
2
n(0,tf )

≤ tf(l1 + l2l)2
(∫ tf

0

∥∥y1(τ) − y2(τ)
∥∥

Rndτ

)2

= tf(l1 + l2l)
2∥∥y1(·) − y2(·)

∥∥2
L
1
n(0,tf )

.

(3.4)

By Proposition 2.2, we have the following estimation:

∥∥y1(·) − y2(·)
∥∥2

L
1
n(0,tf )

≤ tf
∥∥y1(·) − y2(·)

∥∥2
L
2
n(0,tf )

. (3.5)

This fact and inequality (3.6) both imply

∥∥∥∥

∫ ·

0
δ(τ)dτ

∥∥∥∥

2

L
2
n(0,tf )

≤ t2f(l1 + l2l)
2∥∥y1(·) − y2(·)

∥∥2
L
2
n(0,tf )

. (3.6)

Since tf
√
l2 + (l1 + l2l)

2 ≤ 1,we finally deduce from Proposition 2.2, and formulas (3.2)–(3.6):

∥∥∥P̃
(
u1(·), y1(·)

)
− P̃

(
u2(·), y2(·)

)∥∥∥
H

≤
[
‖u1(·) − u2(·)‖2L2

m(Ω) +
∥∥y1(·) − y2(·)

∥∥2
L
2
n(0,tf)

]1/2

=
∥∥(u1(·), y1(·)

)
−
(
u2(·), y2(·)

)∥∥
H.

(3.7)

Thus, the introduced operator P̃ is a nonexpansive operator in the Hilbert space H. By
Lemma 2.4, Uf

l × L
2
n(0, tf) is a nonempty closed and convex subset of H. Finally, from

Proposition 2.3, it follows that F(P̃) is a nonempty closed and convex set. The proof is
completed.

Note that Theorem 3.1 establishes the convexity property of the set of fixed points for
the extended system operator P̃ onUf

l
×L

2
n(0, tf) (see (2.6) and (2.5)). As a consequence of this
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result, we also can formulate the corresponding theorem for the operator P onUf

l
×W

1,1
n (0, tf)

(see (2.4) and (2.5)).

Theorem 3.2. Under the assumption of Theorem 3.1, the set F(P) is convex. Moreover, the set of
trajectories T(x0) = {xu(·) | u(·) ∈ Uf

l } for the initial value problem (1.1) on [0, tf] is also convex.

Proof. Since f is a Lipschitz continuous function, the initial value problem (1.1) has a solution
and the set F(P) of fixed points of the operator P is nonempty. By Proposition 2.1, we have
W

1,1
n (0, tf) ⊂ L

2
n(0, tf). Hence,

F(P) = W
1,1
n

(
0, tf

)⋂
F
(
P̃
)
. (3.8)

Since W
1,1
n (0, tf) is a convex subset of L

2
n(0, tf), the set F(P) is also convex.

In fact, F(P) is a subset of the product-space Uf

l
× W

1,1
n (0, tf) and the structure of the

operator P defines the structure of the set F(P) = Uf

l
× T(x0). Since F(P) and Uf

l
are convex,

we obtain the convexity of the set T(x0).

We now deal with the reachable setK(t, x0) for the closed-loop system (1.1). Our next
result is an immediate consequence of the convexity criterion just presented in Theorem 3.2.

Theorem 3.3. Under the assumption of Theorem 3.1, the reachable set K(t, x0) for the initial value
problem (1.1) is convex for every t ∈ [0, tf].

Proof. Theorem 3.2 states the convexity of the set T(x0). It means that for

xu1(·), xu2(·) ∈ T(x0) (3.9)

with u1(·), u2(·) ∈ Uf

l
and for fixed λ ∈ (0, 1), there exists an admissible control u3(·) ∈ Uf

l
such that xu3(·) = λxu1(·)+(1−λ)xu2(·) ∈ T(x0). On the other hand, at a time-instant t ∈ [0, tf],
we have xu1(t), xu2(t) ∈ K(t, x0). Hence,

xu3(t) = λxu1(t) + (1 − λ)xu2(t) ∈ K(t, x0). (3.10)

This shows that the reachable setK(t, x0) is convex for every t ∈ [0, tf].

Remark 3.4. Note that under the conditions of Theorem 3.1, the reachable set K(t, x0) from
Theorem 3.3 is closed for every t ∈ [0, tf]. This fact also follows from Proposition 2.3 and
Theorem 3.1. Moreover, the set of trajectories T(x0) of (1.1) is a closed subset of the space
C(0, tf) [14].

We now present two illustrative examples of control systems (1.1) satisfying the
Lipschitz conditions from the main Theorem 3.1.
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Example 3.5. Let us consider an f with every component fj being a convex function fi :∈
U ×R

n → R. In casemj ≤ fj(x, u) ≤Mj, j = 1, . . . , n holds for all (u, x) in the ball B(0, 2Δ) of
radius 2Δ around 0, every fj is Lipschitzian on B(0,Δ) with

∣∣fj(x1, u1) − fj(x2, u2)
∣∣ ≤

Mj −mj

Δ
(3.11)

for all (u1, x1), (u2, x2) ∈ B(0,Δ) (cf. [15]) implying that

ν := max
j=1,...,n

(
Mj −mj

)

Δ
∣∣f(x1, u1) − f(x2, u2)

∣∣ ≤ ν(‖u1 − u2‖ + ‖x1 − x2‖).
(3.12)

Therefore, the condition tf
√
l2 + (l1 + l2l)

2 ≤ 1 from Theorem 3.1 can be written as follows:

tf

√
l2 + ν2(1 + l)2 ≤ 1, (3.13)

where B(0,Δ) is taken for Ω. Note thatMj andmj may depend on Δ too.

Example 3.6. Consider the following two-dimensional control system:

ẋ1(t) = x2(t),

ẋ2(t) = − sin x1(t) + u(x(t)),

x1(0) = x2(0) = 0,

(3.14)

where x := (x1, x2)
T and t ∈ [0, 0.5]. It is easy to see that l1 = l2 = 1. The condition

tf

√
l2 + (l1 + l2l)

2 ≤ 1 from Theorem 3.1 implies 2l2 + 2l − 3 ≤ 0 and

0 < l ≤
√
7 − 1
2

. (3.15)

We see that under this condition the reachable setK(t, 0R2) of the presented system is convex
for every t ∈ [0, 0.5].

4. Overapproximations of Reachable Sets

In this section we will discuss a special class of closed-loop and open-loop systems (1.1) and
(1.5), namely, systems which satisfy the following condition:

f(x, u), g(x, u) ∈ K, ∀(x, u) ∈ R
n ×U, (4.1)
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where K is a closed convex subset of R
n containing 0. The right-hand sides f and g of

(1.1) and (1.5) are assumed to be continuous in both components. Let us first formulate the
following auxiliary abstract result.

Lemma 4.1. LetX be a separable Banach space and {S,Σ, μ} be a measurable space with a probability
measure μ. Let C ⊂ X be closed and convex. If the mapping q : S → C is a μ-measurable function,
then

∫
q(τ)μ(dτ) ∈ C. (4.2)

Proof. Assume a :=
∫
q(τ)μ(dτ)/∈C and let

B(a,R) :=
{
ξ ∈ X | ‖ξ − a‖X < R

}
(4.3)

be the ball around a with radius R. Evidently, there is a radius R such that we have C ∩
B(a,R) = ∅. Using a Separating Theorem from convex analysis (cf. [13, 16]), we obtain a
nontrivial L ∈ X∗ with Lξ ≤ Lψ for all ξ ∈ B(a,R), ψ ∈ C. By X∗, we have denoted the
(topological) dual space toX. Thereby, we have the inequality

sup
‖ξ‖X≤1

(L(a + Rξ)) = La + R|L| ≤ L
(
q(τ)

)
, τ ∈ S, (4.4)

and—by integration with respect to μ—we have also the corresponding inequality

La + R|L| ≤
∫
L
(
q(τ)

)
μ(dτ). (4.5)

Because of
∫
L
(
q(τ)

)
μ(dτ) = L

∫
q(τ)μ(dτ) = La, (4.6)

(4.5) leads to La + R|L| ≤ L contradicting the fact that L is nontrivial. Therefore,

a =
∫
q(τ)μ(dτ) (4.7)

belongs to C.

Returning to control systems of type (1.1) or (1.5) satisfying condition (4.1), we
introduce the following Lebesgue probability measure μ = τ/t on the interval [0, t]. Then,
we apply Lemma 4.1 to our control systems and compute the state of system (1.1) (or the
state of system (1.5)) at time t ∈ [0, tf] as

x(t) = x0 +
∫ t

0
f(x(τ), u(x(τ)))ds = x0 + t

∫ t

0
f(x(τ), u(x(τ)))μ(dτ) ∈ x0 + tK. (4.8)
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For the open-loop system (1.5), we have the analogous result

x(t) = x0 +
∫ t

0
g(x(τ), u(τ))dτ ∈ x0 + tK. (4.9)

This means that the reachable sets of systems (1.1) and (1.5) with initial value x0 belong
to the closed convex set Ω := x0 + tfK. Since x0 belongs to Ω, we have the set Ω as a
positively invariant set for the corresponding control system. In particular, this setΩ contains
the reachable set of the considered dynamical system.

We now describe an abstract approach for estimating convex reachable sets. Our main
idea is as follows: under the assumption of convexity for the reachable set of a given closed-
loop control system, we formulate an auxiliary feedback optimal control problem with a
linear cost functional. A solution of this problem makes it possible to construct a tangent
hyperplane (supporting hyperplane) to the reachable set under consideration. Considering a
sufficiently “rich” set of these hyperplanes and their intersections, one can approximate the
reachable set with arbitrary accuracy.

Let K(t̂, x0), t̂ ∈ [0, tf] be a bounded closed and convex reachable set for (1.1).
Following the idea sketched above, let us consider the auxiliary optimal feedback control
problem

minimize
〈
c, x

(
t̂
)〉

subject to (1.1),
(4.10)

where c is a fixed vector from R
n, u(·) ∈ Uf

l , and 〈·, ·〉 denotes the scalar product in R
n.

Note that (4.10) is formulated as a minimizing problem with respect to a terminal linear
cost functional. Linearity of this cost functional and the above properties of the reachable
set K(t̂, x0) to the time t̂ ∈ [0, tf] imply the existence of an optimal solution (u∗(·), x∗(·)) for
(4.10) (see [16]), where u∗(·) ∈ Uf

l
. Note that (4.10) can be reformulated as the following

convex linear problem in R
n :

minimize 〈c, z〉

subject to z ∈ K
(
t̂, x0

)
.

(4.11)

Therefore, x∗(t̂) ∈ ∂K(t̂, x0), where ∂K(t̂, x0) is the boundary (the set of all extremal points)
of the convex set K(t̂, x0) (see, e.g., [15, 16]).

We now recall the Rademacher Theorem (see, e.g., [17]), which states that a function
which is Lipschitz on an open subset of R

n is differentiable almost everywhere (in the sense
of a Lebesgue measure) on that subset. Since Ω ⊂ R

n is an open set, the function u∗(·) is
differentiable almost everywhere on Ω. The set of points at which the optimal control u∗(·)
fails to be differentiable is denoted Ω0. Evidently meas(Ω0) = 0. Let Ω∗ := Ω \ Ω0. We now
formulate our next hypotheses.

(H2) The right-hand side f(·, ·) of (1.1) is a differentiable function (in both components)
such that the partial derivatives fx(·, ·), fu(·, ·) are integrable functions on Ω ×U.
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(H3) It hold that x∗(t) ∈ Ω∗ for all t ∈ [0, t̂] and the derivative (u∗)′ of u∗(·) is locally
integrable on Ω∗.

Clearly, the optimal control problem (4.10) is equivalent to the following minimization
problem:

minimize

(

c,

[

x0 +
∫ t̂

0
f(x(t), u(x(t)))dt

])

(4.12)

for u(·) ∈ Uf

l
. Since the right-hand side of the differential equation from (1.1) is supposed to

be differentiable in both components, the cost functional in (4.12) is Fréchet differentiable
(see, e.g., [18]). Assume (H2)-(H3) and formulate the necessary optimality condition for
(u∗(·), x∗(·)) to be an optimal solution of (4.12):

D
(
c, x∗

(
t̂
))∣∣∣

y(·)
=

(

c,

∫ t̂

0

[
fx(x∗(t), u∗(x∗(t))) + fu(x∗(t), u∗(x∗(t)))(u∗)′(x∗(t))

]
y(t)dt

)

= 0

∀y(·) ∈ W
1,1
n

(
0, t̂

)
,

(4.13)

where D(c, x∗(t̂))|y(·) is the Fréchet derivative of the cost functional from (4.12) at x∗(·). Note
that under the above assumptions (H2)-(H3), the integrand in (4.13) is a locally integrable
function. Moreover, (4.13) holds for all functions y(·) from the space W

1,1
n (0, t̂). Therefore, the

expression in (4.13) is also equal to zero for all functions y(·) from C
∞
0 (0, t̂), where

C
∞
0

(
0, t̂

)
:=

{
ξ(·) ∈ C

∞
(
0, t̂

)∣∣∣ supp{ξ(·)} is a compact subset of
(
0, t̂

)}
(4.14)

and supp{ξ(·)} := {t ∈ (0, t̂) | ξ(t)/= 0}. By the Generalized Variational Lemma (see e.g., [6,
Lemma 7.1.2]), we deduce from (4.13) that

[
fx(x∗(t), u∗(x∗(t))) + fu(x∗(t), u∗(x∗(t)))(u∗)′(x∗(t))

]
c = 0 a.e. on

(
0, t̂

)
. (4.15)

The nonlinear equation (4.15)with a given vector c ∈ R
n provides a basis for solving optimal

control problem (4.10).
Consider now an interior point ζ of the convex hull conv{Ω} and a family {zs} of

elements zs ∈ ∂conv{Ω}, s = 1, . . . , S, for a sufficiently large number S ∈ N such that {zs}
approximate the boundary ∂conv{Ω} of convΩ. By Ω,we denote here the closure of Ω. If we
solve the family of problems (4.10)with cs := zs − ζ, s = 1, . . . , S, we obtain the corresponding
optimal state vectors x∗

s(t̂). As established above, x∗
s(t̂) ∈ ∂K(t̂, x0). Therefore, we can write

the equation of the approximating tangent hyperplane Ts to the reachable set at x∗
s(t̂) in the

form

Ts :=
{
x ∈ R

n
∣∣∣cs, x − x∗

s

(
t̂
)
= 0

}
. (4.16)
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If we examine all hyperplanes Ts, s = 1, . . . , S and their intersections, we can constract a
convex polyhedron which contains the reachable set K(t̂, x0). In principle, the proposed
idea guarantees an overapproximation for a convex reachable set of a control system (1.1).
However, it is necessary to stress that complexity of this approximation grows rapidly if
we increase the number S ∈ N. Finally, note that the same idea can also be used for the
overapproximations of reachable sets for open-loop control systems. We refer to [10] for
details.

5. An Application to Optimal Control Problems with Constraints

Let us now apply the main convexity result of Theorem 3.2 to the following constrained
optimal feedback control problem:

minimize J(x(·))

subject to (1.1), x(·) ∈ A,
(5.1)

where J is a bounded, convex, and lower semicontinuous objective functional (see [16]) and
A a nonempty, bounded, closed, and convex subset of L

2
n(0, tf). The given control system

(1.1) is supposed to satisfy the conditions of Theorem 3.1. We consider the optimal control
problem (5.1) on the Hilbert space L

2
n(0, tf) with feedback controls from Uf

l . Note that the
class of feedback optimal control problems of type (5.1) is quite general [3]. For example, the
objective functional J could be given by

J(x(·)) =
∫ tf

0
x2(t)dt, (5.2)

and the abstract restriction x(·) ∈ A could arise from a system of the following inequalities
hs(x(t)) ≤ 0 for all t ∈ [0, tf]with convex functions hs : R

n → R, where s = 1, . . . , S. It is clear
that an optimal control problem does not always have a solution. The question of existence
of an optimal feedback solution is generally a delicate one (cf. [3]).

Let T(x0)
⋂
A be nonempty. Evidently, problem (5.1) can be rewritten as an

optimization problem over the set C := T(x0)
⋂
A of admissible trajectories as follows:

minimize J(x(·))

subject to x(·) ∈ C.
(5.3)

Here, the state (1.1) is included into the constraints x(·) ∈ C. We claim that (5.3) is a standard
convex optimization problem on a bounded closed convex subset of a Hilbert space (see, e.g.,
[16]). To see this, we note that the set of solutions:

T(x0) =
{
xu(·)

∣∣∣u(·) ∈ Uf

l

}
(5.4)

is a closed subset of the space C(0, tf) (see [14]). Therefore, this set is also closed in the sense
of the norm of L

2
n(0, tf). Moreover, T(x0) is convex by Theorem 3.2. The intersection C of
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the two closed convex sets A and T(x0) is again closed and convex set in the Hilbert space
L
2
n(0, tf). Since A is bounded, the set C is also bounded. Using the well-known existence

results from convex optimization theory (cf. [16]), one can establish the following existence
result for optimal control problem (5.1).

Theorem 5.1. Under the conditions of Theorem 3.2, the optimal control problem (5.3)with a bounded
convex and lower semicontinuous objective functional J and bounded closed convex set A has at least
one optimal solution

(
uopt(·), xopt(·)

)
∈ Uf

l × L
2
n

(
0, tf

)
(5.5)

provided that C = T(x0)
⋂
A is nonempty.

Since W
1,1
n (0, tf) ⊂ L

2
n(0, tf) and W

1,1
n (0, tf) is convex, the following intersection

W
1,1
n (0, tf)

⋂
C is also a bounded closed and convex subset of L

2
n(0, tf). Therefore, we

also obtain the corresponding existence result for problem (5.1) considered on the space
W

1,1
n (0, tf). Let {xk(·)} ⊂ W

1,1
n (0, tf) be a minimizing sequence for (5.3) defined on the space

W
1,1
n (0, tf), that is,

lim
k→∞

J
(
xk(·)

)
= min

W
1,1
n (0,tf)

⋂
C
J(x(·)). (5.6)

It is well known that a minimizing sequence does not always converge to an optimal solution.
The question of creating a convergent minimizing sequence is a central question in the
numerical analysis of optimization algorithms (see, e.g., [11, 19]). By Proposition 2.1, each
bounded sequence in W

1,1
n (0, tf) has a convergent subsequence in L

2
n(0, tf). Since {xk(·)} is

bounded, we have

lim
l→∞

∥∥∥∥∥∥
xkl(·) − Argmin

W
1,1
n (0,tf)

⋂
C
J(x(·))

∥∥∥∥∥∥
L
2
n(0,tf )

= 0 (5.7)

for a subsequence {xkl(·)} of {xk(·)}. Thus, by Theorem 5.1, we deduce the existence of an
L
2
n-convergent minimizing sequence {xkl(·)} for the optimal control problem (5.3).

6. Conclusion

In this paper, we proposed a new convexity criterion for reachable sets for a class of
closed-loop control systems. This sufficient condition is based on a general convexity result
for solution sets of the corresponding nonlinear dynamical systems. Convexity of the set
of trajectories makes it also possible to study some constrained feedback optimal control
problems. For some families of closed-loop and open-loop control systems, we construct
an overestimation of the examined reachable set, that is, we provide sets that contain the
reachable sets of the dynamical system under consideration.
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