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We study Hopf bifurcation solutions to the Monodomain model equipped with FitzHugh-
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In our setting the (bounded) spatial domain consists of two subdomains: a collection of automatic
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at the Hopf bifurcation point. Accurate numerical experiments are employed to complement our
findings.
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1. Introduction

Several important properties of cardiac tissue can be adequately modeled by today’s detailed
ionic models. These quantitative cell models consist generally of dozens of ODEs and do
not easily lend themselves to mathematical analysis; for a comprehensive introduction to the
field, see ,for example, the review paper [1]. There are, however, simple phenomenological
models suitable for analysis of nonlinear phenomena, for example, the FitzHugh-Nagumo
model [2] considered in this paper. These models capture the qualitative characteristics
of electrical propagation in the heart. Moreover, they are both computationally and
mathematically tractable and may be a competitive alternative to ionic models for many
important problems in electrocardiology. In fact, phenomenological models of FitzHugh-
Nagumo type have often successfully predicted the behavior of cardiac tissue [3].

The present paper concerns the FitzHugh-Nagumo model for pulse propagation in
a continuum of heart cells, where the myocytes are diffusively coupled as described by
the Monodomain model [4, 5]. We are interested in the interaction of a small collection of
automatic (self-oscillatory) cells surrounded by finite populations of excitable but stable cells.
The Sinoatrial (SA) node is a group of self-oscillatory cells that initiate each normal heart beat.
It might happen that collections of cells other than the SA node (or the Atrioventricular node)
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become self-oscillatory. A collection of automatic cells that normally are not self-oscillatory is
called an ectopic focus [6], and the appearance of it might result in life-threatening cardiac
arrhythmias. To model this scenario a discontinuous coefficient will be incorporated into
the cell kinetics in the same way as in the papers [7, 8]. These papers investigated the
influence of oscillatory and excitable regions on wave propagation in the myocardial tissue;
numerical computations for the FitzHugh-Nagumo model on a one-dimensional medium
were performed to obtain results on the propagation characteristics. In another paper [9],
both experiments and numerical simulations using an ionic model of cell kinetics were used
to enlighten the role of automaticity, heterogeneity, and diffusive coupling for the generation
of ectopic waves in myocardium.

Stability properties of equilibrium solutions to equations modeling an ectopic focus
have been investigated in, for example, [6, 10]. In [6] the FitzHugh-Nagumo model was used
to find the critical size of a pacemaker. The model was considered with spherical symmetry
on an infinite domain; analysis revealed qualitative relationships between the stability of the
steady state solution and the size of the automatic region, and the strength of the diffusive
coupling. In a previous paper [11] we have determined quantitatively when the steady
solution to the FitzHugh-Nagumo model in our setting loses stability; model parameters were
the diffusion coefficient, the size of the automatic region and the strength of automaticity.
More precisely, the critical diffusion coefficient in the system was identified; if the diffusion
is smaller than this number, the equilibrium solution loses stability. A weaker coupling (less
diffusion) between heart cells may be caused by fibrosis [12].

The purpose of the present paper is to pursue the research beyond the question of the
influence of model parameters on the stability of the steady equilibrium solution, as studied
in [6, 10, 11]. Here we want to take nonlinear effects into play as well and verify analytically
the small oscillating solutions that are observed numerically when the steady state breaks.
Furthermore, we set out to find analytical approximations of these new solutions to the model
on a bounded domain. By doing so, we contribute with expressions that facilitate the study
of the influence of model parameters on the behavior of the cardiac tissue in the presence
of a self-oscillatory clump of cells. The transition of stable solutions occurs at critical points
having purely imaginary eigenvalues, and thus we are concerned with Hopf bifurcation; see
for example, [13]. The bifurcation parameter is a small perturbation of the critical diffusion
coefficient. In [14, 15] Hopf bifurcations for simplified FitzHugh-Nagumo models for nerve
conduction were analyzed. These papers were followed by the paper [16] considering the
full FitzHugh model on an infinite domain. However, that paper concerned the model in
a setting different from ours, but relevant for propagating pulses in nerve conduction: the
FitzHugh parameters were independent of position, a stimulus current was applied, and the
bifurcation parameter was a disturbance to the current strength. Analytical approximations
of the solutions were not at hand for that problem setup.

This paper is outlined as follows. In the next section the preliminaries needed to
calculate the bifurcating solution are worked out. Then, the steps to obtain the approximative
solution are carried out. This is followed by a section with numerical experiments, and finally
a short summary concludes the paper.

2. Preliminaries

We consider the Monodomain model together with the FitzHugh-Nagumo description of cell
kinetics. Our purpose is to study a spatial domain where one region consists of automatic
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cells and another region has normal quiescent cells. The normal cells are surrounding the
collection of automatic cells, which would act as pacemaker cells if they were isolated.
The governing PDE-system models the transmembrane potential v (the potential difference
across the cell membranes) and a so-called recovery variable w. The equations are here
considered in the following form:

vt = δvxx +
1
ε
f
(
v,w, p(x)

)
,

wt = v − γw,

f
(
v,w, p(x)

)
= v
(
v + p(x)

)
(1 − v) −w,

(2.1)

augmented with homogeneous Dirichlet boundary conditions on the closed domain
[−Ma,Ma], where a relates to the size of the automatic domain and M > 1. Here ε > 0
and γ > 0 are dimensionless parameters arising from the derivation of the phenomenological
FitzHugh-Nagumo cell model; see [2, 6] for the details. The diffusion coefficient δ > 0 comes
from the Monodomain reduction of the Bidomain model, which is a more detailed description
of heart tissue; compare [5]. The automaticity parameter p depends on the position x and
describes automatic and normal cells:

p(x) =

⎧
⎨

⎩

α, |x| ≤ a,

−β, a < |x| ≤Ma,
(2.2)

where α > 0 controls the automaticity of the automatic cells and β > 0 is a parameter
characterizing the normal cells.

In a previous paper [11] we have determined the diffusion coefficient for which
stability is lost; this loss of stability might occur at a Hopf bifurcation point. More specifically,
a number η0 = δ/a2 is found such that the eigenvalues of the linearized equilibrium system
for (2.1) are purely imaginary, λ± = ±iω0 with ω0 ∈ R. Next follows a short digression on the
eigensystem of the linearized equilibrium equations; complre [11] for the details.

2.1. Eigensystem

Linearizing the equilibrium system around the null-solution gives the eigenvalue problem:

δv′′ +
1
ε

(
p(x)v −w

)
= λv,

v − γw = λw
(2.3)

on [−Ma,Ma] with homogeneous Dirichlet conditions. For 0 < ε < 1/γ2 and α > εγ it is
found that the eigenvalues where Hopf bifurcation possibly occurs are λ± = ±iω0 with

ω0 =
√

1/ε − γ2 . (2.4)
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Belonging to the eigenvalue λ+ we have the eigenfunction

φ(x) = c · ξ(x)
(

1,
1

γ + λ+

)
= c · ξ(x)

(
1, ε
(
γ − iω0

))
, (2.5)

and λ− has the eigenfunction φ(x). Here c is a real constant that will be determined by
normalization later on, and ξ is the function

ξ(x) =

⎧
⎪⎨

⎪⎩

cos kx, |x| ≤ a,
cos ka

sinh(κa(M − 1))
sinh(κ(Ma − |x|)), a < |x| ≤Ma,

(2.6)

where k =
√
(α/ε − γ)/δ0 and κ =

√
(β/ε + γ)/δ0. Finally, the diffusion coefficient yielding

these purely imaginary eigenvalues is δ0 = η0a
2; the point η0 is determined by the equation

√
α/ε − γ
η0

− arctan

⎛

⎜⎜⎜⎜⎜
⎝

√
β/ε + γ
α/ε − γ

1

tanh

(

(M − 1)

√
β/ε + γ
η0

)

⎞

⎟⎟⎟⎟⎟
⎠

= 0, (2.7)

which can be solved numerically by, for example, Newton’s method.
In general, we can find the eigenvalue λ for a given diffusion coefficient δ = ηa2

through the characteristic equation

G :=

√
gA(λ)
η

− arctan

⎛

⎜⎜⎜⎜⎜
⎝

√
gN(λ)
gA(λ)

1

tanh

(

(M − 1)

√
gN(λ)
η

)

⎞

⎟⎟⎟⎟⎟
⎠

= 0, (2.8)

where

gA(λ) = −λ −
1

ε
(
λ + γ

) +
α

ε
,

gN(λ) = λ +
1

ε
(
λ + γ

) +
β

ε
.

(2.9)

2.2. Notational Definitions

We are interested in the solutions to (2.1) with δ = (η0 − μ)a2, where μ > 0 is the bifurcation
parameter. Our goal is to approximate the time-periodic solutions that are born when the
null-solution loses stability. To this end we will make use of the general framework worked
out in [13]. First, some notation needs to be defined.
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We will write (2.1) as

ut = F
(
μ, u
)
= Fu(0 | u) + μFuμ(0 | u) +

1
2
Fuu(0 | u | u) +

1
6
Fuuu(0 | u | u | u). (2.10)

Here u = (v,w) and the derivatives are

Fu(0 | u) =
(
a2η0vxx +

p(x)v −w
ε

, v − γw
)
,

Fuμ(0 | u) = −
(
a2vxx, 0

)
,

Fuu(0 | u | u) = 2
(

1 − p(x)
ε

v2, 0
)
,

Fuuu(0 | u | u | u) = −6

(
v3

ε
, 0

)

,

(2.11)

where for example, Fu(μ | u) denotes the first derivative of F evaluated at μ and acting on u.
The problem (2.10) is set in the context of Hilbert spaces; two function spaces are introduced.
The first one is the Hilbert space H = (L2(−Ma,Ma))2 with the scalar product

〈U,V 〉 =
∫Ma

−Ma

U1V 1 +U2V 2dx (2.12)

for two-component functions U,V ∈ H. The second is the space of 2π-periodic functions
having the scalar product

[U,V ] =
1

2π

∫2π

0
〈U,V 〉(s)ds (2.13)

with U(s), V (s) ∈ H for all s ∈ (0, 2π).

2.3. The Adjoint Problem

We will need the eigenfunctions for the adjoint operator L∗ to L = Fu(0 | ·). Recall that

Lu =
(
a2η0vxx +

p(x)v −w
ε

, v − γw
)
. (2.14)

Straightforward calculations show that 〈Lu, z〉 = 〈u, L∗z〉 and

L∗u =
(
a2η0vxx +

p(x)v + εw
ε

,−
v + εγw

ε

)
(2.15)
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for homogeneous Dirichlet boundary conditions. If we consider the eigenvalue problem Lu =
λu and use that w = v/(λ + γ), we obtain the scalar eigenvalue problem

a2η0vxx +

(
p(x)
ε
− 1
ε
(
λ + γ

) − λ
)

v = 0. (2.16)

Similarly, the adjoint eigenvalue problem L∗u = λu can be reduced to a scalar problem by
using that w = −1/(ε(λ + γ)). This results in the scalar eigenvalue problem above with
conjugated λ. Thus, we have that the eigenvalues for the two eigenvalue problems are
the conjugate of each other. It also holds that the first component of the eigenfunction for
the adjoint eigenvalue problem is, up to a constant factor, identical to the one for L. For
λ
+
= λ− = −iω0 it is found that the adjoint eigenfunction is

φ∗(x) = d · ξ(x)

⎛

⎜
⎝1,− 1

ε
(
λ
+
+ γ
)

⎞

⎟
⎠ = d · ξ(x)

(
1,−γ − iω0

)
, (2.17)

where ξ is given in (2.6) and d is an unspecified complex constant. The adjoint eigenfunction
for λ

−
= iω0 is given by φ

∗
.

3. The Bifurcating Solution

We are ready to look for the time-periodic solutions to (2.1) that arise when the null-solution
becomes unstable. To begin with, consider the linearized equation ut = Lu with L = Fu(0 | ·).
Note that if we take the eigenfunction φ in (2.5) and let z = eiω0tφ, then z and its conjugate
solve zt = Lz and zt = Lz, respectively. Letting s = ω0t we are therefore led to define the
operator in [13]:

J0 = −ω0
d
ds

+ Fu(0 | ·), (3.1)

such that J0z = J0z = 0, and any solution u to J0u = 0 can be written as a linear combination
of z and z.

Our task in the following is to find a first-order accurate analytical approximation of
the unknown bifurcating solution to (2.10) for some bifurcation parameter μ > 0. Projections
to the adjoint eigenspace will be utilized to single out the approximative solution.

3.1. Principal Eigenvalue and Bifurcation Parameter

The null-solution loses stability if the real part of the principal eigenvalue becomes positive
when the bifurcation parameter μ changes, say grows, from zero. Note that λ+ ≈ iω0 + λμμ,
where λμ is the derivative of the principal eigenvalue with respect to μ, evaluated at μ = 0.
In a given problem setup with a certain parameter set we should check that the real part
of λμ is positive, thereby indicating an eigenvalue with positive real part for μ > 0. Two
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different ways to calculate λμ will be provided. Since the corresponding values obtained for
a given bifurcation problem must be identical, equating the two formulas gives a condition
that should be verified in order to increase the confidence in the calculations.

First, to obtain λμ we can use the characteristic equation (2.8) for η = η0 − μ and
calculate

0 =
d

dμ
G = Gλλμ +Gμ (3.2)

and then evaluate this expression at μ = 0 to find λμ = −Gμ/Gλ. By using Maple an expression
for λμ is found; denoting it by λGμ it reads

λGμ =
κa3k2

[(
κ2 + k2)sinh2(κa(M − 1)) +Mκ2

]

(κ2 + k2) sinh(2κa(M − 1)) + 2aκ
[
(k2 + κ2)cosh2(κa(M − 1)) − k2M

]
(

1 − i
γ

ω0

)
. (3.3)

Second, an alternative way to calculate λμ is given in [13]. Consider the spectral
problem λζ = Fu(μ | ζ), where at μ = 0 the function ζ is identical to the eigenfunction φ
given in (2.5). The equation resulting from taking the derivative of the spectral problem with
respect to μ at μ = 0 is solvable if and only if

λμ =
〈
Fuμ
(
0 | φ

)
, φ∗
〉
, 〈φ, φ∗〉 = 1. (3.4)

We turn to find the right-hand side 〈Fuμ(0 | φ), φ∗〉 in (3.4). The eigenfunctions φ
and φ∗ occurring in (3.4) need to be normalized such that 〈φ, φ∗〉 = 1. Let us start out by
normalizing the eigenfunction φ given in (2.5) We could simply put c = 1 in (2.5), but choose
to determine it such that 〈φ, φ〉 = 1:

〈φ, φ〉 =
∫Ma

−Ma

φ1φ1 + φ2φ2dx = c2(1 + ε)
∫Ma

−Ma

ξ2(x)dx, (3.5)

and so the sought constant can be written as

c =
1

√
(1 + ε)I0

, (3.6)

where we have defined

I0 :=
∫Ma

−Ma

ξ2(x)dx. (3.7)
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Next, the complex constant d for the adjoint eigenfunction φ∗ in (2.17) is determined from

the condition 〈φ, φ∗〉 = 1. Using that ω0 =
√

1/ε − γ2 we calculate

〈
φ, φ∗

〉
=
∫Ma

−Ma

φ1φ
∗
1 + φ2φ

∗
2dx = 2cdεω0

(
ω0 + iγ

)
I0 (3.8)

and find

d =
1

2cI0

(
1 + i

γ

ω0

)
. (3.9)

Now, Fuμ(0 | φ) = −(a2φ1,xx, 0) = −(a2cξ′′, 0) and

〈
Fuμ
(
0 | φ

)
, φ∗
〉
= −
∫Ma

−Ma

a2cξ′′(x)dξ(x)dx = −cda2I1 = −a
2I1

2I0

(
1 − i

γ

ω0

)
, (3.10)

where I1 is the integral

I1 :=
∫Ma

−Ma

ξ(x)ξ′′(x)dx. (3.11)

So, the condition arising from (3.3) and (3.4) may be written as

λGμ = −a
2I1

2I0

(
1 − i

γ

ω0

)
. (3.12)

3.2. Series Expansion

We attempt to find the solution to (2.10) as a power series in a small parameter ε̂:

⎛

⎜⎜
⎝

uε̂(x, s, ε̂)

μ(ε̂)

ω(ε̂) −ω0

⎞

⎟⎟
⎠ =

∞∑

n=1

ε̂ n

n!

⎛

⎜⎜
⎝

un(x, s)

μn

ωn

⎞

⎟⎟
⎠. (3.13)

Here uε̂ is the approximative solution, s = ω0t, μ is the bifurcation parameter, and ω is the
time frequency.

A Fredholm [17] solubility condition is given in [13], First, from J0u1 = 0 we may
choose u1 = z + z = eisφ + e−isφ. That is,

u1(x, s) = 2cξ(x)
(
cos(s), ε

(
γ cos(s) +ω0 sin(s)

))
. (3.14)

It also holds that μ1 = ω1 = 0 and

3
(
−iω2 + μ2λμ

)
+ 3[Fuu(0 | u1 | u2), z∗] + [Fuuu(0 | u1 | u1 | u1), z∗] = 0, (3.15)
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where z∗ = eisφ∗. However, in order to solve this equation for μ2 and ω2 we have first to solve

J0u2 = −Fuu(0 | u1 | u1), [u2, z
∗] = 0 (3.16)

for u2, which is not easily done. Since we are looking for a first-order approximation, we can
make use of an alternative equation instead. This equation arises in the process of solving a
complex-valued amplitude equation for the problem (2.10); it ignores third-order terms and
reads [13]

iω2 − μ2λμ =
−2σ0σ1 + 4σ1σ1 + 2σ2σ2/3

iω0
, (3.17)

where λμ is given by the right-hand side of (3.12) and

σ0 =
1
2
〈
Fuu
(
0 | φ | φ

)
, φ∗
〉
,

σ1 =
1
2

〈
Fuu
(

0 | φ | φ
)
, φ∗
〉
,

σ2 =
1
2

〈
Fuu
(

0 | φ | φ
)
, φ∗
〉
.

(3.18)

We modify the equation to conform to the current series expansion and include the missing
cubic term as well:

iω2 − μ2λμ

2
=
−2σ0σ1 + 4σ1σ1 + 2σ2σ2/3

iω0
+ 3ρ, (3.19)

and here the cubic term reads

ρ =
1
6
〈Fuuu

(
0 | φ | φ | φ

)
, φ∗〉. (3.20)

Recalling that Fuu(0 | φ | φ) = 2/ε((1 − p(x))φ2
1, 0) and Fuuu(0φφφ) = −6/ε(φ3

1, 0), the
coefficients in (3.19) may now be calculated. It is found that σ2 = σ1 = σ0 and

σ0 =
c2d

ε
I2 =

I2

2I0ε
√
(1 + ε)I0

(
1 − i

γ

ω0

)
,

ρ = −c
3d

ε
I3 = − I3

2I2
0ε(1 + ε)

(
1 − i

γ

ω0

)
,

(3.21)
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where we have defined the integrals

I2 :=
∫Ma

−Ma

(
1 − p(x)

)
ξ3(x)dx,

I3 :=
∫Ma

−Ma

ξ4(x)dx .

(3.22)

Now, solving (3.19) for μ2 and ω2 we obtain the bifurcation coefficient

μ2 = 2
2γI2

2 − 3εω2
0I0I3

(εaω0I0)2(1 + ε)I1
. (3.23)

The frequency coefficient ω2 is not significant for first-order accuracy but is given here for
completeness:

ω2 = −4
3
I2

2

(
ω2

0 + γ
2)

ω3
0(1 + ε)I3

0ε
2
= −4

3
I2

2

(ω0I0ε)3(1 + ε)
. (3.24)

3.3. Summary and Discussion of Analytical Results

The bifurcation parameter for a small parameter ε̂ is given by

μ = ε̂2 2γI2
2 − 3εω2

0I0I3

(εaω0I0)2(1 + ε)I1
, (3.25)

and the corresponding diffusion coefficient is δ = (η0 − μ)a2 with η0 determined from (2.7).

Here the frequency coefficient is ω0 =
√

1/ε − γ2 and the integrals are given by

I0 =
∫Ma

−Ma

ξ2(x)dx, I1 =
∫Ma

−Ma

ξ(x)ξ′′(x)dx,

I2 =
∫Ma

−Ma

(
1 − p(x)

)
ξ3(x)dx, I3 =

∫Ma

−Ma

ξ4(x)dx

(3.26)

with p in (2.2) and the function ξ given in (2.6):

ξ(x) =

⎧
⎪⎨

⎪⎩

cos kx, |x| ≤ a,
cos ka

sinh(κa(M − 1))
sinh(κ(Ma − |x|)), a < |x| ≤Ma

(3.27)
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with k =
√
(α/ε − γ)/δ0 and κ =

√
(β/ε + γ)/δ0, δ0 = η0a

2. In passing we note that
the integrals can be conveniently calculated; the integrands are even and combinations of
elementary functions. To first order in ε̂ the bifurcating solution to (2.1) reads

uε̂(x, t) = 2ε̂cξ(x)
(
cos(ω0t), ε

(
γ cos(ω0t) +ω0 sin(ω0t)

))
, (3.28)

where c = 1/
√
(1 + ε)I0.

The eigenvalues of the linearized equilibrium operator evaluated at the null-solution
can be obtained by solving the characteristic equation (2.8) and we found that they may be
approximated by

λ+ ≈ iω0 + λμμ,

λμ = −a
2I1

2I0

(
1 − i

γ

ω0

)
,

(3.29)

and λ− = λ
+
. A positive real part of λμ and a positive bifurcation parameter μ mean that the

steady state is unstable.
We remark that the model parameters are coupled and that a parameter study at the

transition of stable solutions involves solving (2.7) to obtain the critical diffusion coefficient
δ. Doing so, we observe, for example, that the spatial extension of the wave (3.28) into the
surrounding tissue decreases with increasing β. Thus, the normal cells become less excitable
as β increases. Likewise, if α is decreased, the automatic cells become less self-oscillatory and
a smaller portion of the normal tissue will excite. These observations can be explained from
model parameters in the following way.

In the formal calculations below it is assumed that real part of λμ is positive, that the
imaginary part of the eigenvalue λ+ is nonzero, and that the small bifurcation parameter μ
is positive. Then the steady state will bifurcate into the time-periodic solution approximated
by (3.28). Without loss of generality we let a = 1 and consider (2.7) with δ = η0. Now, put
σ = α/ε − γ and τ = β/ε + γ such that (2.7) can be written as

√
σ

δ
− arctan

⎛

⎜⎜⎜
⎝

√
τ

σ

1

tanh
(
(M − 1)

√
τ

δ

)

⎞

⎟⎟⎟
⎠

= 0. (3.30)

First, we consider the case where the automatic cells are not very self-oscillatory, that is, α ≈ εγ
and σ is small. We assume a sufficiently large domain; that is, M is big enough, such that we
may approximate (3.30) with

√
σ

δ
− arctan

(√
τ

σ

)

= 0. (3.31)



12 Journal of Applied Mathematics

Expanding the arctan-function yields the equation

√
σ

δ
−
(
π

2
−
√
σ

τ

)

= 0 (3.32)

on ignoring higher-order terms. Solving for the diffusion coefficient we get δ =

σ/(π/2 −
√
σ/τ)

2
, which is small since σ is small. Consider now the function ξ above

describing the spatial shape of the bifurcating solution. Note that k =
√
σ/δ ≈ π/2−

√
σ/τ is

close to π/2 and that κ =
√
τ/δ is large since δ is small. Since k is close to π/2, the function

will be small at the boundary between the collections of different cells, and because κ is large
it will approach zero rapidly as the distance to the automatic collection grows. Thus, the wave
will not propagate far into the surrounding tissue.

Next, consider the case where β is large so that τ = β/ε + γ is big as well. We again
assume that M is sufficiently big; analogous to the previous case we then obtain equation
(3.32) and δ = σ/(π/2 −

√
σ/τ)2. For τ large, δ ≈ 4σ/π2 and as before we have that

k ≈ π/2 −
√
σ/τ is close to π/2 and that κ =

√
τ/δ is large. The conclusion is that

the surrounding tissue is not very excitable for large β; the greatly stable cells prevent the
spreading of oscillations.

By using (2.7) we find that the critical diffusion coefficient δ grows when α is increased
or β is decreased. In these cases κ will be small, and the bifurcating solution will approach
zero more slowly as the distance to the automatic collection increases; therefore a larger part
of the surrounding tissue will excite. So, the surrounding tissue is more excitable for smaller
β and the self-oscillatory cells have a stronger automaticity for larger α; the transition of
solutions occurs at a stronger diffusive coupling, meaning that the steady solution requires a
larger amount of diffusion in order to be stable for these cases.

A Matlab-script has been written to illustrate the propagation of the oscillations
generated by the clump of automatic cells, into the surrounding collection of normal cells.
Different values of α and β are considered. The output graphed in Figure 1 supports the above
analysis. Observe that the propagation of oscillations into the surrounding group of normal
cells can be substantial. For the largest value of α and the smallest value of β considered, the
strength of the oscillations at the interface between the regions of different cells is around
40% of the amplitude of the wave. We remark that the spatial shape of the approximation uε̂
given in (3.28) of the bifurcating solution to (2.1) is independent of the size of the bifurcation
parameter μ > 0 in (3.25); the spatial shape is approximated by ξ in (2.6) which is independent
of the bifurcation parameter μ. However, the amplitude of the solution decreases as the
bifurcation parameter approaches zero. As we let ε̂ > 0 go to zero, μ goes to zero and uε̂
approaches the null-solution—which is reasonable.

4. Numerical Experiments

The purpose of this section is to compare the analytical approximation (3.28) of the
bifurcating solution to (2.1) to accurate numerical approximations of the solution.

Equation (2.1) with the parameters α = 0.03, β = 0.1, ε = 0.05, γ = 0.5, and diffusion
coefficient δ = (η0 − μ)a2 is considered on [−Ma,Ma] with a = 0.001 and M = 2. From

(2.7) we obtain that η0 = 0.053016 for purely imaginary eigenvalues ±iω0, ω0 =
√

1/ε − γ2 =
√

79/4.
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Figure 1: Spreading of the wave. The automatic domain is located on [−1, 1] and the FitzHugh-Nagumo
parameters ε = 0.05 and γ = 0.5 are used. Depicted are the function ξ in (2.6) (giving the spatial shape of
the approximative solution (3.28)) and the automaticity function in (2.2) for different values of α and β. The
corresponding critical diffusion coefficient η0 and the values of k =

√
(α/ε − γ)/η0 and κ =

√
(β/ε + γ)/η0

in the function ξ are indicated as well. Upper row: increasing automaticity α of the automatic cells makes
the wave spread further into the surrounding tissue. Lower row: decreasing stability β of the normal cells
makes the wave spread further into the surrounding tissue.

First, we check that condition (3.12) holds. The characteristic equation (2.8) enabled
us to find an expression for λGμ = −Gμ/Gλ. This expression is given in (3.3) and evaluating it
for the current parameters gives λGμ = 0.82324− 0.092621i. Denoting by λμ the right-hand side
of (3.12) and checking the condition shows that |λμ − λGμ | = 0. Now, λ+ = iω0 + λμμ should
agree to first order with λ+exact obtained from (2.8) with η = η0 −μ. Note that since the real part
of λμ is positive, the null-solution is unstable provided that μ > 0. For different ε̂ we calculate
μ given in (3.25) and check the errors |λ+ −λ+exact|. By using Müller’s method, see [18], λ+exact is
found to an accuracy of around 10−15. In Table 2 the convergence results are listed. We remark
that μ is positive and that the errors are of second order in μ as expected.

Next, we will compute a numerical solution to (2.1) and do a comparison to the
analytical approximation of the solution. For the numerical approximation we discretize the
interval [−Ma,Ma], M even (M = 2 in the present case), with N + 1 points, such that
−a and a are centered between grid points. In this way the influence of the singularities at
x = ±a is diminished. It is readily found that we may choose N = M(2j + 1), j = 0, 1, 2, . . . to
accomplish that ±a are located in the center of grid points. By discretizing (2.1) in space
with homogeneous Dirichlet conditions we can formulate a semidiscrete system U′(t) =
δDU(t) +H(U(t)). Here U = (V1,W1, . . . , VN−1,WN−1)

T is the numerical solution vector and
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Table 1: FHN eigenvalues. The rate corresponds to the convergence of λ+ = iω0 + λμμ towards λ+exact with
respect to μ.

ε̂ μ λ+ λ+exact |λ+ − λ+exact| rate
8.0000e-04 1.0093e-02 8.3089e-03 + 4.4432i 8.4692e-03 + 4.4431i 1.6235e-04 —
6.0000e-04 5.6773e-03 4.6738e-03 + 4.4436i 4.7234e-03 + 4.4436i 5.0241e-05 2.0385
4.0000e-04 2.5233e-03 2.0772e-03 + 4.4439i 2.0869e-03 + 4.4439i 9.7749e-06 2.0187
2.0000e-04 6.3081e-04 5.1931e-04 + 4.4440i 5.1991e-04 + 4.4440i 6.0555e-07 2.0064
1.0000e-04 1.5770e-04 1.2983e-04 + 4.4441i 1.2986e-04 + 4.4441i 3.7764e-08 2.0016
1.0000e-05 1.5770e-06 1.2983e-06 + 4.4441i 1.2983e-06 + 4.4441i 3.7738e-12 2.0002
1.0000e-06 1.5770e-08 1.2983e-08 + 4.4441i 1.2983e-08 + 4.4441i 3.6125e-16 2.0095

D is the 2(N−1)×2(N−1)-matrix of the classical second-order finite difference approximation
of the second derivative acting on odd entries of U (that is on V ). The function H reads

H2i−1(U) =
1
ε
f
(
Vi,Wi, pi

)
,

H2i(U) = Vi − γWi,

(4.1)

where f is given in (2.1) and i = 1, . . . ,N − 1. We take N = 1498 points and integrate
the semidiscrete system in time up to T = 4000 by the built-in Matlab solver ode15s with
tolerance tol = 10−12. The large time interval is chosen to assure that the numerical solution is
converged; the amplitude and time-period of the solution is checked. A small initial condition
is used in the numerical computation:

u0 = ε̂ccos2
( πx

2Ma

)(
1, ε
√
ω2

0 + γ
2
)
. (4.2)

We take ε̂ = 2 · 10−4 and obtain from Table 1 that μ = 6.3081 · 10−4 and that the
corresponding eigenvalue is λ+ = 5.2 · 10−4 + 4.44i. Therefore, the null-solution is unstable
and will bifurcate into a stable time-periodic solution. The analytical approximation of this
solution is (3.28) with c = 28.833. Figure 2 depicts the approximative solution (3.28) and the
numerical approximation in six snapshots covering 5/6th of the time-period 2π/ω0 = 1.4138.
We observe a good agreement between the approximative solutions.

In the final experiment we test the convergence of the analytical approximation
towards the highly resolved numerical reference solution. The first four cases in Table 1
are considered. All numerical computations are run until the solution is deemed to have
converged. The errors are measured over one full time period in the norm induced by the
scalar product

[U,V ] =
1

2π

∫2π

0
〈U,V 〉(s)ds, (4.3)

where we recall that s = ω0t. The approximation (3.28) is translated in time to be in phase
with the numerical solution. The results are recorded in Table 2; we conclude that the errors
are of second order in ε̂ and that the approximation (3.28) has the expected accuracy.
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Figure 2: Continued.
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Figure 2: FHN bifurcation solution. comparison of analytical and numerical approximations. Snapshots of
the solutions at six different times; the analytical solution has been shifted in time to be in phase with the
numerical solution. The dots indicate the automatic domain on [−0.001, 0.001].

Table 2: Convergence. The error is e =
√
[uε̂ − uref, uε̂ − uref], where uε̂ is the analytical approximation and

uref is the numerical reference solution. The rate corresponds to the convergence with respect to ε̂.

ε̂ μ error e rate
8.0000e-04 1.0093e-02 8.0934e-05 —
6.0000e-04 5.6773e-03 4.8581e-05 1.7742
4.0000e-04 2.5233e-03 2.1892e-05 1.9659
2.0000e-04 6.3081e-04 5.2810e-06 2.0515

5. Summary

We have studied bifurcation solutions to the Monodomain model in connection with
FitzHugh-Nagumo cell kinetics. By incorporating a discontinuous coefficient in this reaction-
diffusion system we modeled the interaction of normal and automatic heart cells—the
relevant scenario for the study of a so-called ectopic focus that might appear in the cardiac
muscle.

The electrical activity of the heart is essential for its function. Waves generated by
an ectopic focus might disturb this synchronized electrical flow and lead to lethal cardiac
arrhythmias. In our model such an ectopic wave is realized as a disturbance of the resting
state. The results show that the presence of a group of strongly automatic cells indeed
stimulates the surrounding normal cells. The resting state is broken by a wave generated by
the automatic cell collection and oscillations propagate into the normal heart tissue. Stronger
automatic cells will trigger a larger portion of the surrounding myocytes.

The reduction of the reaction-diffusion system to algebraic equations valid around the
critical point made the model more transparent and enabled efficient parameter studies to
assess the behavior of the cardiac tissue. The influence of model parameters and the interplay
between them were discussed. With sufficiently small diffusive coupling between myocytes
the collection of automatic cells caused a breaking of the steady equilibrium solution into a
small time-periodic wave. The shape, amplitude, and time-dependence of this solution as a
function of a bifurcation parameter were found in closed form to an adequate accuracy. The
output from numerical computations agreed very well with our theoretical results.
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