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We consider the application of a new analytic method based on homotopy analysis to the solution
of the steady flow of a viscous incompressible fluid past a fixed circular cylinder. The solutions
obtained using this method produce some interesting results. For instance, an analytic verification
of the critical Reynolds number Rd for which a standing vortex first appears behind the cylinder
is given for the first time and found to be Rd � 2.4. Since these values of the critical Reynolds
number are beyond the range of validity of Oseen theory, no analytic verification of this value had
previously been given. As a check on the accuracy of the solutions, the calculated drag coefficients
at 6th-order approximation are found to agree reasonably well with experimental measurements
for Rd � 30 which is considerably larger than the Rd � 1 results currently available using other
analytic techniques. This buttresses the usefulness of the homotopy analysis method (HAM) as an
important tool in solving highly nonlinear problems.
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1. Introduction

The viscous incompressible flow past a circular cylinder is a canonical problem which has
many practical application areas. It forms a basis for the understanding of bluff body flow
which is of significant interest to the research community. The application of a new analytic
technique to the cylinder problem is appropriate for the following reasons. First, it forms
a benchmark for the application of new mathematical methods. Also various estimates
exists in the literature for the critical value of Rd for which a standing vortex pair first
appears behind the cylinder. Since these values of the Reynolds number lie beyond the
range of validity of Oseen theory, obtaining a new method valid for a much higher Reynolds
number could aid in providing theoretical confirmations of the actual critical value. Finally,
many numerical techniques have been successfully applied in finding approximate solutions
to this problem [1] however its full understanding still remains the subject of analytical
research. Different analytic studies have been carried out for this problem. These include
the far field expansion of the Oseen equations by Filon as well as Shankar [2], the series
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truncation method of Mandujano and Peralta-Fabi [3], perturbation techniques [4], the
Adomians decomposition method [5], the δ-expansion method [6], and Lyapunov artificial
small parameter method [7]. All these approaches produce results which are in agreement
with the results of Lamb [8]. Due to the singular nature of the problem, however, no solutions
to the general equations have yet been found as regular perturbation techniques becomes
singular even for Rd � 1. A relatively new analytic approach based on the homotopy
analysis method is proposed to solve this problem. Different from perturbation techniques,
the homotopy analysis method does not depend upon any small or large parameters and
thus is valid for most nonlinear problems in science and engineering. Besides, it logically
embraces other nonperturbation techniques such as Lyapunov small parameter method, the
δ-expansion method, and Adomians decomposition method. In this paper, we explore the
flexibility of the method and choose our boundary conditions in the deformation process
appropriately in order that Stokes paradox can be circumvented; this enables us to obtain
results which are valid for Reynolds numbers that lie beyond the range of validity of Oseen
theory. The governing Navier-Stokes equations expressed in terms of a stream function
are first reduced to an infinite set of fourth-order linear partial differential equations using
homotopy analysis [9–23]. The equations are then transformed into a set of linear ordinary
differential equations in the radial variable by expanding the flow variables as an infinite
series of an elementary transcendental function. This is solved in closed form using the
method of variation of parameters. As a check on the accuracy of the solutions obtained, the
drag coefficients at 6th-order approximation are calculated. The calculated drag coefficients
are found to agree reasonably well with published experimental as well as numerical results
for Reynolds number as high as 30. Furthermore, for higher Reynolds number, the theoretical
estimate of the pressure drag tends to become constant while the frictional drag decreases
proportionately to the square root of the Reynolds number. Also with regard to the detailed
flow patterns our calculations show that for Reynolds number Rd below 2.4, a nonseparated
flow takes place past the cylinder; this critical value at which the standing vortex pair first
appears behind the cylinder is consistent with existing experimental results.

2. Theoretical Framework

Suppose we wish to solve a system of nonlinear partial differential equations given by

∇ψ = 0 (2.1)

subject to the boundary conditions

ψ(a) = ψa, ψ(b) = ψb (2.2)

for some a, b ∈ R and ψ ∈ R
n. Define a homotopy or embedding given by

Ψ = R
n × [1, 0] −→ R

n (2.3)

such that

Ψ(x, 0) = ϕ(x), Ψ(x, 1) = ψ(x), (2.4)
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where ϕ(x) is a solution to the linear problem

Δ0ϕ(x) = 0 (2.5)

which can be easily calculated and therefore acts as our starting point or initial guess. Ψ
is assumed to be smooth and acts on the solution space by continuously deforming ϕ (the
starting solution) into ψ the final solution through an embedding or homotopy given by

Ψ(x, λ) = (1 − λ)ϕ(x) + λψ(x). (2.6)

Basically one attempts to trace an implicitly defined curve c(s) in the parametric set of this
homotopy map from ϕ to a solution point ψ. In other to ensure that this curve intersects the
homotopy level, λ = 1 at finite points, it is sufficient to impose suitable boundary conditions
which essentially prevent the curve from running to infinity before intersecting the homotopy
level λ = 1 or from returning to the initial point. One imposes on Ψ the conditions

Ψ(a, λ) = ϕa + λ
(
ψa − ϕa

)
,

Ψ(b, λ) = ϕb + λ
(
ψb − ϕb

)
,

(2.7)

where ϕ(a) = ϕa and ϕ(b) = ϕb. In view of (2.6), (2.7) there exists a family of partial
differential operators Δ(x, λ) with

Δ(x, 0) = Δ0(x), Δ(x, 1) = Δ(x) (2.8)

defined by the embedding

(1 − λ)Δ0(x) + λΔ(x), λ ∈ [0, 1]. (2.9)

Thus the corresponding homotopy equation is

Δ(x, λ)Ψ(x, λ) = 0 (2.10)

or by using (2.6)

Δ0(1 − λ)Ψ(x, λ) + λΔΨ(x, λ) = 0. (2.11)

Equation (2.11) is referred to as the zeroth-order deformation equation. Equation (2.6) defines
an implicit relationship between ϕ and ψ. In order to make this relationship explicit we
assume that the functions Ψ(x, λ) are smooth enough about λ = 0 and expand in a Taylor
series about λ = 0 in the interval [0, 1]. Thus we write

Ψ(x, λ) = Ψ(x, 0) +
∞∑

m=1

Ω[m]

m!
λm, (2.12)



4 Journal of Applied Mathematics

where

Ω[m] =
∂mΨ(x, λ)

∂λm

∣
∣
∣
∣
λ=0
, m ≥ 0, (2.13)

using (2.4) and substituting

ψm(x) =
Ω[m](x)
m!

(2.14)

we have

Ψ(x, λ) = φ(x) +
∞∑

m=1

ψm(x)λm. (2.15)

Assuming the above Taylor series is convergent at λ = 1, we have

Ψ(x, 1) = φ(x) +
∞∑

m=1

ψm(x) (2.16)

or

ψ(x) = φ(x) +
∞∑

m=1

ψm(x). (2.17)

The defining equations for ψm can be obtained by differentiating the zeroth-order
deformation equations m times with respect to λ then setting λ = 0 and finally dividing
by m!. At the boundary points we have

ψ(a) = φ(a) +
∞∑

m=1

Ψm(a) (2.18)

or

∞∑

m=1

Ψm(a) = φ(a) − ψ(a) (2.19)

similarly

∞∑

m=1

Ψm(b) = φ(b) − ψ(b). (2.20)
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3. Problem Definition

For steady two-dimensional flow past a circular cylinder, the governing Navier Stokes
equations can be written in terms of the stream function ψ(r, θ) and in dimensionless form as

∇4ψ =
Ree

r

(
∂ψ

∂θ

∂

∂r
−
∂ψ

∂r

∂

∂θ

)
∇2ψ, (3.1)

where Ree = aU∞/ν is the Reynolds number, a the radius of the cylinder, U∞ the uniform
stream velocity at infinity, and ν the kinematic viscosity. All variables in the above equations
are nondimensional. The boundary conditions are given by the no slip condition on the
surface of the cylinder

ψ(1, θ) =
∂ψ(1, θ)
∂r

= 0 (3.2)

and the uniform stream condition at infinity

lim
r→∞

∂ψ(r, θ)
∂r

= sin θ,

lim
r→∞

1
r

∂ψ(r, θ)
∂θ

= cos θ.

(3.3)

In order to obtain an analytic drag formula, the nonlinear partial differential equations (3.1)
to (3.3) are mapped into a set of linear subsystem by means of the homotopy technique; these
are then solved in closed form using the method of variation of parameters with the aid of
the symbolic computation software MATHCAD. Under Stokes approximation, (3.1) reduces
to the biharmonic equation

∇4ψ = 0. (3.4)

Both Stokes and Lamb have pointed out that if the attempt is made to find the steady motion
produced by the translation of a cylinder with constant velocity through a liquid of infinite
extent on the basis of (3.4), it is impossible to satisfy all the conditions (3.2) and (3.3). It seems
that no steady “creeping flow” of a viscous fluid past an infinite cylinder is possible [19].
As a result of this difficulty we choose our boundary conditions in the deformation process
appropriately in order that Stokes paradox can be circumvented. A suitable solution to (3.4)
is [20]

ψ =
[
A

r
+ Br + Cr ln(r) +Dr3

]
sin θ, (3.5)

where A, B, C, D are arbitrary constants to be chosen appropriately in order that the
boundary conditions (3.2) and (3.3) are satisfied.
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4. Method of Solution

Defining a nonlinear Navier Stokes operator Δ as

Δψ ≡ ∇4ψ − Ree
r

(
∂ψ

∂θ

∂

∂r
−
∂ψ

∂r

∂

∂θ

)
∇2ψ (4.1)

and an arbitrary linear operator Δ0 to be

Δ0ψ ≡ ∇4ψ. (4.2)

Then by using (4.1) and (4.2) in (2.11), the zeroth-order deformation equations can be written
as

(1 − λ)Δ0Ψ(r, θ, λ) − λ�ΔΨ(r, θ, λ) = 0, (4.3)

where r ≥ 1, λ ∈ [0, 1], −π ≤ θ ≤ π , and � < 0. � is an auxiliary parameter often used in HAM
to accelerate convergence of the series solutions. In this paper we will simply set � = −1 and
use the so-called homotopy-Padé technique to get better approximations for our solutions.
The associated boundary conditions are given by

Ψ(1, θ, λ) =
∂Ψ(r, θ, λ)

∂r

∥∥∥∥
r=1

= 0,

lim
r→∞

Ψ(r, θ, λ) = sin θ, lim
r→∞

Ψ(r, θ, λ)
r

= cos θ.

(4.4)

Differentiating the resulting zeroth order deformation equations m times with respect to λ
then setting λ = 0 and finally dividing by m!, we obtain the mth-order deformation equations
given as

∇4Ψm(r, θ) =
(
χm − 1

)
∇4Ψm−1(r, θ) +

Ree

r

m−1∑

l=0

(
∂Ψl

∂θ

∂

∂r
− ∂Ψl

∂r

∂

∂θ

)
∇2Ψm−l−1(r, θ) (4.5)

with the boundary conditions

Ψm(1, θ) =
∂Ψm(r, θ)

∂r

∥∥∥∥
r=1

= 0

lim
r→∞

Ψm(r, θ) = 0, lim
r→∞

Ψm(r, θ)
r

= 0, m ≥ 1,

(4.6)

where the coefficient χm is defined by

χm =

⎧
⎨

⎩

0, if m � 1,

1, if m � 2.
(4.7)
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We observe that (4.5) gives a system of linear partial differential equations which can be
solved analytically for each m. The deformations are given by

Ψ(r, θ, λ) = Ψ(r, θ, 0) +
∞∑

m=1

ψ
[m]
0

m!
λm, (4.8)

where

ψ
[m]
0 =

∂mΨ(x, θ, λ)
∂λm

∥
∥
∥
∥
λ=0
, m ≥ 0, (4.9)

substituting

ψm(r, θ) =
ψ
[m]
0 (r, θ)
m!

(4.10)

we have

Ψ(r, θ, λ) = ψ0(r, θ) +
∞∑

m=1

ψm(r, θ)λm. (4.11)

Assuming the above Taylor series is convergent at λ = 1, we have

ψ(r, θ) = ψ0(r, θ) +
∞∑

m=1

ψm(r, θ). (4.12)

The above expression gives a direct relationship between the initial approximation ψ0(r, θ)
and the final solution ψ(r, θ) through the unknown terms ψm(r, θ) (m = 1, 2, 3, . . .), whose
governing equations are given by (4.5). In view of (3.5) we set

ψ0(r, θ) =
[
A

r
+ Br + Cr ln(r) +Dr3

]
sin θ. (4.13)

In view of the boundary conditions and the form of the initial guess (4.13) as well as the
symmetry of the flow, it is reasonable to assume that

ψm(r, θ) =
∞∑

k=1

fm,k(r) sin kθ. (4.14)

Substituting (4.14) in (4.5) we deduce the governing equations

fivm,n(r) +
2
r
fiiim,n(r) −

(
2n2 + 1

)

r2
fiim,n(r) +

(
2n2 + 1

)

r3
fim,n(r) +

n2(n2 − 4
)

r4
fm,n(r)

= qm,n(r) r � 1, m � 1,

(4.15)
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where qm,n is given by

(
χm − 1

)
(

fivm−1,n(r) +
2
r
fiiim−1,n(r) −

(
2n2 + 1

)

r2
fiim−1,n(r) +

(
2n2 + 1

)

r3

×fim−1,n(r) +
n2(n2 − 4

)

r4
fm−1,n(r)

)

− Ree
4π

⎧
⎨

⎩

∞∑

k=1

∞∑

j=1

m−1∑

l=0

(

jf il,k(r)

[

fiim−1−l,j(r) +
1
r
fim−1−l,j(r) −

j2

r
fm−1−l,j(r)

]

×
∫π

−π
sinnθ sin kθ cos jθdθ

)

+
∞∑

k=1

∞∑

j=1

m−1∑

l=0

(

kfl,k(r)

[

fiiim−1−l,j(r) +
1
r
fiim−1−l,j(r) −

(
j2 + 1

)

r
fim−1−l,j(r)

]

+
j2

r2
fm−1−l,j(r)

∫π

−π
sinnθ sin jθ cos kθ dθ

)}

.

(4.16)

Note that fivm,j(r) in (4.15) and (4.16) denotes the 4th-order derivative of fm,j(r) with respect
to r. In view of (4.13) and (4.14) we set

f0,1(r) =
[
A

r
+ Br + Cr ln(r) +

D

r3

]
. (4.17)

We observe that (4.15) is a well-known ordinary differential equation known as Euler
differential equation, which is much easier to solve than the partial differential equation (4.5).
The corresponding homogeneous Euler equation

r4Fivm,n(r) + 2r3Fiiim,n(r) −
(

2n2 + 1
)
r2Fiim,n(r) +

(
2n2 + 1

)
rFim,n(r)

+ n2
(
n2 − 4

)
Fm,n(r) = 0, r � 1, m � 1,

(4.18)

has the general solution

Fm,n(r) = C1r
−n + C2r

n + C3r
−(n−2) + C4r

(n+2), (4.19)
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where C1, C2, C3, C4 are constants. The general solution to (4.15) is then given as

fm,n(r) = C1r
−n + C2r

n + C3r
−(n−2) + C4r

(n+2) + f∗m,n(r), (4.20)

where f∗m,n(r) is the complimentary function. In order to obtain expressions for f∗m,n(r), we
use the method of variation of parameters. We assume for each m and each n � 1 that the
complimentary function f∗m,n(r) is of the form

r−nf(r) + rng(r) + r−(n−2)h(r) + r(n+2)w(r), (4.21)

where

f(r) =
∫(
−1

8
exp(ln(r)n)

qm,n
[(1 + n)rn]

)
dr,

g(r) =
∫(
−

qm,n
8 exp(ln(r)n)n(n − 1)r

)
dr,

h(r) =
∫(

1
8
qm,n

exp(ln(r)n)
[n(n − 1)r3]

)
dr,

w(r) =
∫(

qm,n

8 exp(ln(r)n)(1 + n)nr3

)
dr.

(4.22)

Note that when n = 1 the solutions for arbitrary n given by (4.19) are not linearly
independent. A linearly independent solution to (4.18) for n = 1 is given as

F1,1(r) =
[
A

r
+ Br + Cr ln(r) +

D

r3

]
. (4.23)

Thus for n = 1 we assume a complimentary function of the form

r−1f(r) + r
(
p(r) + ln(r)w(r)

)
+ r3h(r), (4.24)

where

f(r) =
∫(
−
qm,1
16

)
dr,

p(r) =
∫(
−
qm,1

4r2

)
dr,

h(r) =
∫(

qm,1

16r4

)
dr,

w(r) =
∫(

ln(r)
qm,1

4r2

)
dr.

(4.25)
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The initial guess, which is a stokes approximant, does not satisfy the boundary conditions at
infinity but contains an unknown coefficient C. The value of C is determined by enforcing the
higher-order approximations together with the initial guess to satisfy the boundary condition
at infinity. Hence, we solve the set of differential equations (4.15) one after the other, subject
to the following boundary conditions:

fm,n(1) = fim,n(1) = 0, n � 1, m � 0, (4.26)

lim
r→∞

(
p∑

m=0

fm,1(r)
r

)

= 1, lim
r→∞

(
p∑

m=0

fim,1(r)

)

= 1, (4.27)

lim
r→∞

fm,n(r)
r

= 0, lim
r→∞

fim,n(r) = 0, n � 1, m � 0, (4.28)

so that C is chosen in order to make (4.27) satisfied. The series (4.14) hence (4.27) must
be truncated at some fixed value p. As p is increased it is expected that the solutions
converge to the solutions of the original equations (3.1). This has not been proven yet.
Clearly the complexity of the differential equations increases rapidly with p as such the
number of terms we can compute becomes restricted by the ability of the computational
software to handle the long terms. We obtain for the first few values of fn,m(r), where the
constants A, B, C, D have been appropriately chosen to satisfy the boundary conditions
(4.26) to (4.28):

f0,1(r) =
C

2

[
1
r
− r + 2r ln(r)

]
,

f1,1(r) = 0,

f1,2(r) =
[

1
96r2

ln (r)2 +
(

17
576r2

− 1
10r
− 1

70r3
+

1
192r4

)
ln(r) − 1

130r

− 71
7350r3

+
1

1920r6
− 17753

564480r2
+

19
4608r4

+
229139

5644800

]
C2Re,

f2,1(r) =
[
− 99199040113813657

126306697995878400000
r − 12122467103839187

14573849768755200000r

+
(
− 1

1536r5
+

1
1536r3

− 1
1920r4

+
1

1920r4

)
ln (r)4

+
(
− 1

80r
− 545

75264r6
− 33491

1881600r4
+

607
57600r2

− 157
24576r7

+
427

36864r5
+

7
960r3

)
ln (r)3

+
(

229139
22579200

− 274751
94832640r6

+
149

21504r8
− 8207123

186033600r
+

239231
103219200r7

− 157
38400r9

− 1005631
216760320r5

+
587141

37632000r2
+

28678229
541900800r3

− 14286109
474163200r4

)
ln (r)2
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+
(

258121757
21676032000r7

− 4447
7096320r10

− 317420983
6773760000r2

+
6332323727

199148544000r4
− 245159

25804800r9

− 764599
36126720r

+
61

368640r11
− 228380461

23897825280r6
− 450562081

13005619200r5

325475411
6502809600r3

+
229139

11289600
+

24514873
2684089600r8

)
ln(r) +

46772740999
18589094092800r8

+
353

1720320r13

+
229139

33868800
− 171947

619315200r11
+

2157299
152409600r3

− 27880929
125400000r2

+
23524037

49177497600r10

+
33707885063

5202247680000r7
− 54132860407

5377010688000r6
+

34425485
4161798144r5

− 1907
8386560r12

− 12855047
6193152000r9

+
296185524217

20910597120000r4

]
C3Re2

+
[
− 1

2r
+

1
2
r − r ln(r)

]
C,

f2,2(r) = 0,

f2,3(r) =
[

4205327420325478103
258026540191580160000r3

+
118364012749609967

111467465362762629120r

+
(
− 31

36288r4
+

3
8192r5

− 17
5760r3

)
ln (r)3

+
(

3167149
2167603200r3

− 989
1247400r6

− 727
95256r4

+
3497

2293760r5
+

83
276480r7

)
ln (r)2

+
(
− 2047

11211200r8
+

1531129
963379200r5

− 686484833
553246848000r6

+
31

387072r9

+
359129

928972800r7
− 17957431

1920360960r4
+

48168691
26011238400r3

+
229139

131712000r3

]
ln(r)

+
151936831

115605504000r5
+

11703714413
78244911360000r6

− 183998617
2765952000r2

− 24315541
359117158400r8

− 28300283
195084288000r7

+
167003

5202247680r9
− 21233

1981324800r10
− 29004494459

2419654809600r4

− 191
27525120r11

]
C3Re2,

(4.29)

and so on. All these values are valid for the entire flow field. Unfortunately we are unable
to give approximations higher than order six due to the nonlinearity qmn(r) in (4.15) which
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Figure 1: Comparison with previous theoretical and experimental results.

makes the terms of fm,k(r) increase almost exponentially and the computational software
MATHCAD 2000 cannot display the results.

5. Analytic Drag Formula

The force on the cylinder’s surface is calculated using

F =
∫

S

(τrr cos θ − τrθ sin θ)ds, (5.1)

where the component of the stress tensor is evaluated at the cylinder’s surface S. Introducing
the stream function ψ and rewriting the components in dimensionless form we have that the
nondimensional drag coefficient CD can be written as

CD = − 2
Re

∫π

0

[(
∂3ψ

∂r3

)

+ 2

(
∂2ψ

∂r2

)]

r=1

sin θ dθ, (5.2)
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Figure 2: Drag coefficient as a function of Rd.

which upon substitution of (3.2) in (5.2) can be written as

CD = − π
Re

∞∑

m=0

[
fiiim,1(1) + 2fiim,1(1)

]
. (5.3)

Making the substitutions we have our 4th-order drag formula to be

CD =
[

92370864939655545596762743680350189294206935846160822227539
189734205634288980530917144942678761473510423314495506795724

825342823
8000000000

Re3C5 +
636918978117108622458128521
965586918704931274752000000

ReC3
]
π,

(5.4)

where C ∈ R satisfies

(
69997858474292371108128629856328005708861790049494077298404791

58050306476055358732822532019384946813948620770942695149480341982

23477367477927
41280000000000

)
Re3C5 +

626024509123856764915686569
1931173837409862549504000000

Re2C3 = 1.

(5.5)
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The 6th-order drag formula is

CD =
[(

4237454179818646176790786234983320273522713391127995555223850489
101795190371429050605560906877623804650639086003054208547955016749

29953713777012378346150588892986396910104753042147912472232298833897
19024871109616871694183042405334672425985859988000897117753241006264

21471841815946837335971
81152000000000000000000

)
Re5C7

+
(

4756166159482024826680129
597541831414741204992000000

C6

− 1298680711062418491592709863101087496061190886767080351151
102614178114239270487312556599922885782232410453686582334939998453

062601430190801300621
68658233493999845376000000000000

C5
)

Re3

−
(

850571155674840610977
3360844820472177322820888

47347850681062158273083128031161261330218616293301669847
49992845279769617614900325462133114496843408998400000000000

)
C2Re2

−
(

8505711556748406109774734785068106215827308318031161261330218616
56014080341202955380348141665474213294936269150054243688852416140

293301669847
568166400000000000

C2 +
394402210300943309098195591
965586918704931274752000000

C3
)
Ree

+
4756166159482024826680129

896312747122111807488000000Ree

]
π,

(5.6)

where C ∈ R satisfies

(
7517422097738790790062417803298331403256591745936790115412058276

121905643599716253338927317240708388309292103618979659813908718163

60708365195937
066880000000000

)
Re4C6 +

623832856502066224647674879
1931173837409862549504000000

Re2C3

−
(

438874548460846415756399726279535141078049221992529588963104422813
61077114222857430363336544126574282790383451601832525128773010049514

125443551584572939814300852930140303375072201568419219531367388898268
149226657701230165098254432008034555915159992800538270651944603758886

57601074479784029
912000000000000000000

)
Re6C7 = 1.

(5.7)
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Liao and Cheung proposed the so-called homotopy-Padé method which is more efficient than
the traditional Padé approximant [12]. Better results for the drag coefficients may be obtained
using this technique. From (4.11) we have the (2m)th approximation

∂2Ψ(r, θ, λ)
∂r2

∥
∥
∥
∥
∥
r=1

≈
2m∑

p=0

∂2ψp(r, θ)
∂r2

∥
∥
∥
∥
∥
r=1

λp. (5.8)

Employing the traditional Padé technique to the power series of the embedding parameter λ,
we have the [m,m] Padé approximant

∂2Ψ(r, θ, λ)
∂r2

∥
∥
∥
∥
∥
r=1

≈
1 +
∑2m

p=1 γm,pλ
p

1 +
∑2m

p=1 γm,m+pλp
, (5.9)

where γm,p is a coefficient. Setting λ = 1 in the above series and using (4.11) we obtain

∂2ψ(r, θ)
∂r2

∥∥∥∥∥
r=1

≈
1 +
∑m

p=1 γm,p

1 +
∑m

p=1 γm,m+p
. (5.10)

Note that in the homotopy-Padé method, one first analyzes the power series in the
embedding parameter λ and then sets λ = 1. This is the distinction between the traditional
Padé approximant and the homotopy-Padé ones.

6. Results and Discussion

Figure 1 shows a comparison of our 4th- and 6th-order HAM drag formula with previous
theoretical [24, 25] as well as experimental [26] results. We observe that our 6th order drag
formula agrees well with experimental results in the region Rd � 30 (where Rd = 2Re) which
is much higher than the Rd � 1 range of previous analytic results [3]. We also observe from
Figure 1 that the higher the order of approximation, the better the agreement between our
drag formula and experimental data. Thus our drag formula seems to be valid in a larger
region of Reynolds number as the number of approximations increases. As noted in [15], this
kind of tendency of convergence is very important, especially when a rigorous mathematical
proof of convergence cannot be provided. Also we observe from Figure 1 that the [3, 3]
homotopy-Padé approximate increases further the accuracy of our solutions and can give
a remarkably good representation of the function up to Rd ≈ 100 if we could get high enough
approximations greater than 6th order. With regards to the detailed flow pattern, we consider
the question of the formation of the standing eddie. The equation of the separated streamlines
is given by Ψ = 0, and the angular coordinate of the point of separation is found by setting
r = 1 in (4.14) for Ψ. Phenomenologically, the flow presents different regimes depending on
the value of the Reynolds number. As the Reynolds number is increased from some initial
small value, the lack of fore-and-aft symmetry slowly becomes apparent until a recirculating
region develops on the wake, and attached to the cylinder. As Re is increased, a stage is
reached at which the separation starts to occur, the angle of separation at which it first occurs
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will be given by cos θ = 1, in which case the fluid starts to separate from the rear generator of
the cylinder. The critical value of Re will then be that value which makes

∞∑

n=1

∞∑

m=0

nfiim,n(1) = 0. (6.1)

Owing to the limitations of computer storage space it was found necessary to restrict the
number of terms in the series to n = 5 and m = 6. Our calculations show that for Reynolds
number Rd below 2.4, a nonseparated flow takes place past the cylinder, this critical value at
which the standing vortex pair first appears behind the cylinder is consistent with existing
experimental results. Also Figure 2 suggests that as the Reynolds number increases the
pressure drag becomes constant while the frictional drag tends to zero. This behaviour of
the drag coefficients is also consistent with experimental observations.
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