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This paper presents an analytical solution of the hyperbolic heat conduction equation for moving
semi-infinite medium under the effect of time dependent laser heat source. Laser heating is
modeled as an internal heat source, whose capacity is given by g(x, t) = I(t)(1 − R)μe−μx while
the semi-infinite body has insulated boundary. The solution is obtained by Laplace transforms
method, and the discussion of solutions for different time characteristics of heat sources capacity
(constant, instantaneous, and exponential) is presented. The effect of absorption coefficients on the
temperature profiles is examined in detail. It is found that the closed form solution derived from
the present study reduces to the previously obtained analytical solution when the medium velocity
is set to zero in the closed form solution.
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1. Introduction

An increasing interest has arisen recently in the use of heat sources such as lasers and
microwaves, which have found numerous applications related to material processing
(e.g., surface annealing, welding and drilling of metals, and sintering of ceramics) and
scientific research (e.g., measuring physical properties of thin films, exhibiting microscopic
heat transport dynamics). Lasers are also routinely used in medicine. In literature, many
researchers have investigated the heat transfer for moving medium under the effect of the
classical Fourier heat conduction model [1, 3–6].

In applications involving high heating rates induced by a short-pulse laser, the typical
response time is in the order of picoseconds [7–10]. In such application, the classical Fourier
heat conduction model fails, and the use of Cattaneo-Vernotte constitution is essential [11,
12].
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In this constitution, it is assumed that there is a phaselag between the heat flux vector
(q) and the temperature gradient (∇T). As a result, this constitution is given as

q + τ
∂q

∂t
= −κ∇T, (1.1)

where κ is the thermal conductivity and τ is the relaxation time (phase lag in heat flux). The
energy equation under this constitution is written as

ρCpτ
∂2T

∂t2
+ ρCp

∂T

∂t
= κ∇2T +

(
τ
∂g

∂t
+ g
)
. (1.2)

In the literature, numerous works have been conducted using the microscopic
hyperbolic heat conduction model [10, 13–18]. To the authors’ knowledge, the thermal
behavior of moving semi-infinite medium subject to Time-Dependent laser heat source,
under the effect of the hyperbolic heat conduction model, has not been investigated yet. In
the present work, the thermal behavior of moving semi-infinite medium subject to Time-
Dependent laser heat source, under the effect of the hyperbolic heat conduction model, is
investigated.

2. Mathematical Model

In this paper heat distribution in a moving semi-infinite medium due to internal laser heat
source is considered. Our medium at t = 0 is occupying the region x ≥ 0 with insulated
surface at x = 0. Moreover, at time t = 0, the temperature field within the medium is uniform
with a value T0 and stationary.

We consider first a semi-infinite medium moving with a constant velocity u in the
direction of the x-axis, if heat generation is present within the material, the balance law for
the internal energy can be expressed in terms of T as

ρCp
DT

Dt
+
∂q

∂x
= g(x, t), (2.1)

where

D

Dt
≡ ∂

∂t
+ u

∂

∂x
, (2.2)

which denotes the material derivative.
If the body is in motion, the Maxwell-Cattaneo law (1.1) leads to a paradoxical result so

that by replacing the partial time derivative in (1.1) with the material derivative operator, the
paradox is removed, and the material form of the Maxwell-Cattaneo law is strictly Galilean
invariant. Therefore, (1.1) is replaced by [19]

q + τ
(
∂q

∂t
+ u

∂q

∂x

)
= −κ∂T

∂x
. (2.3)
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Elimination of q between (2.1) and (2.3) yields the heat transport equation

τ
∂2T

∂t2
+
∂T

∂t
+ u

∂T

∂x
+ 2τu

∂2T

∂x∂t
+ τ
(
u2 − c2

)∂2T

∂x2
=

1
ρCp

[
g + τ

∂g

∂t
+ τu

∂g

∂x

]
, (2.4)

where the initial and boundary conditions are given by

T(x, 0) = T0,
∂T

∂t

∣∣∣∣
t=0

=
g

ρCp
, x ≥ 0, (2.5)

∂T

∂x
(0, t)c = 0,

∂T

∂x
(∞, t) = 0, t > 0. (2.6)

The relaxation time is related to the speed of propagation of thermal wave in the medium, c,
by

τ =
α

c2
. (2.7)

The heat source term in (2.4) which describes the absorption of laser radiation is modeled as
[20]

g(x, t) = I(t)(1 − R)μ exp
(−μx), (2.8)

where I(t) is the laser incident intensity, R is the surface reflectance of the body, and μ is the
absorption coefficient.

We consider semi-infinite domains, which have initial temperature equal to the
ambient one. The following dimensionless variables are defined:

X =
x

2cτ
, η =

t

2τ
, θ =

(T − T0)
(Tm − T0)

, U =
u

c
, S =

τg

ρCp(Tm − T0)
. (2.9)

Equation (2.4) is expressed in terms of the dimensionless variables (2.9) as

2
∂θ

∂η
+ 2U

∂θ

∂X
+
∂2θ

∂η2
+ 2U

∂2θ

∂η∂X
−
(

1 −U2
) ∂2θ

∂X2
=
[

4S + 2
∂S

∂η
+ 2U

∂S

∂X

]
. (2.10)

The dimensionless heat source capacity according to (2.8) is

S = ψ0φ
(
η
)

exp
(−βX), (2.11)

where

ψ0 =
τIr(1 − R)μ
ρCpT0

, φ
(
η
)
=
I
(
2τη

)
Ir

, β = 2cτμ. (2.12)
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The dimensionless initial conditions for the present problem are

θ(X, 0) = 0, (2.13)

∂θ

∂η
(X, 0) = 2ψ0φ(0) exp

(−βX). (2.14)

The results from the assumption are that there is no heat flow in the body at the initial
moment [21], that is,

q(X, 0) = 0. (2.15)

The dimensionless boundary conditions are

∂θ

∂X

(
0, η

)
= 0, (2.16)

∂θ

∂X

(∞, η
)
= 0, η > 0. (2.17)

We substitute (2.11) for S in (2.10) to obtain

2
∂θ

∂η
+ 2U

∂θ

∂X
+
∂2θ

∂η2
+ 2U

∂2θ

∂X∂η
−
(

1 −U2
) ∂2θ

∂X2
= 2ψ0

[(
2 −Uβ)φ(η) + ∂φ

∂η

]
exp

(−βX).
(2.18)

3. Analytical Solution

Taking the Laplace transform of (2.18), using the initial conditions given by (2.13) and (2.14),
yields

(
1 −U2

) ∂2θ

∂X2
− 2U(1 + s)

∂θ

∂X
− s(2 + s)θ = −2ψ0

(
2 + s −Uβ)φ exp

(−βX), (3.1)

where

θ(X, s) = L
[
θ
(
X, η

)]
, (3.2)

φ(s) = L
[
φ
(
η
)]
. (3.3)

The transformed boundary conditions given by (2.16) and (2.17) are

dθ

dX
(0, s) = 0, (3.4)

dθ

dX
(∞, s) = 0. (3.5)
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Equation (3.1) has homogeneous (θh) and particular (θp) solutions. Therefore, θ yields

θ = θh + θp. (3.6)

The mathematical arrangement of the solution of (3.1) is given in Appendix A.
Consequently, (3.1) for X > 0 yields

θ
(
X, η

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ψ0 exp
(−βX)f(η), for η ≤ X

1 +U
,

2ψ0 exp
(−βX)f(η) − 2βψ0

∫η
X/1+U

exp
(−y)I0

⎛
⎝√

a

√(
y +

UX

a

)2

− X2

a2

⎞
⎠

×h8
(
η − y)dy − 2βψ0(1 +U)

∫η
X/1+U

exp
(−y)I0

⎛
⎝√a

√(
y+

UX

a

)2

− X2

a2

⎞
⎠

×h7
(
η − y)dy, for η >

X

1 +U
,

(3.7)

where

0 < U < 1, (3.8)

f
(
η
)
=

1
2γ

∫η
0
φ(r)

{(
γp −Uβ

)
exp

[
γm
(
η − r)] + (γm +Uβ

)
exp

[−γp(η − r)]}dr, (3.9)

h7
(
η
)
= f

(
η
)
+U2

∫η
0
φ(r)

[
D1 exp

(−2
(
η − r)) +D2

+D3 exp
(
γm
(
η − r)) +D4 exp

(−γp(η − r))]dr,
(3.10)

h8
(
η
)
= U

√
a

∫η
0

exp(−v)I1
(√

av
)
h7
(
η − v)dv, (3.11)

γ =
√

1 + β2, (3.12)

γm = γ − (1 −Uβ), (3.13)

γp = γ +
(
1 −Uβ), (3.14)

D1 =
−Uβ

2
(
2 + γm

)(−2 + γp
) , D2 =

−2 +Uβ
2γmγp

,

D3 =

(
γ + 1

)
2γγm

(
2 + γm

) , D4 =

(
γ − 1

)
2γγp

(−2 + γp
) .

(3.15)
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4. Solutions for Special Cases of Heat Source Capacity

The temperature distributions resulting from any specified time characteristics of the heat
source φ(η) are available using the general hyperbolic solution (3.7)–(3.14). However, for
some particular φ(η) the general solution can be considerably simplified. Some of such cases
are discussed below.

4.1. Source of Constant Strength: φ(η) = 1

This case may serve as a model of a continuously operated laser source. It may be also used
as a model of a long duration laser pulse when the short times (of the order of few or tens τ)
are considered. For φ(η) = 1, (3.9) and (3.10) are reduced, respectively, to

f1
(
η
)

=
γp
(
γp +Uβ

)
exp

(
γmη

) − γm(γm −Uβ) exp
(−γpη) − 2γ

(
2 −Uβ)

2γγmγp
, (4.1)

h7(1)
(
η
)
= f1

(
η
)
+U2

{
D1 exp

(−η) sinh
(
η
)
+D2η +

D3

γm

[
exp

(
γmη

) − 1
]

+
D4

γp

[
1 − exp

(−γpη)]
}
.

(4.2)

4.2. Instantaneous Source: φ(η) = δ(η)

In this case, (3.9) and (3.10) take the form, respectively,

f2
(
η
)
=

1
2γ
[(
γp +Uβ

)
exp

(
γmη

)
+
(
γm −Uβ) exp

(−γpη)], (4.3)

h7(2)
(
η
)
= f2

(
η
)
+U2[D1 exp

(−2η
)
+D2 +D3 exp

(
γmη

)
+D4 exp

(−γPη)]. (4.4)

4.3. Exponential Source: φ(η) = exp(−νη)
In this case (3.9) and (3.10) are as follows, respectively,

f3
(
η
)
=

1
2γ
(
ν − γp

)(
ν + γm

) [(ν + γm
)(
γm −Uβ) exp

(−γpη) + (ν − γp)(γp +Uβ) exp
(
γmη

)

+2γ
(
2 − ν −Uβ) exp

(−νη)],
(4.5)

h7(3)
(
η
)
= f3

(
η
)
+U2

{
D1

(−2 + ν)
exp

(−2η
)
+
D2

ν
+

D3(
ν + γm

) exp
(
γmη

)

+
D4(

ν − γp
) exp

(−γpη) +D5 exp
(−νη)

}
,

(4.6)
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Figure 1: Dimensionless temperature distributions resulting from the hyperbolic and parabolic models
with dimensionless velocity of the medium for the heat source of constant strength; φ(η) = 1, ψ0 =
1, and β = 1, η = 3.
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Figure 2: Variation of dimensionless temperature with dimensionless time at different points of the body
for the heat source of constant strength; φ(η) = 1, ψ0 = 1, and U = 0.1.

where

D5 =
D1

(2 − ν) −
D2

ν
− D3(

ν + γm
) − D4(

ν − γp
) . (4.7)

5. Results and Discussion

Using the solutions for arbitrary φ(η) and the solutions for the special cases we calculated,
with the aid of the program Mathematica 5.0, and we performed calculations for metals
putting ψ0 = 1 and β = 0.5 or 1, since we assumed that typical values of the model parameters
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Figure 3: Dimensionless temperature distributions at η = 1 for the heat source of constant strength and
various values of β; φ(η) = 1, ψ0 = 1, and U = 0.1.
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Figure 4: Dimensionless temperature distributions resulting from the hyperbolic and parabolic models
with dimensionless velocity of the medium for the instantaneous heat source; φ(η) = δ(η), ψ0 = 1, β =
3, and η = 2.

for metals are: μ of the order of 107–108 m−1,R of the order of 0.9, τ of the order of 10−13–10−11 s,
and c of the order of 103–104 m/s [22–25]. Some solutions for other values of β are also
presented to set off the specific features of our model. The results of calculations for various
time characteristics of the heat source capacity are shown in Figures 1–9. Moreover, the
velocity of the medium was assumed not to exceed the speed of heat propagation.

The hyperbolic and parabolic solutions for the heat source of constant strength [φ(η) =
1] are presented in Figures 1–3. Figure 1 shows the temperature distribution in the body for
the two values of dimensionless velocity of the medium, U = 0, 0.7. Figure 2 displays the
time variation of temperature at the three points of the body, X = 0, 3, 5. It is clearly seen
that for small X the temperatures predicted by the hyperbolic model are greater than the
corresponding values for the Fourier model, whereas in the region of intermediate values
of X, the situation is just the opposite. For large X (X � η) the hyperbolic and parabolic
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Figure 5: Dimensionless temperature distributions with dimensionless velocity of the medium for the
instantaneous heat source; φ(η) = δ(η), ψ0 = 1, β = 1, and η = 2.
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Figure 6: Dimensionless temperature distributions resulting from the hyperbolic model for the
instantaneous heat source; φ(η) = δ(η), ψ0 = 1, β = 5, and U = 0.1.

solutions tend to overlap. This behaviour can be explained as follows. In both models, the
heat production is concentrated at the edge of the body. The same amounts of energy are
generated continuously in both models, but in the case of hyperbolic models, because of the
finite speed of heat conduction, more energy is concentrated at the origin of X axis. This
results in the higher “hyperbolic” temperature in this region and the lower in the region
of intermediate X values. In Figure 3, we compare the temperature distributions at η = 1
resulting from the hyberbolic and parabolic for the three values of β (β = 0.3, 1, and 3).
For large β, that is, when the slope of the space characteristics of the heat source capacity
increases, in the hyperbolic solution, a blunt wave front can be observed. Figures 4–7 depict
the results of calculations for the instantaneous heat source [φ(η) = δ(η)]. A striking feature
of the hyperbolic solutions is that the instantaneous heat source gives rise to a thermal pulse
which travels along the medium and decays exponentially with time while dissipating its
energy. During a period η, the maximum of the pulse moves over a distance X = η(1 + U).
These effects are shown pictorially in Figures 4 and 6. Figure 4 presents the temperature
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Figure 7: Dimensionless temperature distributions at η = 1 for the instantaneous heat source and various
values of β; φ(η) = δ(η), ψ0 = 1, and U = 0.1.
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Figure 8: Dimensionless temperature distributions with dimensionless velocity of the medium from the
hyperbolic model for the exponential heat source ; φ(η) = exp(−0.4η), ψ0 = 1, β = 1, and η = 3.

distributions in the body for β = 5 and U = 0, 0.5, but Figure 6 presents the temperature
distributions in the body for β = 5 and η = 1, 2, 3, 4. It is seen that the pulse is not
sharp but blunt exponentially, which results from the fact that in our model the heat source
capacity decays exponentially along the x-axis. Figure 5 gives the hyperbolic and parabolic
temperature distribution in the body at time η = 2 for the two values of dimensionless
velocity of the medium, U = 0, 0.6. Figure 7 gives the hyperbolic and parabolic temperature
distribution in the body at time η = 1 and velocity of the medium U = 0.1 for various values
of β. As shown in Figure 7, the smaller β is, the more blunt the pulse and the shorter is the
time of its decay is . After the decay of the pulse, the differences between the hyperbolic and
parabolic solutions become only quantitative, and they vanish in short time. Figures 8 and 9
depict the results of calculations for the exponential heat source [φ(η) = exp(−νη)]. Figure 8
gives the hyperbolic temperature distribution in the body at time η = 3 for the four values
of dimensionless velocity of the medium, U = 0, 0.2, 0.4, 0.8. Figure 9 shows the temperature
distribution in the body for the three values of dimensionless β (β = 0.3, 1, 3). The results are
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Figure 9: Dimensionless temperature distributions at η = 1 for the exponential heat source and various
values of β; φ(η) = exp(−0.4η), ψ0 = 1, and U = 0.1.

compared with those obtained from an analytical model by Lewendowska [21]. For U = 0,
our results are the same as those reported by Lewendowska [21].

6. Conclusions

This paper presents an analytical solution of the hyperbolic heat conduction equation for
moving semi-infinit medium under the effect of Time-Dependent laser heat source. Laser
heating is modeled as an internal heat source, whose capacity is given by (2.8) while the
semi-infinit body was insulated boundary. The heat conduction equation together with its
boundary and initial conditions have been written in a dimensionless form. By employing the
Laplace transform technique, an analytical solution has been found for an arbitrary velocity
of the medium variation. The temperature of the semi-infinit body is found to increase at large
velocities of the medium. The results are compared with those obtained from an analytical
model by Lewendowska [21]. For U = 0, our results are the same as those reported by
Lewendowska [21]. A blunt heat wavefront can be observed when the slope of the space
characteristics of the heat source capacity (i.e., the value of β) is large.

Appendix

A. Solution of Heat Transfer Equation

The characteristic equation for the homogeneous solution can be written as

r2 − 2U(1 + s)
1 −U2

r − s(2 + s)
1 −U2

= 0, (A.1)

which yields the solution of

r1,2 =
U(1 + s)
1 −U2

± 1
1 −U2

√
(1 + s)2 − (1 −U2), (A.2)

where 0 < U < 1.
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Therefore, the homogeneous solution (θh) yields

θh = c1 exp(r1X) + c2 exp(r2X), (A.3)

or

θh =
[
c1 exp

(
U(1 + s)

a
− 1
a

√
(1 + s)2 − a

)
X + c2 exp

(
U(1 + s)

a
+

1
a

√
(1 + s)2 − a

)
X

]
,

(A.4)

where a = 1 −U2.
For the particular solution, one can propose θp = A0 exp(−βX).
Consequently, substitution of θp into (3.1) results in

(
1 −U2

)
β2A0 exp

(−βX) + 2U(1 + s)βA0 exp
(−βX) − s(2 + s)A0 exp

(−βX)

= −2ψ0
(
2 + s −Uβ)φ exp

(−βX),
(A.5)

where

A0 =
−2ψ0

(
2 + s −Uβ)φ[

(1 −U2)β2 + 2U(1 + s)β − s(2 + s)
] , (A.6)

or

θ = c1 exp
(
U(1 + s)

a
− 1
a

√
(1 + s)2 − a

)
X

+ c2 exp
(
U(1 + s)

a
+

1
a

√
(1 + s)2 − a

)
X

+
2ψ0

(
2 + s −Uβ)φ exp

(−βX)(
s − γm

)(
s + γp

) .

(A.7)

Since Re(s) > 0, 0 < U < 1 and dθ/dX(∞, s) = 0, then c2 = 0.
Therefore,

θ = c1 exp
(
U(1 + s)

a
− 1
a

√
(1 + s)2 − a

)
X +

2ψ0
(
2 + s −Uβ)φ exp

(−βX)(
s − γm

)(
s + γp

) . (A.8)
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By applying the boundary condition (3.4), we can obtain c1, that is,

dθ

dX
=
{
c1

(
U(1 + s)

a
− 1
a

√
(1 + s)2 − a

)
× exp

(
U(1 + s)

a
− 1
a

√
(1 + s)2 − a

)
X

−2βψ0
(
2 + s −Uβ)φ exp

(−βX)(
s − γm

)(
s + γp

)
}
X=0

= 0,

(A.9)

or

c1 =
2βψ0a

(
2 + s −Uβ)φ(

U(1 + s) −
√
(1 + s)2 − a

)(
s − γm

)(
s + γp

) . (A.10)

Hence,

θ =
2βψ0a

(
2 + s −Uβ)φ exp

(
U(1 + s)/a − (1/a)

√
(1 + s)2 − a

)
X

(
U(1 + s) −

√
(1 + s)2 − a

)(
s − γm

)(
s + γp

)

+
2ψ0

(
2 + s −Uβ)φ exp

(−βX)(
s − γm

)(
s + γp

) .

(A.11)

Let H1 and H2 be

H1 =
a
(
2 + s −Uβ)φ exp

(
U(1 + s)/a − (1/a)

√
(1 + s)2 − a

)
X

(
U(1 + s) −

√
(1 + s)2 − a

)(
s − γm

)(
s + γp

)

−

⎡
⎢⎢⎣

exp(−(X(1 + s))/(1 +U)) exp
(
−(X/a)

(√
(1 + s)2 − a − (1 + s)

))
√
(1 + s)2 − a

×U

[
(1 + s) −

√
(1 + s)2 − a

]
√
(1 + s)2 − a

×

(
(1 + s)2 − a

)(
2 + s −Uβ)φ(

(1 + s)2 − 1
)(
s − γm

)(
s + γp

)
⎤
⎥⎥⎦
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− (1 +U)

⎡
⎢⎢⎣

exp(−X(1 + s)/(1 +U)) exp
(
−(X/a)

(√
(1 + s)2 − a − (1 + s)

))
√
(1 + s)2 − a

×

(
(1 + s)2 − a

)(
2 + s −Uβ)φ(

(1 + s)2 − 1
)(
s − γm

)(
s + γp

)
⎤
⎥⎦

= −H3 − (1 +U)H4,

(A.12)

H2 =

(
2 + s −Uβ)φ(
s − γm

)(
s + γp

) , (A.13)

Consequently,

θ
(
X, η

)
= £−1θ = 2βψ0£−1H1 + 2ψ0 exp

(−βX)£−1H2

= −2βψ0£−1H3 − 2βψ0(1 +U)£−1H4 + 2ψ0 exp
(−βX)£−1H2.

(A.14)

To obtain the inverse Laplace transformation of functions H2,H3, and H4, we use the
convolution for Laplace transforms.

The Laplace inverse of H2 can be obtained as

£−1H2 =
1

2γ

∫η
0
φ(r)

[(
γp +Uβ

)
exp

(
γm
(
η − r)) + (γm −Uβ) exp

(−γp(η − r))]dr
= f

(
η
)
.

(A.15)

To obtain the inverse Laplace transformation of function H3, we use the convolution
for Laplace transforms:

£−1H3 = £−1[H5(s)H6(s)H7(s)] =
∫η

0
h5
(
y
)∫η−y

0
h6(v)h7

(
η − y − v)dv dy, (A.16)

where

h5
(
η
)
= £−1H5 = £−1

⎧⎪⎪⎨
⎪⎪⎩

exp(−(X(1 + s)/(1 +U))) exp
(
−(X/a)

(√
(1 + s)2 − a − (1 + s)

))
√
(1 + s)2 − a

⎫⎪⎪⎬
⎪⎪⎭

= exp
(−η)£−1

⎧⎨
⎩

exp(−(X/(1 +U))s) exp
(
−(X/a)

(√
s2 − a − s

))
√
s2 − a

⎫⎬
⎭.

(A.17)
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It is noted from the Laplace inversion that [26]

£−1{H(s − b)} = exp
(
bη
)
h
(
η
)
, (A.18)

£−1

⎧⎨
⎩

exp
(
−k
(√

s2 − c2 − s
))

√
s2 − c2

⎫⎬
⎭ = I0

(
c
√
η2 + 2kη

)
, k ≥ 0, (A.19)

£−1{exp(−bs)H(s)
}
=

⎧⎨
⎩
h
(
η − b) at η > b,

0 at η < b,
b > 0. (A.20)

Therefore,

h5
(
η
)
= £−1H5 = exp

(−η)I0

⎛
⎝√

a

√(
η +

UX

a

)2

− X2

a2

⎞
⎠, η >

X

1 +U
. (A.21)

Similarly, £−1H6 can be obtained, that is,

h6
(
η
)
= £−1H6 = £−1

⎧⎪⎪⎨
⎪⎪⎩
U

[
(1 + s) −

√
(1 + s)2 − a

]
√
(1 + s)2 − a

⎫⎪⎪⎬
⎪⎪⎭

= U exp
(−η)£−1

⎧⎨
⎩
[
s −

√
s2 − a

]
√
s2 − a

⎫⎬
⎭.

(A.22)

It is noted from the Laplace inversion that [26]

£−1

⎧⎪⎨
⎪⎩

[
s −

√
s2 − c2

]ν
√
s2 − c2

⎫⎪⎬
⎪⎭ = cνIν

(
cη
)
, ν > −1. (A.23)

Therefore,

h6
(
η
)
= £−1H6 =

√
aU exp

(−η)I1
(√

aη
)
. (A.24)



16 Journal of Applied Mathematics

To obtain the inverse transformation of function H7, we use the convolution for
Laplace transforms:

h7
(
η
)
= £−1H7 = £−1

⎧⎨
⎩

(
(1 + s)2 − a

)(
2 + s −Uβ)φ(

(1 + s)2 − 1
)(
s − γm

)(
s + γp

)
⎫⎬
⎭

= f
(
η
)
+U2

∫η
0
φ(r)

[
D1 exp

(−2
(
η − r)) +D2 +D3 exp

(
γm
(
η − r))

+D4 exp
(−γp(η − r))]dr.

(A.25)

Substituting (A.21), (A.24), and (A.25) into (A.16), it yields

£−1H3 =
∫η
X/(1+U)

exp
(−y)I0

⎛
⎝√

a

√(
y +

UX

a

)2

− X2

a2

⎞
⎠ × h8

(
η − y)dy, (A.26)

where

h8
(
η
)
=
∫η

0

√
aU exp(−v)I1

(√
av
) × h7

(
η − v)dv. (A.27)

Similarly, £−1H4 can be obtained, after using the convolution for Laplace transforms
and (A.21) and (A.25):

£−1H4 = £−1[H5(s)H7(s)]

=
∫η
X/(1+U)

exp
(−y)I0

⎛
⎝√

a

√(
y +

UX

a

)2

− X2

a2

⎞
⎠ × h7

(
η − y)dy. (A.28)

Substituting (A.15), (A.26), and (A.28) into (A.14), it yields

θ
(
X, η

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ψ0 exp
(−βX)f(η), for η ≤ X

1 +U
,

2ψ0 exp
(−βX)f(η) − 2βψ0

∫η
X/(1+U)

exp
(−y)I0

⎛
⎝√

a

√(
y +

UX

a

)2

− X2

a2

⎞
⎠

×h8
(
η − y)dy − 2βψ0(1 +U)

∫η
X/(1+U)

exp
(−y)I0

⎛
⎝√

a

√(
y+

UX

a

)2

−X
2

a2

⎞
⎠

×h7
(
η − y)dy, for η >

X

1 +U
.

(A.29)
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Nomenclature

Cp: Specific heat at constant pressure, J/(kg K)
g: Capacity of internal heat source, W/m3

I: Laser incident intensity, W/m2

Ir : Arbitrary reference laser intensity
I0: Modified Bessel function, 0th order
I1: Modified Bessel function, 1th order
L: Laplace operator
R: Surfase reflectance
s: Laplace variable
q: Heat flux vector, W/m2

t: Time, s
T : Temperature, K
Tm, T0: Arbitrary reference temperatures, K
c: Speed of heat propagation = (α/τ)1/2, m/s
x, y, z: Cartesian coordinates, m
X,Y,Z: Dimensionless cartesian coordinates
S: Dimensionless capacity of internal heat source
u: Velocity of the medium, m/s
U: Dimensionless velocity of the medium, u/c.

Greek symbols

α: Thermal diffusivity = κ/(ρCp), m2/s
κ: Thermal conductivity, W/(mK)
τ : Relaxation time of heat flux, s
β: Dimensionless absorption coefficient
γ, γm, γp: Auxiliary coefficients defined by (3.12), (3.13), (3.14), respectively
φ: Dimensionless rate of energy absorbed in the medium
μ: Absorption coefficient
θ: Dimensionless temperatures
ρ: Density
η: dimensionless time
ψ0: Internal heat source
θ: Laplace transformation of dimensionless temperature.
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