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This paper investigates the Parseval relationship of samples associated with the fractional Fourier
transform. Firstly, the Parseval relationship for uniform samples of band-limited signal is obtained.
Then, the relationship is extended to a general set of nonuniform samples of band-limited signal
associated with the fractional Fourier transform. Finally, the two dimensional case is investigated
in detail, it is also shown that the derived results can be regarded as the generalization of the
classical ones in the Fourier domain to the fractional Fourier transform domain.

1. Introduction

As a generalization of the classical Fourier transform, the fractional Fourier transform (FrFT)
has received much attention in recent years [1–5]. It has been shown that the FrFT can be
applied to various applications, including optics, radar and sonar, communication signals
and underwater signal processing, and so forth, [1–5]. The relationship between the Fourier
transform and the FrFT is derived in [6–8]. The discretization and fast computation of FrFT
have been proposed by researchers from different perspectives [9–14]. The generalization
of the sampling formulae in the traditional Fourier domain to the FrFT domain has been
deduced in [7, 8] and [15, 16]. The properties and advantages of the FrFT in signal processing
community have been discussed in [17, 18]. For further properties and applications of FrFT
in optics and signal processing community, one can refer to [1, 2].

The well-known operations and relations (such as Hilbert transform [19], convolution
and product operations [20, 21], uncertainty principle [22], and Poisson summation formula
[23]) in traditional Fourier domain have been extended to the fractional Fourier domain by
different authors. The spectral analysis and reconstruction for periodic nonuniform samples
is investigated in [24], and the short-time FrFT and its applications are studied in [25].
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Recently, Lima and Campello De Souza give the definition and properties of FrFT over
finite fields [26], Irarrazaval et al. investigates the application of the FrFT in quadratic field
magnetic resonance imaging [27]. The relationship between the FrFT and the fractional
calculus operators is studied and given in [28]. But, so far none of the research papers
throw light on the extension of the traditional Parseval’s relationship for band-limited signals
associated with the fractional Fourier domain. It is, therefore, worthwhile and interesting to
investigate the extension of the Parseval’s relationship of band-limited signals in the FrFT
domain.

Parseval relationship plays an important role in the Fourier transform domain [29–
31], it relates the energy (or power) in the uniformly spaced sample values of a band-
limited signal and the energy in the corresponding analog signal. Based on the relationship
between the Fourier transform and the FrFT, this paper investigates the generalization of the
traditional Parseval relationship of the Fourier domain to the FrFT domain.

The paper is organized as follows: the preliminaries are presented in Section 2, the
main results of the paper are obtained in Section 3, and the conclusion and future working
directions are given in Section 4.

2. Preliminaries

2.1. The Fractional Fourier Transform

The ordinary Fourier transform plays an important role in modern signal processing commu-
nity, little need be said of the importance and ubiquity of the ordinary Fourier transform, and
frequency domain concepts and techniques in many diverse areas of science and engineering.
The Fourier transform of a signal f(t) is defined as

F(u) =
1√
2π

∫+∞

−∞
f(t)e−jutdt. (2.1)

The FrFT can be viewed as the generalization of the Fourier transform with an order
parameter α, and the FrFT of a signal f(t) is given by [1, 2] as

Fα(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
1 − jcotα

2π

∫+∞

−∞
f(t)Kα(u, t)dt, α /=nπ,

f(u), α = 2nπ,

f(−u), α = (2n + 1)π,

(2.2)

where Kα(u, t) = exp{j(1/2)[cotαt2 − 2cscαtu + cotαu2]}. The original signal f(t) can be
derived by the inverse FrFT transform of Fα as

f(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
1 + jcotα

2π

∫+∞

−∞
Fα(u)K−α(t, u)du, α /=nπ,

Fα(t), α = 2nπ,

Fα(−t), α = (2n + 1)π.

(2.3)
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It is easy to show that the FrFT reduces to the ordinary Fourier transform when α =
π/2. In order to obtain new results, this paper deals with the case of α/=nπ .

A signal f(t) is said to be band-limited with respect to Ωα in FrFT domain with order
α, if

Fα(u) = 0, |u| > Ωα. (2.4)

For a signal f(t) bandlimited in the LCT domain, the following lemma reflects the
relationship between the band-limited signals in Fourier domain and the FrFT domain.

Lemma 2.1. Suppose that a signal f(t) is band-limited with respect toΩα in FrFT domain with order
α, and let

g(t) =
∫Ωα

−Ωα

Fα(u) exp
[
−j 1

2
cot αu2 + j csc αut

]
du, (2.5)

then the Fourier transform of signal g(t) can be represented by the FrFT of signal f(t) as

G(u) =
1
2π

Fα(sinαu)e−j(1/4) sin 2αu
2
, (2.6)

and g(t) is a |cscα|Ωα band-limited signal in the ordinary Fourier transform domain.

Proof. Performing the Fourier transform to (2.5), we obtain that

G(w) =
1√
2π

∫+∞

−∞
g(t)e−jwtdt

=
1√
2π

∫+∞

−∞

∫Ωα

−Ωα

Fα(u) exp
[
−j 1

2
cotαu2 + jcscαut

]
due−jwtdudt

=
1√
2π

∫Ωα

−Ωα

Fα(u) exp
[
−j 1

2
cotαu2

] ∫+∞

−∞
ej(cscαu−w)tdu dt

=
1√
2π

∫Ωα

−Ωα

Fα(u) exp
[
−j 1

2
cotαu2

]
1√
2π

δ(cscαu −w)du

=
1
2π

Fα(sinαw)e−j(1/4)sin 2αw
2
.

(2.7)

This proves the relationship between the Fourier transform of g(t) and the FrFT of f(t).
Because f(t) is band-limited with respect to Ωα in FrFT domain with order α, so it is
easy to show that signal g(t) is a |cscα|Ωα band-limited in the ordinary Fourier transform
domain.
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From the definition of signal f(t) and g(t), the relationship between the signal f(t)
and g(t) can be derived as

g(t) = f(t)

√
2π

1 + jcotα
exp

(
j
1
2
cotαt2

)
. (2.8)

2.2. The Two Dimensional FrFT

In [32], the-two dimensional FrFT of a signal f(x, y) is defined as

Fα,β(u, v) =
∫∫+∞

−∞
f
(
x, y

)
Kα,β

(
x, y, u, v

)
dx dy, (2.9)

where the FrFT kernel Kα,β(x, y, u, v) can be written as

Kα,β

(
x, y, u, v

)
=

√
1 − jcot α

√
1 − jcot β

2π
ej((x

2+u2)/2)cotα−juxcscαej((y
2+v2)/2)cot β−jyvcsc β.

(2.10)

The original signal f(x, y) can be recovered by a two-dimensional FrFTwith backward
angles (−α,−β) as follows:

f
(
x, y

)
=
∫∫+∞

−∞
Fα,β(u, v)K−α,−β

(
u, v, x, y

)
dudv. (2.11)

The definition of bandlimited two-dimensional signals can be similarly defined as the
one-dimensional signal; following the prove of Lemma 2.1, the two-dimensional cases can be
summarized as Lemma 2.2.

Lemma 2.2. Suppose that a signal f(x, y) is band-limited with respect to (Ωα,Ωβ) in FrFT domain
with order α and β, and let

g
(
x, y

)
=
∫Ωα

−Ωα

∫Ωβ

−Ωβ

Fα,β(u, v)e−j(1/2) cot αu
2+j csc αuxe−j(1/2) cot βv

2+j csc βvydudv, (2.12)

then the Fourier transform of signal g(x, y) can be represented by the FrFT of signal f(x, y) as

G(u, v) =
1

(2π)2
Fα

(
sinαu, sin βv

)
e−j(1/4) sin 2αu

2
e−j(1/4) sin 2βv

2
, (2.13)

and g(x, y) is a (|cscα|Ωα, |csc β|Ωβ) band-limited signal in the ordinary Fourier transform domain.

Proof. Similar with the proof of Lemma 2.1, the results can derived easily.
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From (2.12) and the definition of the two-dimensional FrFT, the relationship between
the signal f(x, y) and g(x, y) is

g
(
x, y

)
=

√
2π

1 + jcot α

√
2π

1 + jcot β
f
(
x, y

)
ej(1/2)cotαx

2
ej(1/2)cot βy

2
. (2.14)

2.3. The Parseval Relationship

The Parseval’s relation states that the energy in time domain is the same as the energy in
frequency domain, which can be expressed as follows [29]:

∫+∞

−∞
f(t)g∗(t)dt =

∫+∞

−∞
F(u)G∗(u)du, (2.15)

where F(u) and G(u) are Fourier transforms of f(t) and g(t), respectively. This formula is
called Parseval’s relation and holds for all members of the Fourier transform family.

The FrFT can be regarded as the generalization of the Fourier transform, and the
similar relation of (2.15) in the FrFT sense can be obtained as [1, 2]

∫+∞

−∞
f(t)g∗(t)dt =

∫+∞

−∞
Fα(u)G∗

α(u)du, (2.16)

where Fα(u) and Gα(u) are FrFT of f(t) and g(t)with order α, respectively. When f(t) = g(t),
the relation of (2.16) can be written as

∫+∞

−∞

∣∣f(t)∣∣2dt =
∫+∞

−∞
|Fα(u)|2du. (2.17)

Equations (2.15)–(2.17) are the Parseval’s relationship between the continuous signal and
its fractional Fourier transform (or Fourier transform) and can be derived by the Parseval
theorem for L2 signals.

In practical situations, we often encounter the calculation of Parseval relations between
the discrete signal and the analog signal. Marvasti and Chuande in [30], and Luthra in [31]
investigate the Parseval relations of band-limited signal in the traditional Fourier transform
domain. The Parseval relation for band-limited discrete uniformly sampled signal f(t) in the
Fourier domain is [30, 31]

+∞∑
n=−∞

∣∣f(nT)∣∣2 = 1
T

∫+∞

−∞

∣∣f(t)∣∣2dt = 1
T

∫+W

−W
|F(u)|2du, (2.18)

where F(u) is the ordinary Fourier transform of f(t), and T is the sampling interval that
satisfies 1/T ≥ W/π , and f(t) is band-limited to (−W,W) in the ordinary Fourier transform
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domain. Similarly, the Parseval relationship for bandlimited two-dimensional signal f(x, y)
associated with the Fourier transform can be written as follow:

+∞∑
n=−∞

+∞∑
m=−∞

∣∣f(nT1, mT2)
∣∣2 = 1

T1T2

∫∫+∞

−∞

∣∣f(x, y)∣∣2dt

=
1

T1T2

∫+W1

−W1

∫+W2

−W2

|F(u, v)|2dudv.

(2.19)

It is proved in [30] that if a set of samples tn(n = . . . ,−1, 0, 1, . . .) is a sampling set, then
the associated Parseval relation for the nonuniformly sampled signals can be written as

+∞∑
n=−∞

∣∣f(tn)∣∣2 = 1
T

∫+∞

−∞
f(t)f∗

lp(t)dt =
1
T

∫+W

−W
F(w)F∗

lp(w)dw, (2.20)

where flp(t) is the low-pass filtered version of the nonuniformly samples, and T = W/π .
F(w) and Flp(w) are the corresponding Fourier transforms of f(t) and flp(t).

The objective of this paper is to obtain the corresponding Parseval relationship for a
set of uniform and nonuniform samples of a band-limited signal in the FrFT domain. It is
shown that the derived results can be seen as the generalization of the classical results in the
Fourier domain.

3. The Main Results

Suppose that a signal f(t) is band-limited to (−Ωα,Ωα) in the FrFT domain for order α, and
Tα is the sampling interval that satisfies the uniform sampling theorem of signal in the FrFT
domain [1, 2]; for example, 1/Tα ≥ Ωα|cscα|/π . The objective of this section is to investigate
the Parseval relationship for uniform and nonuniform samples of signal f(t) in the FrFT
domain.

3.1. The Parseval Relationship for Uniform Samples

Theorem 3.1. Suppose that a signal f(t) is Ωα band-limited in the FrFT domain with order α, then
the Parseval relationship associated with the signal f(t) in the FrFT domain can be expressed as

+∞∑
n=−∞

∣∣f(nTα)∣∣2 = 1
Tα

∫+∞

−∞

∣∣f(t)∣∣2dt = |cscα|
Tα2π

∫ |cscα|Ωα

−|cscα|Ωα

|Fα(sinαu)|2du, (3.1)

where Tα is sampling interval, and Fα(u) is the FrFT of signal f(t) with order α.

Proof. Let

g(t) =
∫Ωα

−Ωα

Fα(u) exp
[
−j 1

2
cotαu2 + j cscαut

]
du, (3.2)
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then g(t) is a band-limited signal in the traditional Fourier domain. Applying (2.18) to signal
g(t), we obtain that

+∞∑
n=−∞

∣∣g(nTα)∣∣2 = 1
Tα

∫+∞

−∞

∣∣g(t)∣∣2dt = 1
Tα

∫+|cscα|Ωα

−|cscα|Ωα

|G(u)|2du. (3.3)

Substituting (2.8) into (3.3), we obtain that

+∞∑
n=−∞

∣∣∣∣∣f(nTα)
√

2π
1 + jcotα

exp
(
j
1
2
cotα(nTα)2

)∣∣∣∣∣
2

=
1
Tα

∫+∞

−∞

∣∣∣∣∣f(t)
√

2π
1 + jcotα

exp
(
j
1
2
cotαt2

)∣∣∣∣∣
2

dt

=
1
Tα

∫+|cscα|Ωα

−|cscα|Ωα

∣∣∣Fα(sinαu)e−j(1/4) sin 2αu
2
∣∣∣2du.

(3.4)

It is easy to verify that, |√2π/(1 + jcotα)|2 = 2π |
√
(1 − jcotα)/(1 + cot2α)|

2
=

2π
√
|1 − jcotα|/(1 + cot2α)2 = 2π/|cscα|, and the magnitude of exponential function is

∣∣∣∣exp
(
j
1
2
cotα(nTα)2

)∣∣∣∣ = 1,
∣∣∣∣exp

(
j
1
2
cotα(t)2

)∣∣∣∣ = 1. (3.5)

Substituting these results in (3.4), we obtain the final result as follows:

+∞∑
n=−∞

∣∣f(nTα)∣∣2 = 1
Tα

∫+∞

−∞

∣∣f(t)∣∣2dt = |cscα|
Tα2π

∫ |cscα|Ωα

−|cscα|Ωα

|Fα(sinαu)|2du. (3.6)

Equation (3.1) can be seen as the generalization of the Parseval relations for the
uniformly sampled signals associated with the FrFT. The next subsection focus on the
generalization of the Parseval relations for the nonuniform sampling sets in the FrFT domain.

3.2. The Parseval Relationship of Nonuniform Samples

Suppose that a general nonuniform sampling set {tn, n = . . . ,−1, 0, 1, . . .} is obtained from the
Ωα bandlimited signal f(t) in the FrFT domain. If this sampling set satisfies the condition
proposed in [30], then the Parseval relationship for this nonuniform sampling set can be
derived as the following Theorem 3.2.
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Theorem 3.2. The Parseval relationship of nonuniform samples can be written as

+∞∑
n=−∞

∣∣f(tn)∣∣2 = 1
Tα

∫+∞

−∞
f(t)f∗

lp(t)dt

=
|cscα|
Tα(2π)2

∫+|cscα|Ωα

−|cscα|Ωα

e−j(1/4) sin 2αu
2
Fα(u sinα)G∗

lp(u)du,

(3.7)

where flp(t) =
∑+∞

n=−∞ f(tn) exp(j(1/2) cot α(t2 − t2n))(sin c[csc αΩα(t− tn)]), Fα(u) is the FrFT of
f(t), and Glp(u) is the Fourier transform of glp(t).

Proof. Let

g(t) =
∫Ωα

−Ωα

Fα(u) exp
[
−j 1

2
cotαu2 + jcscαut

]
du (3.8)

then g(t) is a |cscα|Ωα bandlimited signal in the Fourier domain. Applying the classical
Parseval relationship of (2.20) for the bandlimited signals in the Fourier domain to signal
g(t), we obtain

+∞∑
n=−∞

∣∣g(tn)∣∣2 = 1
Tα

∫+∞

−∞
g(t)g∗

lp(t)dt =
1
Tα

∫+|cscα|Ωα

−|cscα|Ωα

G(u)G∗
lp(u)du, (3.9)

where glp is the signal obtained after low-pass filtering of the sampled signal

glp(t) =
+∞∑

n=−∞
g(tn) sin c[cscαΩα(t − tn)]

=
+∞∑

n=−∞
f(tn)

√
2π

1 + jcotα
exp

(
j
1
2
cotαt2n

)
sin c[cscαΩα(t − tn)].

(3.10)

From the relationship between g(t) and f(t), the following relations can be obtained:

+∞∑
n=−∞

∣∣g(tn)∣∣2 =
+∞∑

n=−∞

∣∣∣∣∣f(tn)
√

2π
1 + jcotα

exp
(
j
1
2
cotαt2n

)∣∣∣∣∣
2

=
2π

|cscα|
+∞∑

n=−∞

∣∣f(tn)∣∣2,

1
Tα

∫+∞

−∞
g(t)g∗

lp(t)dt =
2π

|cscα|Tα

∫+∞

−∞
f(t)

+∞∑
n=−∞

f∗(tn) exp
(
j
1
2
cotα

(
t2 − t2n

))

× (sin c[cscαΩα(t − tn)])dt

=
2π

|cscα|Tα

∫+∞

−∞
f(t)f∗

lp(t)dt.

(3.11)
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From (3.11), the first part of (3.9) can be rewritten as

+∞∑
n=−∞

∣∣f(tn)∣∣2 = 1
Tα

∫+∞

−∞
f(t)f∗

lp(t)dt. (3.12)

From Lemma 2.1, the following relationship holds for G(u) and Fα(u):

G(u) =
1
2π

Fα(sinαu)e−j(1/4) sin 2αu
2
. (3.13)

Substitute (3.13) in to the final part of (3.9), we obtain that

1
Tα

∫+|cscα|Ωα

−|cscα|Ωα

G(u)G∗
lp(u)du =

1
2πTα

∫+|cscα|Ωα

−|cscα|Ωα

e−j(1/4) sin 2αu
2
Fα(u sinα)G∗

lp(u)du. (3.14)

The final result follows from (3.11) and (3.14).

3.3. The Parseval Relationship for Two-Dimensional Case

Based on the definitions of two-dimensional FrFT and bandlimited signals, the Parseval rela-
tionship of the one-dimensional cases can be generalized to 2-D signals based on the
Lemma 2.2. We would like to give the following Theorem 3.3.

Theorem 3.3. Suppose that a signal f(x, y) is (Ωα,Ωβ) band-limited in the FrFT domain with order
α and β, and then the Parseval relationship associated with the signal f(x, y) in the FrFT domain can
be expressed as

+∞∑
n=−∞

+∞∑
m=−∞

∣∣f(nT1, mT2)
∣∣2 = 1

TαTβ

∫∫+∞

−∞

∣∣f(x, y)∣∣2dt

=
1

TαTβ

∫+Ωα

−Ωα

∫+Ωβ

−Ωβ

∣∣Fα,β

(
sinαu, sin βv

)∣∣2dudv,

(3.15)

where Tα and Tβ are sampling interval, and Fα,β(u, v) is the two-dimensional FrFT of signal f(x, y)
with order α and β.

Proof. Similar with the proof of Theorem 3.1, let

g
(
x, y

)
=

√
2π

1 + jcotα

√
2π

1 + jcot β
f
(
x, y

)
ej(1/2)cotαx

2
ej(1/2)cotβy

2
. (3.16)

Then, from Lemma 2.2 g(x, y) is a (|cscα|Ωα, |csc β|Ωβ) band-limited signal in the ordinary
Fourier transform domain. By applying the classical two-dimensional Parseval relationship
of (2.19) to signal g(x, y), we can obtain the final result.
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4. Conclusions

Based on the relationship between the Fourier transform and the FrFT, this paper investigates
the Parseval’s relationship of sampled signals in the FrFT domain. We firstly investigate
the Parseval relationship for the uniformly samples of bandlimited signal associated with
the FrFT. Then, we extend this relationship to a general set of nonuniform samples of
band-limited signal in the FrFT domain. Finally, we studied the Parseval relations for
uniformly sampled bandlimited two-dimensional signals, and it is also shown that the
derived results can be seen as the generalization of the classical results in the Fourier domain
to the FrFT domain. Future works includes the derivation of the Parseval’s relations in the
linear canonical transform domain for one- and two-dimensional uniformly (nonuniformly)
sampled signals, and the applications of the derived results in the sampling theories and
other related areas.
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