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This work introduces a new parallel wavelet-based algorithm for algebraic multigrid method
(PWAMG) using a variation of the standard parallel implementation of discrete wavelet
transforms. This new approach eliminates the grid coarsening process in traditional algebraic
multigrid setup phase simplifying its implementation on distributed memory machines. The
PWAMG method is used as a parallel black-box solver and as a preconditioner in some linear
equations systems resulting from circuit simulations and 3D finite elements electromagnetic
problems. The numerical results evaluate the efficiency of the new approach as a standalone solver
and as preconditioner for the biconjugate gradient stabilized iterative method.

1. Introduction

The algebraic multigrid (AMG) method is one of the most efficient algorithms for solving
large sparse linear systems. Especially in the context of large-scale problems and massively
parallel computing, the most desirable property of AMG is its potential for algorithmic
scalability: in the ideal case, for a matrix problem with n unknowns, the number of iterative
V-cycles required for convergence is independent of the problem size n and the work in the
setup phase and in each V-cycle is linearly proportional to the problem size n [1, 2]. For
all this, the need to solve linear systems arising from problems posed on extremely large,
unstructured grids has been generating great interest in parallelizing AMG.

However, there are two major problems: first, the core of the AMG setup phase
includes the grid coarsening process, which is inherently sequential in nature [1–3]. This
coarsening scheme, for traditional AMG, can lead to computational complexity growth as



2 Journal of Applied Mathematics

the problem size increases, resulting in an elevated memory use and execution time and
in a reduced scalability [4, 5]. Second, most parallel AMG algorithms are based on domain
decomposition ideas, which have been proved to be very efficient but require a hierarchy of
meshes that eliminates the algebraic characteristic of AMG and precludes its use as a black-
box method.

Due to those difficulties and the importance of the development of efficient parallel
preconditioners for large, sparse systems of linear equations, the investigation of new parallel
approaches has been the main subject of many researchers [6–12]. In this context, a great
amount of work has been aimed to extract some parallelism from serial preconditioners
such as factorization-based methods, which provide effective preconditioning on sequential
architectures [8–10]. However, scalable parallel implementation of incomplete factorization
preconditioners presents many limitations and challenges, and although some interesting
approaches have presented good performance for certain classes of problems, quite scalable
parallel algorithms for this kind of preconditioners seem to have not been available [8].

Also has received much attention in the last years the development of preconditioning
approaches that have inherently parallel characteristics. In particular, approximate inverse
preconditioners have proven extremely promising and effective for the solution of general
sparse linear systems of equations [6, 7, 10–12]. Unfortunately, this kind of preconditioner
also has some drawbacks: in general, as the discretization is refined the amount of work per
grid point grows with problem size, and it is inherently difficult to approximate the inverse
of very ill-conditioned linear systems with a sparse matrix [13].

In this workwe introduce a new parallel algorithm forwavelet-basedAMG (PWAMG)
using a variation of the parallel implementation of discrete wavelet transforms. This new
approach eliminates the grid coarsening process present at standard AMG setup phase,
simplifying significantly the implementation on distributed memory machines and allowing
the use of PWAMG as a parallel black-box solver and preconditioner. The parallel algorithm
uses the message passing interface (MPI) that provides a standard for message passing for
parallel computers and workstation clusters.

A sequential version of WAMG was introduced recently [14], and it has revealed to
be a very efficient and promising method for several problems related to the computation of
electromagnetic fields [15, 16]. Here, the method is used as a parallel black-box solver and
as a preconditioner in some linear equations systems resulting from circuit simulations and
3D finite elements electromagnetic problems. The numerical results evaluate the efficiency of
the new approach as a standalone solver and as preconditioner for the biconjugate gradient
stabilized iterative method.

2. The Discrete Wavelet Transform

The discrete wavelet transform (DWT) corresponds to the application of low-pass and
high-pass filters, followed by the elimination of one out of two samples (decimation or
subsampling). The discrete signal, which in one dimension is represented by a vector of
values, is filtered by a set of digital filters that are associated to the wavelet adopted in the
analysis.

Starting from a vector y(N) at level 0, two sets of coefficients are generated in each
level l of the process: a set dl of wavelets coefficients (detail coefficients) and a set cl of
approximation coefficients. This procedure can be applied again, now using cl as an input
vector to create new coefficients cl+1 and dl+1, successively.
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Very important classes of filters are those of finite impulse response (FIR). The main
characteristic of these filters is the convenient time-localization properties. These filters are
originated from compact support wavelets, and they are calculated analytically. An example
of FIR filters is the length-2 scaling filter with Haar or Daubechies-2 coefficients, which are
given by (2.1):

hD2 = [h0, h1] =
[

1√
2
,
1√
2

]
. (2.1)

For more details about compact FIR filters see [17].
For a given vector y = (y1, y2, . . . , yN), the Haar wavelet transform creates an

approximation vector c and a detail vector d according to (2.2) and (2.3), respectively:

c = (c1, c2, . . . , cN/2), with ci =

(
y2i−1 + y2i

)
√
2

, (2.2)

d = (d1, d2, . . . , dN/2), with di =

(
y2i−1 − y2i

)
√
2

. (2.3)

It is not difficult to see that this procedure will work only ifN is even.
In the 2D case, in which the discrete signal is represented by a matrix, the DWT

is obtained through the application of successive steps of 1D transform into the rows and
columns of the matrix. This process generates a matrix formed by four types of coefficients:
the approximation coefficients and the detail coefficients (horizontal, vertical, and diagonal),
as illustrated in Figure 1. Blocks H and G represent, respectively, the low-pass and high-pass
filters.

In both cases, the approximation coefficients keep the most important information of
the discrete signal, whereas the detail coefficients possess very small values, next to zero.
These approximation coefficients will contain low-pass information, which is essentially a
low-resolution version of the signal and represent a coarse version of the original data.

3. A Wavelet-Based Algebraic Multigrid

The approximation property of wavelet is explored by wavelet-based algebraic multigrid
for creating the hierarchy of matrices. The method considers the use of a modified discrete
wavelet transform in the construction of the transfer operators and the hierarchy of matrices
in the multigrid approach.

A two-dimensional modified DWT is applied to produce an approximation of the
matrix in each level of the wavelets multiresolution decomposition process. An operator
formed only by low-pass filters is created, which is applied to the rows and columns of
the matrix. This same operator is used for the intergrid transfer in the AMG. If a length-2
(first order) scaling filter is used, for example, which means the application of the operation
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Figure 1: The two-dimensional DWT: one-dimensional transform in the rows and columns of the matrix.

defined in (2.2) in the rows and columns of the matrix, the operation is matricially defined as
(3.1):

Pk+1
k =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1 h0 0 0 0 · · · · · · · · · 0

0 0 h1 h0 0 0 0 · · · 0

...
...

...

0 0 0 · · · · · · · · · 0 h1 h0

⎞
⎟⎟⎟⎟⎟⎟⎠

(N/2)×N

. (3.1)

The prolongation operator is defined in the usual form,

Pk
k+1 =

(
Pk+1
k

)T
, (3.2)

and the matrix in the corresponding level k with the Galerkin condition:

Ak+1 = Pk+1
k AkPk

k+1, (3.3)

reminding that A0 = A is the matrix of the original system.
Once the intergrid transfer operators and the hierarchy of matrices are created, the

multigrid method (V-cycle) can be defined as usual, using a recursive call of the following
two-level algorithm.
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Algorithm 3.1 (Two-level multigrid). The following holds.

Input: the right hand side vector b, the original matrix A

and the coarse grid matrix PAPT

Output: approximation x̃

(1) Choose an initial guess x and apply ν1 smoothing steps in Ax = b

(2) Compute r = b −Ax

(3) e = (PAPT )−1Pr
(4) x̃ = x + PTe

(5) Apply ν2 smoothing steps in Ax̃ = b

(6) Return x̃.

In this paper, a V-cycle multigrid with ν1 = ν2 = 1 is applied iteratively as a solver and
also as a preconditioner inside the biconjugate gradient stabilized (BiCGStab) iterations.

3.1. The Choice of the Wavelet Filters

A common problem on the choice of the filters is to decide between the fill-in control and the
wavelet properties. As theWAMGoften deals with sparsematrices, the control of the nonzero
number is a very important task. In this case, if the matrix Ak is sparse, then the number of
nonzero elements in the next level matrix Ak+1 = Pk+1

k
AkPk

k+1 will depend on the order of the
filter used in the restriction and prolongation operators. In fact, the longer the filter used the
larger the number of nonzero entries in the next computed matrix. Consequently, most of the
wavelet-basedmultigridmethods use shorter filters such asHaar or Daubechies-2 coefficients
in its approaches [18–23]. This is also the case in this paper.

4. A Parallel Wavelet-Based Algebraic Multigrid

One advantage of the proposed approach is the elimination of the coarsening scheme
from the setup phase. The application of the operations defined in (2.3) in the rows and
columns of a matrix allows creating an approximation without any information about meshes
or the adjacency graph of the matrix. Thus the implementation on distributed memory
machines becomes simpler allowing the use of the method as a parallel black-box solver
and preconditioner. Our approach, based on the parallel implementation of discrete wavelet
transform presented in [24], avoids any communication among processors in the setup phase
if first-order filters are used.

The parallelization strategy starts dividing equally the numberN of rows of thematrix
between the processors, in such away that the 1-D transform defined in (2.3) could be applied
entirely locally in the rows. As each matrix column is equally divided, the transformation in
this direction is accomplished partially in each processing unit, considering the size of the
column in its local memory. For np processors, for example, each processor will apply the
wavelet transform in the �N/np� elements of the column in its memory, where �x� means
the largest integer even less than x. If the largest integer less than N/np is odd, then the
last element of the column in the local memory is unchanged, as illustrated in Figure 2 for
N = 10 and np = 2. In the figure, cli,j means the ith local element of the level l vector c in the
processor j.
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Figure 2: Illustration of the 1D parallel wavelet transform with 2 processors.

A ∗ b =

=

c

Processor 1

Processor 2

Processor 3

Processor 4

1

2

3

4

∗

Figure 3: Matrix-vector product of a matrix distributed by rows.

Pr
oc

es
so

rs

A0

B0

C0

D0

Data

Allgather

A0

A0

A0

A0

B0

B0

B0

B0

C0

C0

C0

C0

D0

D0

D0

D0

Figure 4: MPI collective communication function.

Thus the resulting coarse level matrix is calculated entirely locally.
In the solver phase the interprocessors communication is necessary only for operations

involving matrices. More specifically, it is necessary to update the vector always after the
smoothing step and after the matrix-vector product in the residual calculation (lines 1, 2,
and 5 of the algorithm). In a matrix-vector product A ∗ b = c, for example, the matrix A
is distributed in rows, the vector b is shared by all processors, and vector c is calculated in
parallel as illustrated in Figure 3, for 4 processors. Then the resulting vector c is updated by
the processors through themessage passing interface library (MPI). This task is accomplished
by using theMPI collective communication function MPI Allgather [25]. The MPI Allgather
function effect is shown in Figure 4. It is important to highlight that only the resulting vector
should be updated. It means each processor communicates to the other only a few elements
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Figure 5: The Beowulf Linux cluster architecture.

Table 1: Electromagnetic matrices properties.

Matrix properties 2cubes sphere Offshore dielFilterV2real Circuit5M dc
Number of rows 101,492 259,789 1,157,456 3,523,317
Number of columns 101,492 259,789 1,157,456 3,523,317
Nonzeros 1,647,264 4,242,673 48,538,952 14,865,409
Explicit zero entries 0 0 0 4,328,784
Type Real Real Real Real
Structure Symmetric Symmetric Symmetric Unsymmetric
Positive definite? Yes Yes No No

Table 2: Results for sequential tests (not enough memory).

Matrix
ILU + BiCGStab WAMG WAMG + BiCGStab

Setup Solver n Setup Solver n Setup Solver n

Circuit5M dc 6.96 29.98 3 47.4 14.37 3 61.30 45.49 2
2cubes sphere 1.98 2.15 3 5.29 2.02 3 5.30 1.55 4
Offshore 5.36 21.55 10 16.67 18.42 6 16.69 21.17 10
dielFilter-V2real — — — — — — — — —

that it stores. However, in order for the process to continue, the whole vector must be updated
on each processor and some kind of collective communication should take place.

The PWAMG method in this work uses a hybrid Jacobi-Gauss method as smoother
and the V-cycle for the resolution scheme. The Gauss-Seidel smoothing is applied inside each
processor and the Jacobi method applied interprocessors.

5. The Numerical Test Problems

The parallel algorithm uses the version one of the MPI that provides a standard for message
passing for parallel computers and workstation clusters. The method has been implemented
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Table 3: Parallel results for 2cubes spherematrix.

np Nrows Nonzeros
PWAMG solver PWAMG BiCGStab

Setup time
CPU (Wtime)

Solver time
CPU (Wtime) n Setup time

CPU (Wtime)
Solver time

CPU (Wtime) n

2c
ub

es
sp
he
re

1 101492 1647264 5.29 2.02 3 5.30 1.55 4

2
50746 828332 2.43 (2.43) 1.84 (2.99) 3 2.40 (2.40) 6.81 (9.83) 7
50746 818932 2.20 (2.20) 2.22 (2.99) 2.17 (2.17) 5.74 (9.83)
33830 552260 1.61 (1.62) 1.41 (3.46) 1.62 (1.62) 5.50 (12.09)

3 33830 550206 1.50 (1.50) 1.15 (3.47) 3 1.49 (1.49) 3.63 (12.09) 7
33832 544798 1.42 (1.42) 1.74 (3.47) 1.41 (1.41) 4.36 (12.08)
25373 415150 1.19 (1.20) 1.12 (3.26) 1.19 (1.19) 4.18 (11.48)

4
25373 412416 1.12 (1.12) 0.96 (3.22) 3 1.12 (1.12) 3.83 (11.48) 7
25373 406516 1.07 (1.07) 1.01 (3.23) 1.06 (1.06) 3.27 (11.46)
25373 413182 1.06 (1.06) 1.18 (3.26) 1.06 (1.06) 3.22 (11.46)
20298 333205 0.95 (0.95) 1.00 (3.29) 0.96 (0.94) 4.27 (11.87)
20300 330383 0.88 (0.88) 0.77 (3.29) 0.88 (0.88) 3.35 (11.85)

5 20298 330868 0.88 (0.88) 0.78 (3.30) 3 0.87 (0.87) 2.70 (11.85) 7
20298 328976 0.84 (0.83) 0.75 (3.31) 0.85 (0.84) 2.68 (11.87)
20298 323832 0.85 (0.85) 1.08 (3.32) 0.84 (0.84) 2.59 (11.85)
16915 277472 0.81 (0.82) 0.87 (3.27) 0.81 (0.81) 4.28 (11.95)
16915 276059 0.74 (0.74) 0.69 (3.24) 0.74 (0.74) 3.15 (11.94)

6
16915 274147 0.73 (0.74) 0.71 (3.24) 3 0.74 (0.74) 2.40 (11.93) 7
16915 269896 0.73 (0.73) 0.72 (3.24) 0.74 (0.74) 2.32 (11.94)
16915 274788 0.69 (0.68) 0.68 (3.24) 0.72 (0.72) 2.32 (11.94)
16917 274902 0.72 (0.72) 1.03 (3.26) 0.68 (0.68) 2.32 (11.93)

using C++ and tested in a homogeneous Beowulf cluster with 6 machine nodes (Core 2 Duo,
1GB RAM) connected to a switched fast Ethernet network, as illustrated in Figure 5.

The multigrid V-cycle approach was applied as a resolution scheme to solve some
linear equations systems resulting from circuit simulations and finite elements electromag-
netic problems. The parallel method was also applied as a preconditioner for the iterative
biconjugate gradient stabilized (BiCGStab) method, which has been implemented using the
same vector updating approach.

The three first matrices are related to 3D finite element electromagnetic analysis. The
matrices 2cubes sphere and offshore are from a study of edge-based finite-element time domain
solvers for 3D electromagnetic diffusion equations. The dielFilterV2real is a real symmetric
matrix, which comes from a high-order vector finite element analysis of a 4th-pole dielectric
resonator [26]. The last real unsymmetric matrix is from circuit simulation problems from
Tim Davis sparse matrix collection [27]. The matrices properties are presented in Table 1.

6. Results

The problems were solved firstly using the sequential version of the proposed method. For
comparison, the BiCGStab method preconditioned by the incomplete LU was used.
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Table 4: Parallel results for offshorematrix.

np Nrows Nonzeros
PWAMG solver PWAMG BiCGStab

Setup time
CPU (Wtime)

Solver time
CPU (Wtime) n Setup time

CPU (Wtime)
Solver time

CPU (Wtime) n

O
ffs
ho
re

1 259789 4242673 16.67 18.42 6 16.69 21.17 10

2
129894 2120163 8.13 (8.12) 4.65 (7.71)

3
8.08 (8.08) 31.94 (46.27)

12129895 2122510 7.38 (7.38) 5.80 (7.71) 7.37 (7.37) 26.93 (46.28)
86596 1424747 5.13 (5.15) 3.46 (9.45) 5.07 (5.07) 31.0 (64.24)

3 86596 1410644 4.93 (4.93) 3.25 (9.50) 3 4.97 (4.97) 22.6 (64.19) 14
86597 1407282 5.01 (5.00) 4.97 (9.50) 4.90 (4.90) 20.6 (64.24)
64947 1065971 3.60 (3.61) 2.96 (8.74) 4.13 (4.12) 19.47 (60.21)

4
64947 1060994 4.15 (4.14) 2.67 (8.64)

3
3.74 (3.73) 19.31 (60.18)

1464947 1059169 3.42 (3.42) 2.73 (8.68) 3.54 (3.55) 16.98 (60.09)
64948 1056539 3.80 (3.80) 3.19 (8.74) 3.39 (3.38) 16.53 (60.13)
51957 858175 2.77 (2.76) 2.50 (8.76) 3.28 (3.28) 21.64 (60.97)
51957 847435 3.31 (3.30) 2.31 (8.74) 2.94 (2.94) 16.83 (60.94)

5 51957 846747 2.96 (2.95) 2.23 (8.77) 3 2.88 (2.87) 14.76 (60.90) 14
51957 845466 2.87 (2.87) 1.99 (8.80) 2.86 (2.85) 14.28 (60.94)
51961 844850 2.93 (2.93) 3.13 (8.81) 2.75 (2.75) 13.83 (60.97)
43298 715228 2.22 (2.21) 2.21 (8.87) 2.61 (2.61) 22.69 (61.66)
43298 709519 2.62 (2.61) 2.07 (8.90) 2.60 (2.60) 14.01 (61.60)

6
43298 707023 2.62 (2.61) 2.09 (8.90)

3
2.52 (2.52) 13.63 (61.65)

1343298 705998 2.20 (2.20) 1.87 (8.89) 2.51 (2.51) 13.59 (61.63)
43298 703621 2.54 (2.53) 1.98 (8.90) 2.20 (2.20) 12.52 (61.66)
43299 701284 2.29 (2.29) 3.09 (8.87) 2.18 (2.19) 12.29 (61.63)

The results are presented in Table 2. In all cases, the convergence is defined by
‖rn‖/‖b‖ < 10−6, where rn is the residual vector at the nth iteration and the right hand side
vector b is chosen so that the solution is a unitary vector. The setup and solver times are in
seconds, and n is the number of iterations.

The parallel results for the circuit simulation and electromagnetics problems are
presented in Tables 3, 4, 5, and 6 for the PWAMG solver and preconditioner. The setup
and solver times are in seconds and have been presented in the form t1 (t2), where t1 is
the processing time returned by the C clock() function and t2 is the total time spent in the
corresponding phase, which includes the MPI communication time and is measured using
the MPI function MPI Wtime().

In some cases the CPU and wall-clock times are nearly equal, which means that the
processes that are waiting for synchronization are still consuming full CPU time. Moreover,
the CPU time and the wall-clock time are practically the same in setup phase indicating
that there are no interprocessor communications during the setup. It is a great advantage
of the proposed approach since this phase is the most time-consuming task in multilevel
approaches, as can be seen in Table 2. For single processor algorithms the times t1 and t2 are
the same.
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Table 5: Parallel results for circuit5M dc matrix.

np Nrows Nonzeros
PWAMG solver PWAMG BiCGStab

Setup time
CPU (Wtime)

Solver time
CPU (Wtime) n Setup time

CPU (Wtime)
Solver time

CPU (Wtime) n

ci
rc
ui
t5
M

dc

1 3523317 14865409 47.4 14.37 3 61.30 45.49 2

2
1761659 8279908 27.73 (27.89) 5.86 (21.51)

3
27.76 (27.90) 14.37 (37.37)

21761658 6585501 11.94 (11.94) 10.56 (21.24) 11.96 (11.94) 6.63 (40.58)
1174439 5531627 19.83 (19.84) 4.88 (27.07) 19.83 (19.82) 5.24 (27.43)

3 1174439 4956074 10.95 (10.95) 3.79 (27.05) 3 10.96 (10.95) 4.8 (26.59) 2
1174439 4377708 8.03 ( 8.03) 4.07 (26.25) 8.03 (8.02) 4.1 (27.39)
880829 4249964 15.27 (15.27) 4.38 (26.34) 15.24 (15.31) 6.31 (28.30)

4
880829 4029944 11.09 (11.09) 3.61 (26.90)

3
10.99 (10.99) 4.66 (27.14)

2880829 3302046 6.09 (6.09) 3.20 (26.90) 6.23 (6.22) 3.99 (27.70)
880830 3283455 6.27 (6.27) 6.08 (26.29) 6.09 (6.09) 3.67 (28.30)
704663 3136583 12.24 (12.25) 4.04 (26.60) 12.24 (12.24) 10.08 (27.01)
704663 2907582 9.88 (9.88) 3.48 (26.59) 9.87 (9.87) 4.40 (26.95)

5 704663 2607145 6.22 (6.21) 3.15 (26.22) 2 6.14 (6.14) 3.83 (26.89) 2
704663 3577997 4.97 (4.96) 3.05 (26.69) 4.94 (4.94) 3.51 (26.54)
704665 2636102 4.92 (9.92) 9.67 (26.69) 4.94 (4.94) 3.31 (27.02)
587219 3002895 10.11 (10.12) 3.81 (27.08) 10.07 (10.08) 9.23 (30.16)
587219 2748283 8.40 (8.39) 3.26 (27.04) 8.39 (8.39) 4.20 (30.26)

6
587219 2528726 6.81 ( 6.80) 3.18 (27.44)

2
6.77 (6.77) 3.79 (30.19)

2587219 2207789 4.23 (4.24) 2.95 (27.83) 4.26 (4.25) 3.35 (30.19)
587219 2182690 4.14 (4.15) 2.89 (28.23) 4.26 (4.25) 3.50 (28.99)
587222 2195026 4.26 (4.26) 5.57 (28.23) 4.14 (4.14) 3.27 (29.39)

Three important aspects related to the parallel results should be highlighted.

(1) The proposed method uses a hybrid Jacobi Gauss-Seidel method as a smoother
and a coarse system solver. This method applies the Gauss-Seidel method inside
each processor and the Jacobi method between processors. So, as the number of
processors increases, both smoother and coarse solvers become different. Also in
the sequential version of the method this approach has not been reproduced. This
can help us to explain the difference in the number of iterations in the parallel and
sequential versions.

(2) The way in which the matrices are split between the processors (the same number
of rows) may cause load unbalance in some cases that can affect the overall
performance of the method. For the matrix circuit5M dc, for example, the number
of nonzero elements in the processor one is 25% larger than in the processor two,
when 2 processors are used. A new way to divide the matrix among the processors
should be investigated.

(3) Despite the use of a homogeneous Beowulf cluster, the type of network connection
based on a switched fast Ethernet network shows to be an important bottleneck.
So, the effects of the fast Ethernet connection on the results should be evaluated
separately. In order to do so, the time(p) required by the solver phase execution
on p processors, in which there is interprocessors communication, was evaluated
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considering a relative time in relation to the MPI π calculation example [25]. It
means the time(p) is defined as (6.1)

time
(
p
)

=
wtime

(
p
)

π-time
(
p
) , (6.1)

in which wtime(p) is the total time spent in the setup phase, which includes the MPI
communication time and is measured using the MPI function MPI Wtime(), and π-time(p)
is the time spent by the MPI π example, both with p processors. As an example, Table 7
presents the values of π-time(p), wtime(p), time(p) and speedup(p), p = 1, . . . , 6, for the
matrix 2cubes sphere, which were used to create the illustration in Figure 6(a). The values of
π-time(p)were obtained as the mean of 5 runs. All the other results in Figure 6 were derived
in a similar way.

As usual, the absolute speedup Sp is used for analyzing the parallel performance, and
it is defined as (6.2)

Sp = speedup
(
p
)
=

time(1)
time

(
p
) , (6.2)

in which time(1) is the time spent by the best sequential algorithm and time(p) as defined in
(6.1).

As the MPI π example uses only point-to-point communication functions, the relative
time approach can help to clarify if the apparent poor scalability is due to a high collective
communication cost or mainly due to the type of network connection used.

The solver and preconditioner speedups are illustrated in Figure 6 for the matrices
circuit5M dc, 2cubes sphere, and offshore.

7. Conclusions

The PWAMG method, proposed in this work, has been applied as a black-box solver and
preconditioner in some circuit simulations and finite element electromagnetic problems with
good results.

An important characteristic of the proposed approach is its small demand for
interprocessors communication. Actually, no communication is required in the setup phase
if first-order filters are used. This characteristic is confirmed by the results for setup time
presented in Tables 3–6, observing that the times measured by MPI Wtime() and C clock()
functions are practically the same. It is a great advantage of the proposed approach since this
phase is the most time-consuming one.

In the solver phase, in which there is interprocessors communication, the numerical
results seem to show a poor performancewithmore than 2 processors, evenwhen the number
of iterations does not increase by using more processors. These results can be caused in part
due to the use of a collective communication function to update the vector after the matrix
operations, which is motivated by the manner the matrix is divided between the processors.

In order to update the vector each processor should send and receive the part of the
vector to all of the other processors. Of course, when the number of processors increases, this
work also becomes larger.
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Table 6: Parallel results for dielFilterV2realmatrix (not enough memory).

np Nrows Nonzeros
PWAMG solver

Setup time CPU (Wtime) Solver time CPU (Wtime) n

di
el
Fi
lt
er
V
2r
ea
l

1 1157456 48538952 — — —

2
578728 26710406 60.00 (182.0) 176.21 (1763.4)

4578728 21828546 34.46 (39.34) 86.20 (1759.74)
385818 19476388 36.92 (78.71) 98.12 (192.62)

3 385818 14529204 22.49 (22.54) 43.69 (192.13) 4
385820 14533360 22.18 (22.19) 54.49 (192.14)
289364 15807646 28.18 (28.39) 75.34 (108.75)

4
289364 10902962 16.61 (16.59) 32.17 (108.35)

4289364 10902760 16.79 (16.79) 33.26 (108.55)
289364 10925584 16.56 (16.58) 34.80 (108.75)
231491 13644000 24.42 (24.47) 64.90 (101.42)
231491 8751322 13.28 (13.28) 27.28 (101.41)

5 231491 8727696 13.30 (13.29) 28.07 (101.57) 4
231491 8710580 13.35 (13.34) 26.93 (101.72)
231492 8705354 13.25 (13.25) 35.10 (101.72)
192909 11858182 22.81 (38.14) 107.36 (176.56)
192909 7618206 11.76 (11.76) 47.08 (176.63)

6
192909 7295218 10.99 (10.99) 42.92 (176.76)

7192909 7255410 11.18 (11.18) 42.60 (176.76)
192909 7233986 11.07 (11.07) 42.53 (176.50)
192911 7277950 11.01 (11.01) 58.37 (176.50)

Table 7: Solver phase speedup using a relative time(p): example for matrix 2cubes sphere.

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
(A) wtime(p) 2.02 2.99 3.47 3.26 3.32 3.27
(B) π-time(p) 0.0000885 0.0002926 0.0003222 0.000997 0.001011 0.0009938
(C) time(p) = A/B 22824.86 10218.73 10769.71 3269.81 3283.88 3290.40
(D) speedup(p) 1.00 2.23 2.12 6.98 6.95 6.94

An alternative to overcome this problem may be to apply some graph partitioning
method and develop an approach in which each processor should communicate only with its
neighbors. Such approach is under development, and it is out of the scope of this paper.

However, the type of network connection based on a switched fast Ethernet network
shows to be an important bottleneck, and its effects should be evaluated separately. As the
MPIπ example uses only point-to-point communication functions, the relative time approach
can help to clarify if the apparent poor scalability is due to a high collective communication
cost or mainly due to the type of network connection used. The speedup results based on the
relative times show that the proposed approach is promising and that the kind of network
connection that has been used is maybe the most important drawback.

Moreover, in spite of the speedup being less than the linear in some cases, it is
important to mention an important aspect of this application: in the context of large sparse
linear system of equations, where this paper is inserted, the problems have large memory
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Figure 6: Speedup for 2cubes sphere solver (a) and preconditioner (b), offshore solver (c) and preconditioner
(d), and circuit5M dc solver (e) and preconditioner (f).

requirements. In these cases, as presented in [28], the speedup necessary to be cost effective
can be much less than linear. The parallel program does not need p times memory of the unit
processor, since parallelizing a job rarely multiplies its memory requirements by p.
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Finally, the number of iteration of the proposedmethod seems to be independent of the
number of processors. However, it is necessary to carry out more tests with a larger number of
processors in order to draw more definitive conclusions. Nowadays, the authors are looking
for new resources and/or partnerships to enable the continuation of this work.
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