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The concept of soft sets introduced byMolodtsov is a generalmathematical tool for dealingwith uncertainty. Just as the conventional
set-theoretic operations of intersection, union, complement, and difference, some corresponding operations on soft sets have been
proposed. Unfortunately, such operations cannot keep all classical set-theoretic laws true for soft sets. In this paper, we redefine
the intersection, complement, and difference of soft sets and investigate the algebraic properties of these operations along with a
known union operation. We find that the new operation system on soft sets inherits all basic properties of operations on classical
sets, which justifies our definitions.

1. Introduction

As a necessary supplement to some existing mathematical
tools for handling uncertainty, Molodtsov [1] initiated the
concept of soft sets via a set-valued mapping. A distinguish-
ing feature of soft sets which is different from probability
theory, fuzzy sets, and interval mathematics is that precise
quantity such as probability and membership grade is not
essential. This feature facilitates some applications because
in most realistic settings the underlying probabilities and
membership grades are not knownwith sufficient precision to
justify the use of numerical valuations. Since its introduction,
the concept of soft sets has gained considerable attention
(see, e.g., [2–31]), including some successful applications in
information processing [32–36], decision [37–41], demand
analysis [42], clustering [43], and forecasting [44].

In [22], Maji et al. made a theoretical study of the soft
set theory in more detail. Especially, they introduced the
concepts of subset, intersection, union, and complement of
soft sets and discussed their properties. These operations
make it possible to construct new soft sets from given soft
sets. Unfortunately, several basic properties presented in [22]
are not true in general; these have been pointed out and
improved by Yang [45], Ali et al. [46], and Sezgin and Atagun
[47]. In particular, to keep some classical set-theoretic laws
true for soft sets, Ali et al. defined some restricted operations

on soft sets such as the restricted intersection, the restricted
union, and the restricted difference and improved the notion
of complement of a soft set. Based upon these newly defined
operations, they proved that certain De Morgan’s laws hold
for soft sets. It is worth noting that the concept of complement
[22, 46] (it should be stressed that there are two types of
complements defined in [46]: one is defined with the NOT
set of parameters and the other is defined without the NOT
set of parameters), which is fundamental to DeMorgan’s laws
is based on the so-called NOT set of a parameter set. It means
that the logic conjunction NOT is a prerequisite for defining
the complement of a soft set; this is considerably beyond the
definition of soft sets. Moreover, the union of a soft set, and
its complement is not exactly the whole universal soft set in
general, which is considered less desirable.

The purpose of this paper is to develop the theory of soft
sets by introducing new operations on soft sets that inherit
all basic properties of classical set operations. To this end,
we redefine the intersection, complement, and difference of
soft sets and then examine the algebraic properties of these
operations along with a known union operation. It turns
out that all basic properties of operations on classical sets,
including identity laws, domination laws, idempotent laws,
commutative laws, associative laws, distributive laws, and De
Morgan’s laws, hold for soft sets with respect to the newly
defined operations.
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The remainder of this paper is structured as follows. In
Section 2, we briefly recall the notion of soft sets. Section 3
is devoted to the definitions of new operations on soft sets.
An example is also provided to illustrate the newly defined
operations in this section. We address the basic properties
of the operations on soft sets in Section 4 and conclude the
paper in Section 5.

2. Soft Sets

For subsequent need, let us review the notion of soft sets. For
a detailed introduction to the soft set theory, the reader may
refer to [1, 22].

We begin with some notations. For classical set theory,
the symbols 0, 𝐴

𝑐, 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵, 𝐴 \ 𝐵 denote, respectively,
the empty set, the complement of 𝐴 with respect to some
universal set 𝑈, the union of sets 𝐴 and 𝐵, the intersection
of sets 𝐴 and 𝐵, and the difference of sets 𝐴 and 𝐵 whose
elements belong to 𝐴 but not to 𝐵. In what follows, we write
P(𝑈) for the power set of a universal set 𝑈 and denote
P(𝑈) \ {0} byP∗(𝑈).

Throughout this paper, let 𝑈 be a universal set and 𝐸 be
the set of all possible parameters under consideration with
respect to 𝑈. Usually, parameters are attributes, characteris-
tics, or properties of objects in 𝑈. We now recall the notion
of soft sets due to Molodtsov [1].

Definition 1 (seeMolodtsov [1]). Let𝑈 be a universe and𝐸 the
set of parameters. A soft set over 𝑈 is a pair (𝐹, 𝐴) consisting
of a subset 𝐴 of 𝐸 and a mapping 𝐹 : 𝐴 → P∗(𝑈).

Note that the above definition is slightly different from
the original one in [1] where 𝐹 has P(𝑈) as its codomain.
In other words, we remove the parameters having the empty
set as images under 𝐹. It seems rational since this means
that if there exists a parameter 𝑒 ∈ 𝐴 which is not the
attribute, characteristic, or property of any object in 𝑈, then
this parameter has no interest with respect to the knowledge
stored in the soft set. As a result, a soft set of 𝑈 in the sense of
Definition 1 is a parameterized family of nonempty subsets of
𝑈.

Clearly, any soft set (𝐹, 𝐴) over 𝑈 gives a partial function
𝐹
󸀠

: 𝐸 → P∗(𝑈) defined by

𝐹
󸀠

(𝑒) = {
𝐹 (𝑒) , if 𝑒 ∈ 𝐴,

undefined, otherwise,
(1)

for all 𝑒 ∈ 𝐸. Conversely, any partial function 𝑓 from 𝐸 to
P∗(𝑈) gives rise to a soft set (𝐹

𝑓
, 𝐴
𝑓
), where 𝐴

𝑓
= {𝑒 ∈ 𝐸 |

𝑓(𝑒) is defined} and 𝐹
𝑓
is the restriction of 𝑓 on 𝐴

𝑓
.

To illustrate the above definition, Molodtsov considered
several examples in [1], one of which we present blow.

Example 2. Suppose that 𝑈 is the set of houses under
consideration, say 𝑈 = {ℎ

1
, ℎ
2
, . . . , ℎ

5
}. Let 𝐸 be the set of

some attributes of such houses, say 𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

8
}, where

𝑒
1
, 𝑒
2
, . . . , 𝑒

8
stand for the attributes “expensive,” “beautiful,”

“wooden,” “cheap,” “in the green surroundings,” “modern,”
“in good repair,” and “in bad repair,” respectively.

In this case, to define a soft set means to point out
expensive houses, beautiful houses, and so on. For example,
the soft set (𝐹, 𝐴) that describes the “attractiveness of the
houses” in the opinion of a buyer, say Alice, may be defined
as:

𝐴 = {𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
, 𝑒
7
} ;

𝐹 (𝑒
2
) = {ℎ

2
, ℎ
3
, ℎ
5
} , 𝐹 (𝑒

3
) = {ℎ

2
, ℎ
4
} ,

𝐹 (𝑒
4
) = {ℎ

1
} , 𝐹 (𝑒

5
) = 𝑈, 𝐹 (𝑒

7
) = {ℎ

3
, ℎ
5
} .

(2)

3. Operations on Soft Sets

In this section, we generalize the basic operations on classical
sets to soft sets. The examination of more properties of these
operations is deferred to the next section.

Let us start with the notions of empty and universal soft
sets. Recall that in [22] a soft set (𝐹, 𝐴) is called a null soft set
if 𝐹(𝑒) = 0 for all 𝑒 ∈ 𝐴. Because 0 does not belong to the
codomain of 𝐹 in our framework, we redefine the concept of
empty soft set as follows.

Definition 3. A soft set (𝐹, 𝐴) over 𝑈 is said to be empty
whenever 𝐴 = 0. Symbolically, we write (0, 0) for the empty
soft set over 𝑈.

Definition 4. A soft set (𝐹, 𝐴) over 𝑈 is called a universal soft
set if 𝐴 = 𝐸 and 𝐹(𝑒) = 𝑈 for all 𝑒 ∈ 𝐴. Symbolically, we write
(𝑈, 𝐸) for the universal soft set over 𝑈.

Let us now define the subsets of a soft set.

Definition 5. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈. We
say that (𝐹, 𝐴) is a subset of (𝐺, 𝐵), denoted (𝐹, 𝐴) ⊆ (𝐺, 𝐵)

if either (𝐹, 𝐴) = (0, 0) or 𝐴 ⊆ 𝐵 and 𝐹(𝑒) ⊆ 𝐺(𝑒) for every
𝑒 ∈ 𝐴. Two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) are said to be equal,
denoted (𝐹, 𝐴) = (𝐺, 𝐵), if (𝐹, 𝐴) ⊆ (𝐺, 𝐵) and (𝐺, 𝐵) ⊆ (𝐹, 𝐴).

By definition, two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) are equal if
and only if 𝐴 = 𝐵 and 𝐹(𝑒) = 𝐺(𝑒) for all 𝑒 ∈ 𝐴. In [22],
a similar notion, called soft subset, was defined by requiring
that 𝐴 ⊆ 𝐵 and 𝐹(𝑒) = 𝐺(𝑒) for every 𝑒 ∈ 𝐴. By Definition 5,
the empty soft set (0, 0) is a subset of any soft set. It also follows
from Definition 5 that any soft set is a subset of the universal
soft set (𝑈, 𝐸). Formally, we have the following proposition.

Proposition 6. For any soft set (𝐹, 𝐴) over 𝑈,

(0, 0) ⊆ (𝐹, 𝐴) ⊆ (𝑈, 𝐸) . (3)

We are now in the position to introduce some operations
on soft sets.

Definition 7. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over𝑈.The
intersection of (𝐹, 𝐴) and (𝐺, 𝐵), denoted by (𝐹, 𝐴) ∩ (𝐺, 𝐵), is
defined as (𝐹 ∩ 𝐺, 𝐶), where

𝐶 = {𝑒 ∈ 𝐴 ∩ 𝐵 | 𝐹 (𝑒) ∩ 𝐺 (𝑒) ̸= 0} , ∀𝑒 ∈ 𝐶,

(𝐹 ∩ 𝐺) (𝑒) = 𝐹 (𝑒) ∩ 𝐺 (𝑒) .

(4)
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In particular, if 𝐴 ∩ 𝐵 = 0 or 𝐹(𝑒) ∩ 𝐺(𝑒) = 0 for every
𝑒 ∈ 𝐴 ∩ 𝐵, then we see that (𝐹, 𝐴) ∩ (𝐺, 𝐵) = (0, 0).

The following definition of union of soft sets is the same
as in [22].

Definition 8 (see [22], Definition 2.11). Let (𝐹, 𝐴) and (𝐺, 𝐵)

be two soft sets over 𝑈. The union of (𝐹, 𝐴) and (𝐺, 𝐵),
denoted by (𝐹, 𝐴) ∪ (𝐺, 𝐵), is defined as (𝐹 ∪ 𝐺, 𝐶), where

𝐶 = 𝐴 ∪ 𝐵, ∀𝑒 ∈ 𝐶,

(𝐹 ∪ 𝐺) (𝑒) =

{{

{{

{

𝐹 (𝑒) , if 𝑒 ∈ 𝐴 \ 𝐵

𝐺 (𝑒) , if 𝑒 ∈ 𝐵 \ 𝐴

𝐹 (𝑒) ∪ 𝐺 (𝑒) , otherwise.

(5)

We now define the notion of complement in soft set the-
ory. It is worth noting that this is rather different from those
in the existing literature [22, 46], where the complement is
usually based on the so-called NOT set of a parameter set and
the union of a soft set, and its complement is not exactly the
whole universal soft set in general.

Definition 9. Let (𝐹, 𝐴) be a soft set over 𝑈. The complement
of (𝐹, 𝐴) with respect to the universal soft set (𝑈, 𝐸), denoted
by (𝐹, 𝐴)

𝑐, is defined as (𝐹
𝑐

, 𝐶), where

𝐶 = 𝐸 \ {𝑒 ∈ 𝐴 | 𝐹 (𝑒) = 𝑈}

= {𝑒 ∈ 𝐴 | 𝐹 (𝑒) = 𝑈}
𝑐

, ∀𝑒 ∈ 𝐶,

𝐹
𝑐

(𝑒) = {
𝑈 \ 𝐹 (𝑒) , if 𝑒 ∈ 𝐴

𝑈, otherwise.

(6)

In certain settings, the difference of two soft sets (𝐹, 𝐴)

and (𝐺, 𝐵) is useful.

Definition 10. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈.
The difference of (𝐹, 𝐴) and (𝐺, 𝐵), denoted by (𝐹, 𝐴) \ (𝐺, 𝐵),
is defined as (𝐹 \ 𝐺, 𝐶), where

𝐶 = 𝐴 \ {𝑒 ∈ 𝐴 ∩ 𝐵 | 𝐹 (𝑒) ⊆ 𝐺 (𝑒)} , ∀𝑒 ∈ 𝐶,

(𝐹 \ 𝐺) (𝑒) = {
𝐹 (𝑒) \ 𝐺 (𝑒) , if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹 (𝑒) , otherwise.

(7)

By Definitions 9 and 10, we find that (𝐹, 𝐴)
𝑐

= (𝑈, 𝐸) \

(𝐹, 𝐴) holds for any soft set (𝐹, 𝐴). That is, the complement of
(𝐹, 𝐴)with respect to the universal soft set (𝑈, 𝐸) is exactly the
difference of (𝑈, 𝐸) and (𝐹, 𝐴). In light of this, (𝐹, 𝐴)\(𝐺, 𝐵) is
also called the relative complement of (𝐺, 𝐵) in (𝐹, 𝐴), while
(𝐹, 𝐴)

𝑐 is also called the absolute complement of (𝐹, 𝐴).

Let us illustrate the previous operations on soft sets by a
simple example.

Example 11. Let us revisit Example 2. Recall that the soft set
(𝐹, 𝐴) describing the “attractiveness of the houses” in Alice’s
opinion was defined by

𝐴 = {𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
, 𝑒
7
} ;

𝐹 (𝑒
2
) = {ℎ

2
, ℎ
3
, ℎ
5
} , 𝐹 (𝑒

3
) = {ℎ

2
, ℎ
4
} ,

𝐹 (𝑒
4
) = {ℎ

1
} , 𝐹 (𝑒

5
) = 𝑈, 𝐹 (𝑒

7
) = {ℎ

3
, ℎ
5
} .

(8)

In addition, we assume that the “attractiveness of the houses”
in the opinion of another buyer, say Bob, is described by the
soft set (𝐺, 𝐵), where

𝐵 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

7
} ;

𝐺 (𝑒
1
) = {ℎ

3
, ℎ
5
} , 𝐺 (𝑒

2
) = {ℎ

4
} ,

𝐺 (𝑒
3
) = {ℎ

2
, ℎ
4
} , 𝐺 (𝑒

4
) = {ℎ

1
} ,

𝐺 (𝑒
5
) = {ℎ

2
, ℎ
3
, ℎ
4
, ℎ
5
} , 𝐺 (𝑒

6
) = 𝐺 (𝑒

7
) = {ℎ

3
} .

(9)

Then by a direct computation, we can readily obtain
(𝐹, 𝐴) ∩ (𝐺, 𝐵), (𝐹, 𝐴) ∪ (𝐺, 𝐵), (𝐹, 𝐴)

𝑐, and (𝐹, 𝐴) \ (𝐺, 𝐵) as
follows.

(i) (𝐹, 𝐴) ∩ (𝐺, 𝐵) = (𝐹 ∩ 𝐺, {𝑒
3
, 𝑒
4
, 𝑒
5
, 𝑒
7
}), where (𝐹 ∩

𝐺)(𝑒
3
) = {ℎ

2
, ℎ
4
}, (𝐹 ∩ 𝐺)(𝑒

4
) = {ℎ

1
}, (𝐹 ∩ 𝐺)(𝑒

5
) =

{ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
}, and (𝐹 ∩ 𝐺)(𝑒

7
) = {ℎ

3
}. This means

that both Alice and Bob think that ℎ
2
and ℎ

4
are

wooden, ℎ
1
is cheap, ℎ

2
, ℎ
3
, ℎ
4
, ℎ
5
are in the green

surroundings, and ℎ
3
is in the good repair.

(ii) (𝐹, 𝐴) ∪ (𝐺, 𝐵) = (𝐹 ∪ 𝐺, {𝑒
1
, 𝑒
2
, . . . , 𝑒

7
}), where (𝐹 ∪

𝐺)(𝑒
1
) = {ℎ

3
, ℎ
5
}, (𝐹 ∪ 𝐺)(𝑒

2
) = {ℎ

2
, ℎ
3
, ℎ
4
, ℎ
5
}, (𝐹 ∪

𝐺)(𝑒
3
) = {ℎ

2
, ℎ
4
}, (𝐹 ∪ 𝐺)(𝑒

4
) = {ℎ

1
}, (𝐹 ∪ 𝐺)(𝑒

5
) =

𝑈, (𝐹 ∪ 𝐺)(𝑒
6
) = {ℎ

3
}, and (𝐹 ∪ 𝐺)(𝑒

7
) = {ℎ

3
, ℎ
5
}. This

means that either Alice or Bob thinks that ℎ
3
is expen-

sive, either Alice or Bob thinks that ℎ
5
is expensive,

either Alice or Bob thinks that ℎ
2
is beautiful, either

Alice or Bob thinks that ℎ
3
is beautiful, and so on.

(iii) (𝐹, 𝐴)
𝑐

= (𝐹
𝑐

, {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
6
, 𝑒
7
, 𝑒
8
}), where 𝐹

𝑐

(𝑒
1
) =

𝑈, 𝐹
𝑐

(𝑒
2
) = {ℎ

1
, ℎ
4
}, 𝐹
𝑐

(𝑒
3
) = {ℎ

1
, ℎ
3
, ℎ
5
}, 𝐹
𝑐

(𝑒
4
) =

{ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
}, 𝐹
𝑐

(𝑒
6
) = 𝑈, 𝐹

𝑐

(𝑒
7
) = {ℎ

1
, ℎ
2
, ℎ
4
}, and

𝐹
𝑐

(𝑒
8
) = 𝑈. This means that Alice thinks that none

of these houses is expensive, neither ℎ
1
nor ℎ

4
is

beautiful, ℎ
1
, ℎ
3
, ℎ
5
are not wooden, and so on.

(iv) (𝐹, 𝐴)\(𝐺, 𝐵) = (𝐹\𝐺, {𝑒
2
, 𝑒
5
, 𝑒
7
}), where (𝐹\𝐺)(𝑒

2
) =

{ℎ
2
, ℎ
3
, ℎ
5
}, (𝐹 \ 𝐺)(𝑒

5
) = {ℎ

1
}, and (𝐹 \ 𝐺)(𝑒

7
) =

{ℎ
5
}. This means that Alice thinks of ℎ

2
, ℎ
3
, and ℎ

5

as beautiful, but Bob does not think that these are
beautiful, and so on.

4. Algebraic Properties of Soft Set Operations

This section is devoted to some algebraic properties of soft set
operations defined in the last section.

Let us begin with some properties involving intersections
and unions. The first four laws are obvious. We omit their
proofs here since the proofs follow directly from the defini-
tions of intersection and union of soft sets.
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Proposition 12 (Identity laws). For any soft set (𝐹, 𝐴) over 𝑈,
we have that

(1) (𝐹, 𝐴) ∩ (𝑈, 𝐸) = (𝐹, 𝐴),

(2) (𝐹, 𝐴) ∪ (0, 0) = (𝐹, 𝐴).

Proposition 13 (Domination laws). For any soft set (𝐹, 𝐴)

over 𝑈, we have that

(1) (𝐹, 𝐴) ∩ (0, 0) = (0, 0),

(2) (𝐹, 𝐴) ∪ (𝑈, 𝐸) = (𝑈, 𝐸).

Proposition 14 (Idempotent laws). For any soft set (𝐹, 𝐴) over
𝑈, we have that

(1) (𝐹, 𝐴) ∩ (𝐹, 𝐴) = (𝐹, 𝐴),

(2) (𝐹, 𝐴) ∪ (𝐹, 𝐴) = (𝐹, 𝐴).

Proposition 15 (Commutative laws). For any soft sets (𝐹, 𝐴)

and (𝐺, 𝐵) over 𝑈, we have that

(1) (𝐹, 𝐴) ∩ (𝐺, 𝐵) = (𝐺, 𝐵) ∩ (𝐹, 𝐴),

(2) (𝐹, 𝐴) ∪ (𝐺, 𝐵) = (𝐺, 𝐵) ∪ (𝐹, 𝐴).

Now we turn our attention to the associative laws.

Proposition 16 (Associative laws). For any soft sets (𝐹, 𝐴),
(𝐺, 𝐵), and (𝐻, 𝐶) over 𝑈, we have that

(1) ((𝐹, 𝐴) ∩ (𝐺,B)) ∩ (𝐻, 𝐶) = (𝐹, 𝐴) ∩ ((𝐺, 𝐵) ∩ (𝐻, 𝐶)),

(2) ((𝐹, 𝐴) ∪ (𝐺, 𝐵)) ∪ (𝐻, 𝐶) = (𝐹, 𝐴) ∪ ((𝐺, 𝐵) ∪ (𝐻, 𝐶)).

Proof. We only prove the first assertion since the second
one is the same as Proposition 2.5(i) in [22]. For simplicity,
we write (𝐿, 𝐴

󸀠

), (𝑅, 𝐵
󸀠

), and (𝐹 ∩ 𝐺, 𝐴
1
) for ((𝐹, 𝐴) ∩

(𝐺, 𝐵))∩(𝐻, 𝐶), (𝐹, 𝐴)∩((𝐺, 𝐵)∩(𝐻, 𝐶)), and (𝐹, 𝐴)∩(𝐺, 𝐵),
respectively. We thus get by definition that

𝐴
󸀠

= {𝑒 ∈ 𝐴
1

∩ 𝐶 | (𝐹 ∩ 𝐺) (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

= {𝑒 ∈ 𝐴
1

| (𝐹 ∩ 𝐺) (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

∩ {𝑒 ∈ 𝐶 | (𝐹 ∩ 𝐺) (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

= {𝑒 ∈ 𝐴 ∩ 𝐵 | (𝐹 ∩ 𝐺) (𝑒) ̸= 0, (𝐹 ∩ 𝐺) (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

∩ {𝑒 ∈ 𝐶 | (𝐹 ∩ 𝐺) (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

= {𝑒 ∈ 𝐴 ∩ 𝐵 | (𝐹 ∩ 𝐺) (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

∩ {𝑒 ∈ 𝐶 | (𝐹 ∩ 𝐺) (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

= {𝑒 ∈ 𝐴 ∩ 𝐵 ∩ 𝐶 | (𝐹 ∩ 𝐺) (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

= {𝑒 ∈ 𝐴 ∩ 𝐵 ∩ 𝐶 | 𝐹 (𝑒) ∩ 𝐺 (𝑒) ∩ 𝐻 (𝑒) ̸= 0} .

(10)

By the same token, we have that 𝐵
󸀠

= {𝑒 ∈ 𝐴 ∩ 𝐵 ∩ 𝐶 | 𝐹(𝑒) ∩

𝐺(𝑒) ∩ 𝐻(𝑒) ̸= 0}, and thus 𝐴
󸀠

= 𝐵
󸀠. Moreover, for any 𝑒 ∈ 𝐴

󸀠,
we have that

𝐿 (𝑒) = (𝐹 ∩ 𝐺) (𝑒) ∩ 𝐻 (𝑒)

= 𝐹 (𝑒) ∩ 𝐺 (𝑒) ∩ 𝐻 (𝑒)

= 𝐹 (𝑒) ∩ (𝐺 (𝑒) ∩ 𝐻 (𝑒))

= 𝐹 (𝑒) ∩ (𝐺 ∩ 𝐻) (𝑒)

= 𝑅 (𝑒) ,

(11)

namely, 𝐿(𝑒) = 𝑅(𝑒). Therefore, the assertion (1) holds.

Proposition 17 (Distributive laws). For any soft sets (𝐹, 𝐴),
(𝐺, 𝐵), and (𝐻, 𝐶) over 𝑈, we have that

(1) (𝐹, 𝐴)∩((𝐺, 𝐵)∪(𝐻, 𝐶)) = ((𝐹, 𝐴)∩(𝐺, 𝐵))∪((𝐹, 𝐴)∩

(𝐻, 𝐶)),
(2) (𝐹, 𝐴)∪((𝐺, 𝐵)∩(𝐻, 𝐶)) = ((𝐹, 𝐴)∪(𝐺, 𝐵))∩((𝐹, 𝐴)∪

(𝐻, 𝐶)).

Proof. We only verify the first assertion; the second one can
be verified similarly. For simplicity, we write (𝐿, 𝐴

󸀠

) and
(𝑅, 𝐵
󸀠

) for (𝐹, 𝐴) ∩ ((𝐺, 𝐵) ∪ (𝐻, 𝐶)) and ((𝐹, 𝐴) ∩ (𝐺, 𝐵)) ∪

((𝐹, 𝐴) ∩ (𝐻, 𝐶)), respectively. We thus see that

𝐴
󸀠

= {𝑒 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶) | 𝐹 (𝑒) ∩ (𝐺 ∪ 𝐻) (𝑒) ̸= 0}

= {𝑒 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) | 𝐹 (𝑒) ∩ (𝐺 ∪ 𝐻) (𝑒) ̸= 0}

= {𝑒 ∈ 𝐴 ∩ 𝐵 | 𝐹 (𝑒) ∩ (𝐺 ∪ 𝐻) (𝑒) ̸= 0}

∪ {𝑒 ∈ 𝐴 ∩ 𝐶 | 𝐹 (𝑒) ∩ (𝐺 ∪ 𝐻) (𝑒) ̸= 0}

= {𝑒 ∈ 𝐴 ∩ 𝐵 ∩ 𝐶
𝑐

| 𝐹 (𝑒) ∩ 𝐺 (𝑒) ̸= 0}

∪ {𝑒 ∈ 𝐴 ∩ 𝐵 ∩ 𝐶 | 𝐹 (𝑒) ∩ (𝐺 (𝑒) ∪ 𝐻 (𝑒)) ̸= 0}

∪ {𝑒 ∈ 𝐴 ∩ 𝐵
𝑐

∩ 𝐶 | 𝐹 (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

= {𝑒 ∈ 𝐴 ∩ 𝐵 ∩ 𝐶
𝑐

| 𝐹 (𝑒) ∩ 𝐺 (𝑒) ̸= 0}

∪ {𝑒 ∈ 𝐴 ∩ 𝐵 ∩ 𝐶 | 𝐹 (𝑒) ∩ 𝐺 (𝑒) ̸= 0}

∪ {𝑒 ∈ 𝐴 ∩ 𝐵
𝑐

∩ 𝐶 | 𝐹 (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

∪ {𝑒 ∈ 𝐴 ∩ 𝐵 ∩ 𝐶 | 𝐹 (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

= {𝑒 ∈ 𝐴 ∩ 𝐵 | 𝐹 (𝑒) ∩ 𝐺 (𝑒) ̸= 0}

∪ {𝑒 ∈ 𝐴 ∩ 𝐶 | 𝐹 (𝑒) ∩ 𝐻 (𝑒) ̸= 0}

= 𝐵
󸀠

,

(12)

namely, 𝐴󸀠 = 𝐵
󸀠. Furthermore, for any 𝑒 ∈ 𝐴

󸀠, one can check
that 𝐿(𝑒) = 𝐹(𝑒) ∩ (𝐺 ∪ 𝐻)(𝑒) = ((𝐹 ∩ 𝐺) ∪ (𝐹 ∩ 𝐻))(𝑒) = 𝑅(𝑒)

by a routine computation. We do not go into the details here.
Hence, the assertion (1) holds.

Like usual sets, soft sets are monotonic with respect to
intersection and union.
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Proposition 18. Let (𝐹
𝑖
, 𝐴
𝑖
) and (𝐺

𝑖
, 𝐵
𝑖
), 𝑖 = 1, 2, be soft sets

over 𝑈. If (𝐹
𝑖
, 𝐴
𝑖
) ⊆ (𝐺

𝑖
, 𝐵
𝑖
), 𝑖 = 1, 2, then we have that

(1) (𝐹
1
, 𝐴
1
) ∩ (𝐹

2
, 𝐴
2
) ⊆ (𝐺

1
, 𝐵
1
) ∩ (𝐺

2
, 𝐵
2
),

(2) (𝐹
1
, 𝐴
1
) ∪ (𝐹

2
, 𝐴
2
) ⊆ (𝐺

1
, 𝐵
1
) ∪ (𝐺

2
, 𝐵
2
).

Proof. It is clear by the definitions of intersection, union, and
subset of soft sets.

Recall that in classical set theory, we have that 𝑋 ⊆ 𝑌 if
and only if 𝑋 ∩ 𝑌 = 𝑋, which is also equivalent to 𝑋 ∪ 𝑌 = 𝑌.
For soft sets, we have the following observation.

Proposition 19. Let (𝐹, 𝐴) and (𝐺, 𝐵) be soft sets over𝑈.Then
the following are equivalent:

(1) (𝐹, 𝐴) ⊆ (𝐺, 𝐵),
(2) (𝐹, 𝐴) ∩ (𝐺, 𝐵) = (𝐹, 𝐴),
(3) (𝐹, 𝐴) ∪ (𝐺, 𝐵) = (𝐺, 𝐵).

Proof. Again, it is obvious by the definitions of intersection,
union, and subset of soft sets.

The following several properties are concerned with the
complement of soft sets.

Proposition 20. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈.
Then (𝐺, 𝐵) = (𝐹, 𝐴)

𝑐 if and only if (𝐹, 𝐴) ∩ (𝐺, 𝐵) = (0, 0) and
(𝐹, 𝐴) ∪ (𝐺, 𝐵) = (𝑈, 𝐸).

Proof. If (𝐺, 𝐵) = (𝐹, 𝐴)
𝑐, then we see by definition that

(𝐹, 𝐴)∩(𝐹, 𝐴)
𝑐

= (0, 0) and (𝐹, 𝐴)∪(𝐹, 𝐴)
𝑐

= (𝐹, 𝐴)∪(𝐹
𝑐

, {𝑒 ∈

𝐴 | 𝐹(𝑒) = 𝑈}
𝑐

) = (𝑈, 𝐸). Whence, the necessity is true.
Conversely, assume that (𝐹, 𝐴) ∩ (𝐺, 𝐵) = (0, 0) and

(𝐹, 𝐴) ∪ (𝐺, 𝐵) = (𝑈, 𝐸). The latter means that 𝐴 ∪ 𝐵 = 𝐸.
Moreover, we obtain that 𝐹(𝑒) = 𝑈 for all 𝑒 ∈ 𝐴 \ 𝐵 and
𝐺(𝑒) = 𝑈 for all 𝑒 ∈ 𝐵 \ 𝐴. For any 𝑒 ∈ 𝐴 ∩ 𝐵, it follows
from (𝐹, 𝐴) ∩ (𝐺, 𝐵) = (0, 0) and (F, 𝐴) ∪ (𝐺, 𝐵) = (𝑈, 𝐸) that
𝐹(𝑒) ∪ 𝐺(𝑒) = 𝑈 and 𝐹(𝑒) ∩ 𝐺(𝑒) = 0. As neither 𝐹(𝑒) nor
𝐺(𝑒) is empty, this forces that 𝐵 = {𝑒 ∈ 𝐴 | 𝐹(𝑒) = 𝑈}

𝑐.
For any 𝑒 ∈ 𝐵, if 𝑒 ∈ 𝐴, then 𝐺(𝑒) = 𝐹(𝑒)

𝑐

= 𝐹
𝑐

(𝑒);
if 𝑒 ∈ 𝐵 \ 𝐴, then 𝐺(𝑒) = 𝑈 = 𝐹

𝑐

(𝑒). This implies that
(𝐹, 𝐴)

𝑐

= (𝐹
𝑐

, {𝑒 ∈ 𝐴 | 𝐹(𝑒) = 𝑈}
𝑐

) = (𝐺, 𝐵), finishing the
proof.

The following fact follows immediately from
Proposition 20.

Corollary 21. For any soft set (𝐹, 𝐴) over 𝑈, we have that

((𝐹, 𝐴)
𝑐

)
𝑐

= (𝐹, 𝐴) . (13)

Proof. Note that (𝐹, 𝐴)
𝑐

∩(𝐹, 𝐴) = (0, 0) and (𝐹, 𝐴)
𝑐

∪(𝐹, 𝐴) =

(𝑈, 𝐸). It therefore follows from Proposition 20 that (𝐹, 𝐴) =

((𝐹, 𝐴)
𝑐

)
𝑐, as desired.

With the above corollary, we can prove the De Morgan’s
laws of soft sets.

Proposition 22 (De Morgan’s laws). For any soft sets (𝐹, 𝐴)

and (𝐺, 𝐵) over 𝑈, we have that

(1) ((𝐹, 𝐴) ∩ (𝐺, 𝐵))
𝑐

= (𝐹, 𝐴)
𝑐

∪ (𝐺, 𝐵)
𝑐,

(2) ((𝐹, 𝐴) ∪ (𝐺, 𝐵))
𝑐

= (𝐹, 𝐴)
𝑐

∩ (𝐺, 𝐵)
𝑐.

Proof. (1) For convenience, let 𝐴
0

= {𝑒 ∈ 𝐴 | 𝐹(𝑒) = 𝑈},
𝐵
0

= {𝑒 ∈ 𝐵 | 𝐺(𝑒) = 𝑈}, 𝐶
0

= {𝑒 ∈ 𝐴 ∩ 𝐵 | 𝐹(𝑒) ∩ 𝐺(𝑒) = 𝑈},
and 𝐶

1
= {𝑒 ∈ 𝐴 ∩ 𝐵 | 𝐹(𝑒) ∩ 𝐺(𝑒) ̸= 0}. Then we have that

((𝐹, 𝐴) ∩ (𝐺, 𝐵))
𝑐

= (𝐹 ∩ 𝐺, 𝐶
1
)
𝑐

= ((𝐹 ∩ 𝐺)
𝑐

, {𝑒 ∈ 𝐶
1

| (𝐹 ∩ 𝐺) (𝑒) = 𝑈}
𝑐

)

= ((𝐹 ∩ 𝐺)
𝑐

, {𝑒 ∈ 𝐴 ∩ 𝐵 | 𝐹 (𝑒) ∩ 𝐺 (𝑒) = 𝑈}
𝑐

)

= ((𝐹 ∩ 𝐺)
𝑐

, 𝐶
𝑐

0
) .

(14)

On the other hand, we have that

(𝐹, 𝐴)
𝑐

∪ (𝐺, 𝐵)
𝑐

= (𝐹
𝑐

, 𝐴
𝑐

0
) ∪ (𝐺

𝑐

, 𝐵
𝑐

0
)

= (𝐹
𝑐

∪ 𝐺
𝑐

, 𝐴
𝑐

0
∪ 𝐵
𝑐

0
)

= (𝐹
𝑐

∪ 𝐺
𝑐

, (𝐴
0

∩ 𝐵
0
)
𝑐

)

= (𝐹
𝑐

∪ 𝐺
𝑐

, 𝐶
𝑐

0
) .

(15)

Therefore, to prove (1), it suffices to show that (𝐹 ∩ 𝐺)
𝑐

(𝑒) =

(𝐹
𝑐

∪𝐺
𝑐

)(𝑒) for all 𝑒 ∈ 𝐶
𝑐

0
. In fact, since𝐶

𝑐

0
= (𝐶
1
\𝐶
0
)∪𝐶
𝑐

1
and

(𝐶
1
\𝐶
0
)∩𝐶
𝑐

1
= 0, we need only to consider two cases.Thefirst

case is that 𝑒 ∈ 𝐶
1
\𝐶
0
. In this case, 𝑒 ∈ 𝐴

𝑐

0
∩𝐵
𝑐

0
, and thuswe get

that (𝐹∩𝐺)
𝑐

(𝑒) = (𝐹(𝑒)∩𝐺(𝑒))
𝑐

= 𝐹(𝑒)
𝑐

∪𝐺(𝑒)
𝑐

= (𝐹
𝑐

∪𝐺
𝑐

)(𝑒).
The other case is that 𝑒 ∈ 𝐶

𝑐

1
. In this case, we always have by

definition that (𝐹 ∩ 𝐺)
𝑐

(𝑒) = 𝑈 = (𝐹
𝑐

∪ 𝐺
𝑐

)(𝑒). Consequently,
(𝐹 ∩ 𝐺)

𝑐

(𝑒) = (𝐹
𝑐

∪ 𝐺
𝑐

)(𝑒) for all 𝑒 ∈ 𝐶
𝑐

0
, as desired.

(2) By Corollary 21 and the first assertion, we find that

((𝐹, 𝐴) ∪ (𝐺, 𝐵))
𝑐

= (((𝐹, 𝐴)
𝑐

)
𝑐

∪ ((𝐺, 𝐵)
𝑐

)
𝑐

)
𝑐

= (((𝐹, 𝐴)
𝑐

∩ (𝐺, 𝐵)
𝑐

)
𝑐

)
𝑐

= (𝐹, 𝐴)
𝑐

∩ (𝐺, 𝐵)
𝑐

.

(16)

Hence, the second assertion holds as well. This completes the
proof of the proposition.

Let us end this section with an observation on the
difference of two soft sets.

Proposition 23. For any soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over 𝑈, we
have that

(𝐹, 𝐴) \ (𝐺, 𝐵) = (𝐹, 𝐴) ∩ (𝐺, 𝐵)
𝑐

. (17)

Proof. We set 𝐵
0

= {𝑒 ∈ 𝐵 | 𝐺(𝑒) = 𝑈} and write (𝐹\𝐺, 𝐶) for
(𝐹, 𝐴) \ (𝐺, 𝐵). Then we see that 𝐶 = 𝐴 \ {𝑒 ∈ 𝐴 ∩ 𝐵 | 𝐹(𝑒) ⊆
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𝐺(𝑒)} and (𝐺, 𝐵)
𝑐

= (𝐺
𝑐

, 𝐵
𝑐

0
). As a result, (𝐹, 𝐴) ∩ (𝐺, 𝐵)

𝑐

=

(𝐹, 𝐴) ∩ (G𝑐, 𝐵𝑐
0
) = (𝐹 ∩ 𝐺

𝑐

, 𝐵
1
), where

𝐵
1

= {𝑒 ∈ 𝐴 ∩ 𝐵
𝑐

0
| 𝐹 (𝑒) ∩ 𝐺

𝑐

(𝑒) ̸= 0}

= (𝐴 \ 𝐵) ∪ {𝑒 ∈ 𝐴 ∩ 𝐵 | 𝐹 (𝑒) ̸⊆ 𝐺 (𝑒)}

= 𝐴 \ {𝑒 ∈ 𝐴 ∩ 𝐵 | 𝐹 (𝑒) ⊆ 𝐺 (𝑒)}

= 𝐶,

(18)

as desired. It remains to show that (𝐹 \ 𝐺)(𝑒) = (𝐹 ∩ 𝐺
𝑐

)(𝑒)

for all 𝑒 ∈ 𝐶 = 𝐵
1
. In fact, if 𝑒 ∈ 𝐶 \ 𝐵, then we have that

(𝐹 \ 𝐺)(𝑒) = 𝐹(𝑒) = 𝐹(𝑒) ∩ 𝑈 = (𝐹 ∩ 𝐺
𝑐

)(𝑒); if 𝑒 ∈ 𝐶 ∩ 𝐵,
then (𝐹 \ 𝐺)(𝑒) = 𝐹(𝑒) \ 𝐺(𝑒) = 𝐹(𝑒) ∩ 𝐺

𝑐

(𝑒) = (𝐹 ∩ 𝐺
𝑐

)(𝑒).
We thus get that (𝐹 \ 𝐺)(𝑒) = (𝐹 ∩ 𝐺

𝑐

)(𝑒) for all 𝑒 ∈ 𝐶 = 𝐵
1
.

Consequently, (𝐹, 𝐴) \ (𝐺, 𝐵) = (𝐹, 𝐴) ∩ (𝐺, 𝐵)
𝑐, finishing the

proof.

5. Conclusion

In this paper, we have redefined the intersection, comple-
ment, and difference of soft sets. These operations, together
with an existing union operation, form the fundamental
operations for constructing new soft sets from given soft sets.
By examining the algebraic properties of these operations, we
find that all basic properties of operations on classical sets
such as identity laws, domination laws, distributive laws, and
De Morgan’s laws hold for the newly defined operations on
soft sets. From this point of view, the new operations on soft
sets are reasonable. Motivated by the notion of Not set of a
parameter set in [22], we will investigate the operations on
soft sets by introducing more conjunctions including AND
and OR into a parameter set. In addition, it is interesting to
extend the notions of intersection, complement, difference of
soft sets developed here to other soft structures such as fuzzy
soft sets [29, 41], vague soft sets [28], and soft rough sets [42].
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