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A repairable computer system model which consists of hardware and software in series is established in this paper. This study is
devoted to discussing the unique existence of the solution and the stability of the studied system. In view of 𝑐

0
semigroup theory,

we prove the existence of a unique nonnegative solution of the system. Then by analyzing the spectra distribution of the system
operator, we deduce that the transient solution of the system strongly converges to the nonnegative steady-state solution which is
the eigenvector corresponding to eigenvalue 0 of the system operator. Finally, some reliability indices of the system are provided at
the end of the paper with a new method.

1. Introduction

With the development of the modern technology and the
extensive use of the electronic products, the reliability prob-
lem of the repairable systems has become a hot topic. It is well
known that the reliability of a system is an important concept
in engineering. The high degree of reliability is usually
achieved by introducing redundancy or repairman (e.g., [1–
4]) or applying preventive maintenance (e.g., [5, 6]), optimal
inspection plans (e.g., [7–9]), or optimal replacement policy
(e.g., [10]). The aim is to increase the performance of the
system by reducing the downtime or the maintenance and
inspection cost of the system.

In the general reliability analysis of the computer system,
however, because of different characteristics of the hardware
and software, we cannot simply take the hardware and soft-
ware as a unit or two different types of units [9]. Then, it is
rare to analyze synthetically [11].With the passage of the using
time and the number of failures increasing, the reliability of
the hardware would descend, and the repair time would be
longer [12]. During the software debugging and testing stages,
as the failures occur, potential software error is discovered
and corrected constantly which make the software reliability
grow [13]. Since the hardware failure or software failure

leads to the whole computer system failure, the computer
system can be formulated as a series system with hardware
and software (namely, hardware and software in series).There
are someobstacles to overcome to obtain themain result since
our model is more complicated than that of [11–13].

In this paper, we study a repairable computer system
which is composed of hardware and software in series. The
unique existence of the system solution is obtained by using
𝑐
0
semigroup theory. The exponential stability of the system

is further achieved by analyzing the spectrum distribution of
the system operator given by (2)–(4), which shows that the
solution to the system (2)–(4) is exponentially stable.Thuswe
not only provide strict theoretical foundation for reliability
study but also make it more valuable in practice.

The remainder of the paper is organized as follows. In
Section 2 we formulate themathematicalmodel of the system
with concerned notations; in Section 3.1 we show the unique
existence of the dynamic solution of the system. In Section 3.2
we study the unique existence of the solution of the abstract
Cauchy problem corresponding to the system and present
a detailed spectral analysis of the system operator; some
steady-state reliability indices of the system are presented in
Section 4, and Section 5 concludes the paper.
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2. Mathematical Model Formulation

In the reliability analysis of repair system, it is usually
assumed that the repaired units which compose system are
as good as new, and the failed units are repaired immediately.
However, in reality it is usually not the case. In real life, it is
possible that the reliability reduces after the software failure
each time. That is, the condition 𝐹

(𝑛)

𝑆
(𝑡) = 𝐹

𝑆
(𝑎
𝑛−1

𝑡) = 1−

𝑒
−𝑎
𝑛−1

𝜆
𝑠
𝑡, 𝑡 ≥ 0, 𝜆

𝑠
> 0, and the coefficient 𝑎 > 1. With

the number of repair times increasing, the failure rate is
increasing gradually. In view of the aging and accumulative
wear, the repair time will become longer and longer and
tend towards infinity; that is, the system is nonrepairable.
Therefore, we first suppose that the software is overhauled
(replaced) to be as good as new after the (𝑁 − 1)th minimal
repair, and studying the number of minimal repair before
overhaul repair is more appropriate. And we will also discuss
how its reliability will be affected by the number of minimal
repair and overhaul. In [14], the author supposed that the
software cannot be repaired as good as new and utilized the
geometric process and supplementary variable technique to
analyze the system reliability. However, the life and repair
times of the hardware and software are supposed to follow
exponential distribution. In this paper, under assumption
that the life time of the hardware and software follows expo-
nential distribution and repair time is subject to the general
distribution, we set up amathematicalmodel of the repairable
computer system by the supplementary variable method,
which is composed of the hardware and software in series.
The hardware is repaired to be as good as new, the software
is repaired periodically, and restored software life decreases.
After a period of time, an overhaul makes it as a new one.

The system model is formulated specifically as follows.

(i) The computer system is composed of hardware𝐻 and
software 𝑆 in series.

(ii) The distribution function of the life time 𝑋
𝐻

of
hardware𝐻 is 𝐹

𝐻
(𝑡) = 1 − 𝑒

−𝜆
ℎ
𝑡, 𝑡 ≥ 0, 𝜆

ℎ
> 0.

(iii) The distribution function of the life time𝑋(𝑛)
𝑆

of soft-
ware 𝑆 during its 𝑛th period (e.g., the time between
the completion of its (𝑛 − 1)th repair and that of the
𝑛th repair) is 𝐹𝑛

𝑆
(𝑡) = 𝐹

𝑆
(𝑎
𝑛−1

𝑡) = 1 − 𝑒
−𝑎
𝑛−1

𝜆
𝑠
𝑡, 𝑡 ≥ 0,

𝜆
𝑠
> 0, 𝑎 > 1, 𝑛 = 1, 2, . . . , 𝑁.

(iv) Let 𝑌
1
be the repair time of hardware𝐻, 𝑌

2
the repair

time of software 𝑆 after its 𝑛th failure (𝑛 = 1, 2, . . . , 𝑁−

1), and 𝑌
3
the repair time of software 𝑆 after its 𝑛th

failure, respectively. Their distribution functions are
𝐺
𝑗
(𝑡) = ∫

𝑡

0
𝑔
𝑗
(𝑥)𝑑𝑥 = 1−𝑒

−∫
𝑡

0

𝜇
𝑗
(𝑥)𝑑𝑥 and𝐸[𝑌

𝑗
] = 1/𝜇

𝑗
,

𝑗 = 1, 2, 3, where 𝜇
3
(𝑥) > 𝜇

2
(𝑥), for all 𝑥 ≥ 0.

(v) The hardware 𝐻 is repaired as good as new. The
software 𝑆 is performed by a minimal repair (e.g., a
maintenance action performed on a failed system by
which its survival time is decreasing) during its 𝑛th
(𝑛 = 1, 2, . . . , 𝑁 − 1) period and an overhaul repair
(e.g., a maintenance action performed on a failed
system by which it is repaired as good as new) during

its 𝑁th period. The above stochastic variables are
independent of each other.

Let 𝑁(𝑡) be the system state at time 𝑡, and assume all the
possible states as below.

0𝑖 (𝑖 = 1, 2, . . . , 𝑁) the system is working.
1𝑖 (𝑖 = 1, 2, . . . , 𝑁) the system is failed because the failure

hardware𝐻 is being repaired in the 𝑖th time.
2𝑖 (𝑖 = 1, 2, . . . , 𝑁) the system has in failure state because

the failure software 𝑆 is being repaired minimally in the
𝑖th time (𝑖 = 1, 2, . . . , 𝑁 − 1) and the software 𝑆 is being
overhauled in the𝑁th time.

Then the system state space is 𝐸 = {0𝑖, 1𝑖, 2𝑖} (𝑖 =

1, 2, . . . , 𝑁), in which the working state space is 𝑊 = {0𝑖}

(𝑖 = 1, 2, . . . , 𝑁) and the failure state space is 𝐹 = {1𝑖, 2𝑖}

(𝑖 = 1, 2, . . . , 𝑁).
When 𝑁(𝑡) = 𝑗𝑖 (𝑗 = 0, 1, 2; 𝑖 = 1, 2, . . . , 𝑁) supple-

ment variable 𝑌
𝑗
(𝑡) (𝑗 = 1, 2, 3) which denotes the elapsed

repair time of hardware 𝐻, the elapsed minimal repair
time of software 𝑆, and its elapsed overhaul time at time 𝑡,
respectively, then {𝑁(𝑡), 𝑌

𝑗
(𝑡)} constitutes a matrix Markov

process whose state probabilities are defined as follows:

𝑃
0𝑖 (

𝑡) = 𝑃 {𝑁 (𝑡) = 0𝑖} , 𝑖 = 1, 2, . . . , 𝑁,

𝑃
1𝑖 (

𝑥, 𝑡) = 𝑃 {𝑥 < 𝑌
1 (

𝑡) ≤ 𝑥 + 𝑑𝑥,𝑁 (𝑡) = 1𝑖} ,

𝑖 = 1, 2, . . . , 𝑁,

𝑃
2𝑖
(𝑥, 𝑡) = 𝑃 {𝑥 < 𝑌

2
(𝑡) ≤ 𝑥 + 𝑑𝑥,𝑁 (𝑡) = 2𝑖} ,

𝑖 = 1, 2, . . . , 𝑁 − 1,

𝑃
2𝑁

(𝑥, 𝑡) = 𝑃 {𝑥 < 𝑌
3
(𝑡) ≤ 𝑥 + 𝑑𝑥,𝑁 (𝑡) = 2𝑁} .

(1)

Then by using the method of probability analysis, the system
under consideration can be formulated as the following equa-
tions:

𝑑𝑃
01 (

𝑡)

𝑑𝑡

= − (𝜆
ℎ
+ 𝜆
𝑠
) 𝑃
01 (

𝑡) + ∫

∞

0

𝑃
11 (

𝑥, 𝑡) 𝜇1 (
𝑥) 𝑑𝑥

+ ∫

∞

0

𝑃
2𝑁 (

𝑥, 𝑡) 𝜇3 (
𝑥) 𝑑𝑥,

𝑑𝑃
0𝑖
(𝑡)

𝑑𝑡

= − (𝜆
ℎ
+ 𝑎
𝑖−1

𝜆
𝑠
) 𝑃
0𝑖
(𝑡) + ∫

∞

0

𝑃
1𝑖
(𝑥, 𝑡) 𝜇

1
(𝑥) 𝑑𝑥

+ ∫

∞

0

𝑃
2(𝑖−1)

(𝑥, 𝑡) 𝜇
2
(𝑥) 𝑑𝑥,

𝑖 = 2, 3, . . . , 𝑁,

𝜕𝑃
1𝑖 (

𝑥, 𝑡)

𝜕𝑥

+

𝜕𝑃
1𝑖 (

𝑥, 𝑡)

𝜕𝑡

= −𝜇
1 (

𝑥) 𝑃1𝑖 (
𝑥, 𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

𝜕𝑃
2𝑖
(𝑥, 𝑡)

𝜕𝑥

+

𝜕𝑃
2𝑖
(𝑥, 𝑡)

𝜕𝑡

= −𝜇
2
(𝑥) 𝑃
2𝑖
(𝑥, 𝑡) ,

𝑖 = 1, 2, . . . , 𝑁 − 1,

𝜕𝑃
2𝑁

(𝑥, 𝑡)

𝜕𝑥

+

𝜕𝑃
2𝑁

(𝑥, 𝑡)

𝜕𝑡

= −𝜇
3
(𝑥) 𝑃
2𝑁

(𝑥, 𝑡) .

(2)
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The boundary conditions are
𝑃
1𝑖 (

0, 𝑡) = 𝜆
ℎ
𝑃
0𝑖 (

𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

𝑃
2𝑖 (

0, 𝑡) = 𝑎
𝑖−1

𝜆
𝑠
𝑃
0𝑖 (

𝑡) , 𝑖 = 1, 2, . . . , 𝑁.

(3)

The initial conditions are
𝑃
01

(0) = 1, and the others are equal to 0. (4)
Taking into account the practical background,we assume that

0 < 𝐾 = sup
𝑥∈[0,∞)

𝜇
𝑗
(𝑥) < ∞,

∫

𝑇

0

𝜇
𝑗
(𝑥) 𝑑𝑥 < ∞, 0 < 𝑇 < ∞,

∫

∞

0

𝜇
𝑗 (
𝑥) 𝑑𝑥 = ∞, 𝑗 = 1, 2, 3.

(5)

And then, we may know that many repairs/services are
done periodically in practice. So we can suppose that the
mean of repair/service rate exists and does not equal to 0
([15, 16]):

0 < 𝜇
𝑗
= lim
𝑥→∞

1

𝑥

∫

𝑥

0

𝜇
𝑗 (
𝜏) 𝑑𝜏 < ∞, 𝑗 = 1, 2, 3. (6)

3. Stability Analysis

In this section, we firstly study the unique existence of the
classical solution of the system by pure analysis method in
Section 3.1. In Section 3.2, we will formulate the problem into
a suitable Banach space. Then we explain that the system has
a unique generalized solution, and it is just the classical one
when 𝑡 > 0. We also carry out a detailed spectral analysis of
the system operator𝐴+𝐸. Finally, the exponential stability of
the system can be readily achieved.

3.1. Unique Existence of the Classical Solution

Theorem 1. The system (2)–(4) has a unique nonnegative
solution in 𝐶[0, 𝑇], for any 𝑇 > 0.

Proof. Solving (2)–(4) with the method in [17] one gets

𝑃
01 (

𝑡) = 𝑒
−𝜋
1
𝑡
+ ∫

∞

0

𝑘
11

(𝑡 − 𝜂) 𝑃
11

(0, 𝜂) 𝑑𝜂

+ ∫

∞

0

𝑘
2𝑁

(𝑡 − 𝜂) 𝑃
2𝑁

(0, 𝜂) 𝑑𝜂,

𝑃
0𝑖
(𝑡) = 𝑒

−𝜋
𝑖
𝑡
+ ∫

∞

0

𝑘
1𝑖
(𝑡 − 𝜂) 𝑃

1𝑖
(0, 𝜂) 𝑑𝜂

+ ∫

∞

0

𝑘
2(𝑖−1)

(𝑡 − 𝜂) 𝑃
2(𝑖−1)

(0, 𝜂) 𝑑𝜂,

𝑖 = 2, 3 . . . , 𝑁,

𝑃
11

(0, 𝑡) = 𝜆
ℎ
(𝑒
−𝜋
1
𝑡
+ ∫

∞

0

𝑘
11

(𝑡 − 𝜂) 𝑃
11

(0, 𝜂) 𝑑𝜂

+∫

∞

0

𝑘
2𝑁

(𝑡 − 𝜂) 𝑃
2𝑁

(0, 𝜂) 𝑑𝜂) ,

𝑃
1𝑖 (

0, 𝑡) = 𝜆
ℎ
(𝑒
−𝜋
𝑖
𝑡
+ ∫

∞

0

𝑘
1𝑖
(𝑡 − 𝜂) 𝑃

1𝑖
(0, 𝜂) 𝑑𝜂

+∫

∞

0

𝑘
2(𝑖−1)

(𝑡 − 𝜂) 𝑃
2(𝑖−1)

(0, 𝜂) 𝑑𝜂) ,

𝑖 = 2, 3, . . . , 𝑁,

𝑃
21 (

0, 𝑡) = 𝜆
𝑠
(𝑒
−𝜋
1
𝑡
+ ∫

∞

0

𝑘
11

(𝑡 − 𝜂) 𝑃
11

(0, 𝜂) 𝑑𝜂

+∫

∞

0

𝑘
2𝑁

(𝑡 − 𝜂) 𝑃
2𝑁

(0, 𝜂) 𝑑𝜂) ,

𝑃
2𝑖 (

0, 𝑡) = 𝑎
𝑖−1

𝜆
𝑠
(𝑒
−𝜋
𝑖
𝑡
+ ∫

∞

0

𝑘
1𝑖
(𝑡 − 𝜂) 𝑃

1𝑖
(0, 𝜂) 𝑑𝜂

+∫

∞

0

𝑘
2(𝑖−1)

(𝑡 − 𝜂) 𝑃
2(𝑖−1)

(0, 𝜂) 𝑑𝜂) ,

𝑖 = 2, 3, . . . , 𝑁,

(7)

where

𝜋
𝑖
= 𝜆
ℎ
+ 𝑎
𝑖−1

𝜆
𝑠
,

𝑘
1𝑖
(𝑡 − 𝜂) = ∫

𝑡−𝜂

0

𝑒
−𝜋
𝑖
(𝑡−𝜂)𝜋

𝑖
V−∫

V

0

𝜇
1
(𝜏)𝑑𝜏

𝜇
1
(V) 𝑑V,

𝑖 = 1, 2, . . . , 𝑁,

𝑘
2𝑖
(𝑡 − 𝜂) = ∫

𝑡−𝜂

0

𝑒
−𝜋
𝑖+1
(𝑡−𝜂)𝜋

𝑖+1
V−∫

V

0

𝜇
2
(𝜏)𝑑𝜏

𝜇
2
(V) 𝑑V,

𝑖 = 1, 2, . . . , 𝑁 − 1,

𝑘
2𝑁

(𝑡 − 𝜂) = ∫

𝑡−𝜂

0

𝑒
−𝜋
1
(𝑡−𝜂)𝜋

1
V−∫

V

0

𝜇
3
(𝜏)𝑑𝜏

𝜇
3
(V) 𝑑V.

(8)

With the help of (7), we can get the following convolu-
tion-type integral equation

𝑃 (𝑡) = 𝐹 (𝑡) + ∫

𝑡

0

𝐾(𝑡 − 𝜂) 𝑃 (𝜂) 𝑑𝜂, (9)

where
𝑃 (𝑡) = (𝑃

01
(𝑡) , . . . , 𝑃

0𝑁
(𝑡) , 𝑃
11

(0, 𝑡) , . . . , 𝑃
1𝑁

(0, 𝑡) ,

𝑃
21 (

0, 𝑡) , . . . , 𝑃2𝑁 (
0, 𝑡))
𝑇
,

𝐹 (𝑡) = (𝑓 (𝑡) , 𝜆ℎ
𝑓 (𝑡) , 𝜆𝑠

(𝑒
−𝜋
1
𝑡
, 𝑎𝑒
−𝜋
2
𝑡
, . . . , 𝑎

𝑁−1
𝑒
−𝜋
𝑁
𝑡
)

𝑇

,

𝑓 (𝑡) = (𝑒
−𝜋
1
𝑡
, 𝑒
−𝜋
2
𝑡
, . . . , 𝑒

−𝜋
𝑁
𝑡
) ,

𝐾 (𝑡 − 𝜂) = (

𝑂
𝑛×𝑛

𝐾
11

(𝑡 − 𝜂) 𝐾
12

(𝑡 − 𝜂)

𝑂
𝑛×𝑛

𝐾
21

(𝑡 − 𝜂) 𝐾
22

(𝑡 − 𝜂)

𝑂
𝑛×𝑛

𝐾
31

(𝑡 − 𝜂) 𝐾
32

(𝑡 − 𝜂)

) ,

𝐾
12

(𝑡 − 𝜂)

= (

0 ⋅ ⋅ ⋅ 0 𝑘
2𝑁

(𝑡 − 𝜂)

𝑘
21

(𝑡 − 𝜂) ⋅ ⋅ ⋅ 0 0

... d
...

...
0 ⋅ ⋅ ⋅ 𝑘

2(𝑁−1)
(𝑡 − 𝜂) 0

)

𝑛×𝑛

,
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𝐾
22

(𝑡 − 𝜂) = 𝜆
ℎ
𝐾
12

(𝑡 − 𝜂) ,

𝐾
32

(𝑡 − 𝜂)

= (

0 ⋅ ⋅ ⋅ 0 𝜆𝑠𝑘2𝑁(𝑡 − 𝜂)

𝑎𝜆𝑠𝑘21(𝑡 − 𝜂) ⋅ ⋅ ⋅ 0 0

... d
...

...
0 ⋅ ⋅ ⋅ 𝑎

𝑁−1
𝜆𝑠𝑘2(𝑁−1)(𝑡 − 𝜂) 0

)

𝑛×𝑛

,

𝐾
11

(𝑡 − 𝜂) = diag (𝑘
11

(𝑡 − 𝜂) , 𝑘
11

(𝑡 − 𝜂) , . . . ,

𝑘
11

(𝑡 − 𝜂))
𝑛×𝑛

,

𝐾
21

(𝑡 − 𝜂) = diag (𝜆
ℎ
𝑘
11

(𝑡 − 𝜂) , 𝜆
ℎ
𝑘
11

(𝑡 − 𝜂) , . . . ,

𝜆
ℎ
𝑘
11

(𝑡 − 𝜂))
𝑛×𝑛

,

𝐾
31

(𝑡 − 𝜂) = diag (𝜆
𝑠
𝑘
11

(𝑡 − 𝜂) , 𝑎𝜆
𝑠
𝑘
11

(𝑡 − 𝜂) , . . . ,

𝑎
𝑁−1

𝜆
𝑠
𝑘
11

(𝑡 − 𝜂))
𝑛×𝑛

.

(10)

It is clear that the unique existence of the nonnegative
solution of the system (2)–(4) is equal to that of the convo-
lution-type integral equation (9). Since, for any 𝑇 > 0, each
coordinate of 𝐹(𝑡) and 𝐾(𝑡 − 𝜂) is nonnegatively bounded
function and is absolutely integrable in𝐶[0, 𝑇], we can obtain
that the convolution-type integral equation (9) has a unique
nonnegative solution in 𝐶[0, 𝑇] by using the related theory
in integral equation. For this reason, the system (2)–(4) has
a unique nonnegative solution in 𝐶[0, 𝑇], for any 𝑇 > 0. The
proof is complete.

3.2. Exponential Stability. In this subsection, in order to
further study the properties of the studied system, we will
formulate the problem into a suitable Banach space. Then
we study the unique existence of its solution and explain the
exponential stability of the system by analyzing the spectrum
distribution of the system operator in detail.

Firstly, let the state space 𝑋 be

𝑋 = {𝑃 ∈ 𝑅
𝑛
× (𝐿
1
(𝑅
+
) × 𝐿
1
(𝑅
+
))

𝑛

| ‖𝑃‖

=






𝑃
0



+

2

∑

𝑖=1






𝑃
𝑖



< ∞} ,

(11)

where

𝑃 = (𝑃
0
, 𝑃
1
(𝑥) , 𝑃

2
(𝑥)) ,

𝑃
0
= (𝑃
01
, 𝑃
02
, . . . , 𝑃

0𝑁
)
𝑇
,

𝑃
1
(𝑥) = (𝑃

11
(𝑥) , 𝑃

12
(𝑥) , . . . , 𝑃

1𝑁
(𝑥))
𝑇
,

𝑃
2
(𝑥) = (𝑃

21
(𝑥) , 𝑃

22
(𝑥) , . . . , 𝑃

2𝑁
(𝑥))
𝑇
,






𝑃
0



=

𝑁

∑

𝑖=1





𝑃
0𝑖





,






𝑃
𝑗



=

𝑁

∑

𝑖=1






𝑃
𝑗𝑖





𝐿
1
(𝑅
+
)
, 𝑗 = 1, 2.

(12)

It is obvious that𝑋 is a Banach space.
Secondly, we will introduce some operators in𝑋.

Consider𝐴𝑃 = (diag(−(𝜆
ℎ
+ 𝜆
𝑠
), −(𝜆

ℎ
+ 𝑎𝜆
𝑠
), . . . , −(𝜆

ℎ
+

𝑎
𝑁−1

𝜆
𝑠
))𝑃
0
, diag(−(𝑑/𝑑𝑥)−𝜇

1
(𝑥), . . . , −(𝑑/𝑑𝑥)−𝜇

1
(𝑥))𝑃
1
(𝑥),

diag(−(𝑑/𝑑𝑥) − 𝜇
2
(𝑥), . . . , −(𝑑/𝑑𝑥) − 𝜇

2
(𝑥), −(𝑑/𝑑𝑥) −

𝜇
3
(𝑥))𝑃
2
(𝑥)).

Taking 𝐷(𝐴) = {𝑃 = (𝑃
0
, 𝑃
1
(𝑥), 𝑃

2
(𝑥)) ∈ 𝑋 | (𝑑𝑃

𝑗𝑖
(𝑥)/

𝑑𝑥) ∈ 𝐿
1
(𝑅
+
), 𝑗 = 1, 2, 𝑖 = 1, 2, . . . , 𝑁,𝑃

𝑗𝑖
(𝑥) (𝑗 = 1, 2, 𝑖 = 1, 2,

. . . , 𝑁) are absolutely continuous functions satisfying 𝑃(0) =

(𝑃
0
, 𝑃
1
(0), 𝑃
2
(0))=(𝑃

0
, 𝜆
ℎ
𝑃
0
, 𝜆
𝑠
(𝑃
01
, 𝑎𝑃
02
, . . . , 𝑎

𝑁−1
𝑃
0𝑁

)
𝑇
)},

𝐸𝑃 = (

𝑂
𝑛×𝑛

𝐸
1

𝐸
2

𝑂
2𝑛×𝑛

𝑂
2𝑛×𝑛

𝑂
2𝑛×𝑛

)(

𝑃
0

𝑃
1
(𝑥)

𝑃
2
(𝑥)

) , 𝐷 (𝐸) = 𝑋,

(13)

where 𝑂
𝑛×𝑛

, 𝑂
2𝑛×𝑛

are zero vectors and 𝐸
1

= diag(𝜇
1
(𝑥),

𝜇
1
(𝑥), . . . , 𝜇

1
(𝑥))
𝑛×𝑛

,

𝐸
2

=

(

(

(

(

(

0 0 ⋅ ⋅ ⋅ 0 ∫

∞

0

𝜇
3
(𝑥) 𝑑𝑥

0 ∫

∞

0

𝜇
2(
𝑥) 𝑑𝑥 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

0 0 ⋅ ⋅ ⋅ ∫

∞

0

𝜇
2
(𝑥) 𝑑𝑥 0

)

)

)

)

)𝑛×𝑛

.

(14)

Then the former equations (2)–(4) can be formulated as
an abstract Cauchy problem into the suitable Banach space
𝑋, that is,

𝑑

𝑑𝑡

𝑃 (⋅, 𝑡) = (𝐴 + 𝐸) 𝑃 (⋅, 𝑡) , 𝑡 ≥ 0,

𝑃 (⋅, 𝑡) = (𝑃
0
(𝑡) , 𝑃
1
(⋅, 𝑡) , 𝑃

2
(⋅, 𝑡)) ,

𝑃 (⋅, 0) = 𝑃
0
= ((1, 0, . . . , 0)

𝑇

1×𝑛
, 𝑂
𝑛×1

, 𝑂
𝑛×1

) .

(15)

Since the system (2)–(4) is rewritten as an abstract
Cauchy problem, it is necessary to prove the well-posedness
of the system (15). Next, we will prove that the system (15) has
a unique nonnegative solution by using 𝑐

0
semigroup theory.

We present the expression of the dynamic solution of the
system equation.

For convenience, we will present four useful lemmas.

Lemma 2. There exists constant 𝐿 > 0 such that for any 𝑡 > 0

(see [18])

∫

∞

𝑡

𝑒
−∫
𝑥

𝑡

𝜇
𝑗
(𝜏)𝑑𝜏

𝑑𝑥 ≤ 𝐿, 𝑗 = 1, 2, 3. (16)

Lemma 3. For any 𝑟 ∈ {𝑟 ∈ C | Re 𝑟 > 0 or 𝑟 = 𝑖𝑎, 𝑎 ∈

𝑅, 𝑎 ̸= 0} (see [18]),









∫

∞

0

𝜇
𝑗 (
𝑥) 𝑒
−∫
𝑥

0

(𝑟+𝜇
𝑗
(𝜏))𝑑𝜏

𝑑𝑥










< 1, 𝑗 = 1, 2, 3. (17)

Lemma 4. The system operator 𝐴 + 𝐸 is a dispersive operator
(see [19]) with dense domain.

The proof of Lemma 4 can be seen in [20–22].
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Lemma5. {𝑟 ∈ C | Re 𝑟 > 0 or 𝑟 = 𝑖𝑎, 𝑎 ∈ 𝑅\{0}} ⊆ 𝜌(𝐴+𝐸).

Proof. Firstly, for any 𝐺 = (𝑔
0
, 𝑔
1
(𝑥), 𝑔
2
(𝑥)) ∈ 𝑋, here 𝑔

𝑗
=

(𝑔
𝑗1
, 𝑔
𝑗2
, . . . , 𝑔

𝑗𝑁
)
𝑇, 𝑗 = 0, 1, 2, considering [𝑟𝐼 − (𝐴 + 𝐸)]𝑃 =

𝐺. That is,

(𝑟 + 𝜆
ℎ
+ 𝜆
𝑠
) 𝑃
01

− ∫

∞

0

𝜇
1
(𝑥) 𝑃
11

(𝑥) 𝑑𝑥

− ∫

∞

0

𝜇
3
(𝑥) 𝑃
2𝑁

(𝑥) 𝑑𝑥 = 𝑔
01
,

(18)

(𝑟 + 𝜆
ℎ
+ 𝑎
𝑗−1

𝜆
𝑠
) 𝑃
0𝑗

− ∫

∞

0

𝜇
1 (

𝑥) 𝑃1𝑗 (
𝑥) 𝑑𝑥

− ∫

∞

0

𝜇
2
(𝑥) 𝑃
2(𝑗−1)

(𝑥) 𝑑𝑥 = 𝑔
0𝑗
,

𝑗 = 2, . . . , 𝑁,

(19)

𝑑

𝑑𝑥

𝑃
1𝑗 (

𝑥) + (𝑟 + 𝜇
1 (

𝑥)) 𝑃1𝑗 (
𝑥) = 𝑔

1𝑗 (
𝑥) ,

𝑗 = 1, 2, . . . , 𝑁,

(20)

𝑑

𝑑𝑥

𝑃
2𝑗 (

𝑥) + (𝑟 + 𝜇
2 (

𝑥)) 𝑃2𝑗 (
𝑥) = 𝑔

2𝑗 (
𝑥) ,

𝑗 = 2, 3, . . . , 𝑁 − 1,

(21)

𝑑

𝑑𝑥

𝑃
2𝑁 (

𝑥) + (𝑟 + 𝜇
3 (

𝑥)) 𝑃2𝑁 (
𝑥) = 𝑔

2𝑁 (
𝑥) . (22)

And we can suppose

𝑃
1𝑗
(0) = 𝜆

ℎ
𝑃
0𝑗
, 𝑗 = 1, 2, . . . , 𝑁,

𝑃
2𝑗
(0) = 𝑎

𝑗−1
𝜆
𝑠
𝑃
0𝑗
, 𝑗 = 1, 2, . . . , 𝑁.

(23)

Solving (20)–(22) with the help of (23) one gets

𝑃
1𝑗 (

𝑥) = 𝑃
1𝑗 (

0) 𝑒
−∫
𝑥

0

[𝑟+𝜇
1
(𝜂)]𝑑𝜂

+ ∫

𝑥

0

𝑒
−∫
𝑥

𝜏

[𝑟+𝜇
1
(𝜂)]𝑑𝜂

𝑔
1𝑗 (

𝜏) 𝑑𝜏,

𝑗 = 1, 2, . . . , 𝑁,

𝑃
2𝑗 (

𝑥) = 𝑃
2𝑗 (

0) 𝑒
−∫
𝑥

0

[𝑟+𝜇
2
(𝜂)]𝑑𝜂

+ ∫

𝑥

0

𝑒
−∫
𝑥

𝜏

[𝑟+𝜇
2
(𝜂)]𝑑𝜂

𝑔
2𝑗 (

𝜏) 𝑑𝜏,

𝑗 = 1, 2, . . . , 𝑁 − 1,

𝑃
2𝑁

(𝑥)=𝑃
2𝑁

(0) 𝑒
−∫
𝑥

0

[𝑟+𝜇
3
(𝜂)]𝑑𝜂

+∫

𝑥

0

𝑒
−∫
𝑥

𝜏

[𝑟+𝜇
3
(𝜂)]𝑑𝜂

𝑔
2𝑁

(𝜏) 𝑑𝜏.

(24)

Noticing that 𝑔
𝑗𝑖
(𝑥) ∈ 𝐿

1
[0,∞), 𝑗 = 1, 2, 𝑖 = 1, 2, . . . , 𝑁,

together with Lemma 2, we know 𝑃
𝑗𝑖
(𝑥) ∈ 𝐿

1
[0,∞), 𝑗 = 1, 2,

𝑖 = 1, 2, . . . , 𝑁. This implies that [𝑟𝐼 − (𝐴 + 𝐸)] is an onto
mapping.

Secondly, we will prove that this operator is also an
injective mapping. That is, the operator equation [𝑟𝐼 − (𝐴 +

𝐸)]𝑃 = 0 has a unique solution 0. Set 𝐺 = 0 in the former

discussion.Thenwe can obtain the followingmatrix equation
by combing (18)-(19) with (24):

(

(

(

(

(

𝑟 + 𝑏
1

0 ⋅ ⋅ ⋅ 0 −𝑎
𝑁−1

𝜆
𝑠
𝑊
3

−𝜆
𝑠
𝑊
2

𝑟 + 𝑏
2

⋅ ⋅ ⋅ 0 0

0 −𝑎𝜆
𝑠
𝑊
2

d 0 0

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 𝑟 + 𝑏
𝑁−1

0

0 0 ⋅ ⋅ ⋅ −𝑎
𝑁−2

𝜆
𝑠
𝑊
2

𝑟 + 𝑏
𝑁

)

)

)

)

)

×

(

(

(

(

𝑃
01

𝑃
02

𝑃
03

...
𝑃
0(𝑁−1)

𝑃
0𝑁

)

)

)

)

=
(

(

(

0

0

0

...
0

0

)

)

)

,

(25)

where

𝑏
𝑗
= 𝜆
ℎ
(1 − 𝑊

1
) + 𝑎
𝑗−1

𝜆
𝑠

(𝑗 = 1, 2, . . . , 𝑁) ,

𝑊
𝑗
= ∫

∞

0

𝜇
𝑗
(𝑥) 𝑒
−∫
𝑥

0

[𝑟+𝜇
𝑗
(𝜏)]𝑑𝜏

𝑑𝑥, 𝑗 = 1, 2, 3.

(26)

It is clear that





𝑟 + 𝑏
𝑗






=






𝑟 + 𝜆
ℎ
(1 − 𝑊

1
) + 𝑎
𝑗−1

𝜆
𝑠






>






𝑟 + 𝑎
𝑗−1

𝜆
𝑠







>






𝑎
𝑗−1

𝜆
𝑠






>






−𝑎
𝑗−1

𝜆
𝑠
𝑊
2






, 𝑗 = 1, 2, . . . , 𝑁 − 1,





𝑟 + 𝑏
𝑁





=






𝑟 + 𝜆
ℎ
(1 − 𝑊

1
) + 𝑎
𝑁−1

𝜆
𝑠






>






𝑟 + 𝑎
𝑁−1

𝜆
𝑠







>






𝑎
𝑁−1

𝜆
𝑠






>






−𝑎
𝑁−1

𝜆
𝑠
𝑊
3






> 0,

(27)

for 𝑟 > 0 or 𝑟 = 𝑖𝑎, 𝑎 ∈ 𝑅 \ {0}. From Lemma 3, we can
obtain |𝑊

𝑗
| < 1, 𝑗 = 1, 2, 3. Thus the matrix of coefficients

of the linear equations (25) is a strictly diagonal-dominant
matrix about column. Therefore, this matrix is invertible,
which manifests that operator [𝑟𝐼 − (𝐴 + 𝐸)] is a one-to-one
mapping.

Because [𝑟𝐼 − (𝐴 + 𝐸)] is densely defined closed in 𝑋,
we can derive that [𝑟𝐼 − (𝐴 + 𝐸)]

−1 exists and is bounded by
recalling inverse operator theoremand closed graph theorem.
That is, set {𝑟 ∈ C | Re 𝑟 > 0 or 𝑟 = 𝑖𝑎, 𝑎 ∈ 𝑅 \ {0}} belongs
to the resolvent set of the system operator 𝐴 + 𝐸. Thus we
complete the proof of Lemma 5.

Theorem 6. The simple eigenvalue of system operator 𝐴+𝐸 is
0.

Proof. Firstly, we will explain that 0 is the eigenvalue of𝐴+𝐸

with positive eigenvector.
Consider (𝐴 + 𝐸)𝑃 = 0 and assume that 𝑃 satisfies the

boundary conditions (23). Then repeating the proof process
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of the injective mapping in Lemma 5 with 𝑟 = 0, we can get
the following solutions:

𝑃
0𝑗

= 𝑎
𝑁−𝑗

𝑃
0𝑁

(𝑗 = 1, 2, . . . , 𝑁) ,

𝑃
1𝑗
(𝑥) = 𝑎

𝑁−𝑗
𝜆
ℎ
𝑃
0𝑁

𝑒
−∫
𝑥

0

𝜇
1
(𝜂)𝑑𝜂

(𝑗 = 1, 2, . . . , 𝑁) ,

𝑃
2𝑗
(𝑥) = 𝑎

𝑁−𝑗
𝜆
𝑠
𝑃
0𝑁

𝑒
−∫
𝑥

0

𝜇
2
(𝜂)𝑑𝜂

(𝑗 = 1, 2, . . . , 𝑁 − 1) ,

𝑃
2𝑁

(𝑥) = 𝑎
𝑁−1

𝜆
𝑠
𝑃
0𝑁

𝑒
−∫
𝑥

0

𝜇
3
(𝜂)𝑑𝜂

,

(28)

where 𝑃
0𝑁

is an arbitrary real number.Then it can be derived
that 𝑃

𝑗𝑖
(𝑥), 𝑗 = 1, 2, 𝑖 = 1, 2, . . . , 𝑁, for all 𝑥 ∈ [0,∞) by

taking 𝑃
0𝑁

> 0 without loss of generality. Since the vector

𝑃
∗
= ((𝑃

∗

01
, . . . , 𝑃

∗

0𝑁
)
𝑇
, (𝑃
∗

11
(𝑥) , . . . , 𝑃

∗

1𝑁
(𝑥))
𝑇
,

(𝑃
∗

21
(𝑥) , . . . , 𝑃

∗

2𝑁
(𝑥))
𝑇
)

(29)

is the positive eigenvector corresponding to eigenvalue 0 of
the system operator 𝐴 + 𝐸 and it is also the positive steady-
state solution of the system, here 𝑃∗

0𝑖
and 𝑃

∗

𝑗𝑖
(𝑥), respectively,

signify 𝑃
0𝑖
and 𝑃

𝑗𝑖
(𝑥) showed in (28), 𝑗 = 1, 2, 𝑖 = 1, 2, . . . , 𝑁.

In addition, it is easy to see that the geometric multiplicity of
eigenvalue 0 in𝑋 is one.

Secondly, we will explain that the algebraic multiplicity of
eigenvalue 0 is one.

Taking vector 𝑄 = (𝐼
0

𝑛×1
, 𝐼
1

𝑛×1
, 𝐼
2

𝑛×1
), here 𝐼

𝑗
= (1, 1, . . . ,

1)
𝑇, 𝑗 = 0, 1, 2. Then 𝑄 ∈ 𝑋

∗. For any 𝑃 ∈ 𝐷(𝐴 + 𝐸), it is
not difficult to show that ⟨(𝐴 + 𝐸)𝑃, 𝑄⟩ = 0 by noticing the
boundary conditions. Therefore, we can deduce that ⟨𝑃, (𝐴 +

𝐸)
∗
𝑄⟩ = 0, for all 𝑃 ∈ 𝑋, for 𝐷(𝐴) is dense in 𝑋. This

manifests that 𝑄 is the eigenvector of (𝐴 + 𝐸)
∗, the adjoint

operator of 𝐴 + 𝐸, corresponding to eigenvalue 0.
In the light of [23, 24], we only need to explain that the

algebraic index of 0 in 𝑋 is one. We use the reduction to
absurdity. Assume that the algebraic index of 0 is 2 without
loss of generality. Thus there exists 𝑈 ∈ 𝑋 such that (𝐴 +

𝐸)𝑈 = 𝑃
∗. Therefore,

⟨𝑃
∗
, 𝑄⟩ = ⟨(𝐴 + 𝐸)𝑈,𝑄⟩ = ⟨𝑈, (𝐴 + 𝐸)

∗
𝑄⟩ = 0.

(30)

However,

⟨𝑃
∗
, 𝑄⟩ =

𝑁

∑

𝑖=1

𝑃
0𝑖
+

2

∑

𝑗=1

𝑁

∑

𝑖=1

∫

∞

0

𝑃
𝑗𝑖
(𝑥) 𝑑𝑥 > 0. (31)

Equation (30) contradicts (31). Then the algebraic index of 0
in 𝑋 is one. Then the algebraic multiplicity of 0 in 𝑋 is one.
The proof of Theorem 6 is complete.

Lemma 5 and Theorem 6 can imply that several impor-
tant results hold. Firstly, they imply that the spectral bound
𝑠(𝐴 + 𝐸) of 𝐴 + 𝐸 is zero. Secondly, Lemma 5 andTheorem 6
illustrate 0 is a strictly dominant eigenvalue of the operator
𝐴 + 𝐸.

The following task is to verify the operator𝐴+𝐸 generates
some 𝑐

0
semigroups 𝑇(𝑡).

Theorem7. Thesystemoperator𝐴+𝐸 generates a positive con-
traction 𝑐

0
semigroup 𝑇(𝑡).

Proof. We can get the proof of Theorem 7 by the Phillips
theorem (see [25]), Lemma 4, and Lemma 5.

Theorem 8. The system (15) has a unique nonnegative time-
dependent solution 𝑃(⋅, 𝑡), which satisfies ‖𝑃(⋅, 𝑡)‖ = 1, for all
𝑡 ∈ [0,∞).

Proof. In view ofTheorem 7 and [25], we have that the system
(15) has a unique nonnegative solution 𝑃(⋅, 𝑡) and it can be
expressed as

𝑃 (⋅, 𝑡) = 𝑇 (𝑡) 𝑃
0
, ∀𝑡 ∈ [0,∞) . (32)

Because 𝑃(⋅, 𝑡) satisfies (2)–(4), it is easy to receive that
𝑑‖𝑃(⋅, 𝑡)‖/𝑑𝑡 = 0. Here ‖𝑃(⋅, 𝑡)‖ = ‖𝑇(𝑡)𝑃

0
‖ = ‖𝑃

0
‖ = 1, for all

𝑡 ∈ [0,∞).
Because𝑃

0
∉ 𝐷(𝐴), (32) is themild solution of the system.

However, Theorem 1 implies that the classical solution of the
system uniquely exists for 𝑡 > 0. Hence, the mild solution
𝑃(⋅, 𝑡) = 𝑇(𝑡)𝑃

0
is just the classical one for 𝑡 > 0. Thus the

abstract Cauchy problem (15) is well posed.

Theorem 9. The time-dependent solution of the system (2)–
(4) strongly converges to its steady-state solution. That is,
lim
𝑡→∞

𝑃(⋅, 𝑡) = 𝑃
∗, where𝑃∗ is the eigenvector corresponding

to 0 in𝑋 satisfying ‖𝑃∗‖ = 1.

Proof. In the light of Theorem 8, the nonnegative solution of
the system (2)–(4) can be expressed as 𝑃(⋅, 𝑡) = 𝑇(𝑡)𝑃

0
, for all

𝑡 ∈ [0,∞). Thus combing Theorem 2.10 (see [19]) together
withTheorem 12.3 in [26], we can deduce that

𝑃 (⋅, 𝑡) = 𝑇 (𝑡) 𝑃
0
= ⟨𝑃
0
, 𝑄⟩ 𝑃

∗
+ 𝑅 (𝑡) 𝑃

0
= 𝑃
∗
+ 𝑅 (𝑡) 𝑃

0
,

(33)

where𝑄 is the same as defined inTheorem 6 and𝑅(𝑡) = 𝐶𝑒
−𝜀𝑡

for suitable constants 𝜀 > 0 and 𝐶 > 0. Hence we have

lim
𝑡→∞

𝑃 (⋅, 𝑡) = ⟨𝑃
0
, 𝑄⟩ 𝑃

∗
= 𝑃
∗
. (34)

As a result, the exponential stability of the solution of the
studied system was obtained.

Thus we show that the studied system has exponential
stability. Exponential stability is a very important property
in reliability study. We can overcome some problems readily
and deduce some better conclusions by using it. For example,
by using the property, the governors can make up their
mind how to arrange the repairman to do minimal repair or
overhaul in his work time to increase the profit of the system
benefit.

As far as such a problem is concerned, previous literatures
such as [27] only pointed out to when the profit of the
system benefit with repairman vacation in steady state is
larger than that of the classical system benefit. But this is a less
practical condition because they cannot solve the following
problems. Firstly, how long time the system will take to get
the stability state. Secondly, whether the steady-state indices
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such as steady-state availability can substitute for the transient
ones. Thirdly, what is the probability that the repairman can
carry out minimal repair.

However, by studying the exponential stability of the
system, all these problems can be solved easily. Actually, for
a given fault, the system can get to the steady state at a very
fast speed and its steady-state availability can substitute for
the dynamic one by considering a safety factor. Moreover,
𝑃
0𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁) means the probability that the system

is operating normally after every minimal repair, and the
repairman is on vacation at time 𝑡 ≥ 0 and 𝑃

0𝑖
(𝑡) → 𝑃

0𝑖
> 0;

here 𝑃
0𝑖
(𝑖 = 1, 2, . . . , 𝑁) is the first 𝑁 coordinate of the

eigenvector 𝑃∗ inTheorem 9.ThenTheorem 9 indicates that,
after a certain time 𝑡 > 0, the repairman can always be urged
to overhaul with a fixed probability to increase the total profit
of the system benefit.

4. Reliability Indices

In this section, we first present the steady-state probability
and frequency of failure of the system with traditional
method. Second, we propose the steady-state availability and
the failure frequency of the system with one new method
different from the traditional one (see [28]). And the two
methods were compared; we have the secondmethod is more
practical and simple.

Firstly, the above equations (2) are valid for any 𝑡 ≥ 0.
Since we are interested in the steady-state behavior of our
system, we will seek the long-run probabilities which are the
solution of the following equations obtained from (2) taking
the limits as 𝑡 → ∞:

(𝜆
ℎ
+ 𝜆
𝑠
) 𝑃
01

= ∫

∞

0

𝑃
11

(𝑥) 𝜇
1
(𝑥) 𝑑𝑥 + ∫

∞

0

𝑃
2𝑁

(𝑥) 𝜇
3
(𝑥) 𝑑𝑥,

(𝜆
ℎ
+ 𝑎
𝑖−1

𝜆
𝑠
) 𝑃
0𝑖
= ∫

∞

0

𝑃
1𝑖 (

𝑥) 𝜇1 (
𝑥) 𝑑𝑥

+ ∫

∞

0

𝑃
2(𝑖−1)

(𝑥) 𝜇
2
(𝑥) 𝑑𝑥,

𝑖 = 2, 3, . . . , 𝑁,

(

𝑑

𝑑𝑥

+ 𝜇
1 (

𝑥))𝑃
1𝑖 (

𝑥) = 0, 𝑖 = 1, 2, . . . , 𝑁,

(

𝑑

𝑑𝑥

+ +𝜇
2
(𝑥))𝑃

2𝑖
(𝑥) = 0, 𝑖 = 1, 2, . . . , 𝑁 − 1,

(

𝑑

𝑑𝑥

+ 𝜇
3
(𝑥))𝑃

2𝑁
(𝑥) = 0.

(35)

Equations (35) are to be solved under the following con-
ditions:

𝑃
1𝑖
(0) = 𝜆

ℎ
𝑃
0𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

𝑃
2𝑖
(0) = 𝑎

𝑖−1
𝜆
𝑠
𝑃
0𝑖
, 𝑖 = 1, 2, . . . , 𝑁.

(36)

The steady-state probabilities are 𝑃
0𝑖
, 𝑃
1𝑖
= ∫

+∞

0
𝑃
1𝑖
(𝑥)𝑑𝑥,

𝑃
2𝑖

= ∫

+∞

0
𝑃
2𝑖
(𝑥)𝑑𝑥, where 𝑖 = 1, 2, . . . , 𝑁, respectively. The

steady-state probabilities must satisfy the total probability
equation

𝑁

∑

𝑖=1

(𝑃
0𝑖
+ 𝑃
1𝑖
+ 𝑃
2𝑖
) = 1. (37)

Probability and frequency of failure are given by 𝑃
𝑓

=

∑
𝑁

𝑖=1
(𝑃
1𝑖
+ 𝑃
2𝑖
) and 𝐹

𝑓
= ∑
𝑁

𝑖=1
(𝜆
ℎ
+ 𝑎
𝑖−1

𝜆
𝑠
)𝑃
0𝑖
.

Next, we obtain the steady-state availability and the
failure frequency of the system by using the proposedmethod
in this paper.

Theorem 10. The steady-state availability after the 𝑁th time
repair is

𝐴V𝑁 =

∑
𝑁

𝑖=1
𝑎
𝑖−1

∑
𝑁

𝑖=1
𝑎
𝑖−1

(1 + 𝜆
ℎ
𝐸
1
) + 𝑎
𝑁−1

𝜆
𝑠
[(𝑁 − 1) 𝐸

2
+ 𝐸
3
]

,

(38)

where 𝐸
𝑖
= ∫

∞

0
𝑒
−∫
𝑥

0

𝜇
𝑖
(𝑠)𝑑𝑠

𝑑𝑥 (𝑖 = 1, 2, 3).

Proof. Let

𝑀 =

2

∑

𝑗=0

𝑁

∑

𝑖=1

𝑃
∗

𝑗𝑖
≜

𝑁

∑

𝑖=1

𝑃
∗

0𝑖
+

𝑁

∑

𝑖=1

∫

∞

0

𝑃
∗

1𝑖
(𝑥) 𝑑𝑥 +

𝑁

∑

𝑖=1

∫

∞

0

𝑃
∗

2𝑖
(𝑥) 𝑑𝑥

= {

𝑁

∑

𝑖=1

𝑎
𝑖−1

(1 + 𝜆
ℎ
𝐸
1
) + 𝑎
𝑁−1

𝜆
𝑠
[(𝑁 − 1) 𝐸

2
+ 𝐸
3
]}𝑃
∗

0𝑁
,

(39)

where𝑃∗
0𝑖
, 𝑃
∗

𝑗𝑖
(𝑥) (𝑗 = 1, 2, 𝑖 = 1, 2, . . . , 𝑁) are the correspond-

ing coordinates of 𝑃∗ presented in (29).Then the steady-state
availability of the system can be expressed as

𝐴V𝑁 =

∑
𝑁

𝑖=1
𝑃
∗

0𝑖

∑
𝑁

𝑖=1
(𝑃
∗

0𝑖
+ 𝑃
∗

1𝑖
(𝑥) + 𝑃

∗

2𝑖
(𝑥))

(40)

=

∑
𝑁

𝑖=1
𝑎
𝑖−1

∑
𝑁

𝑖=1
𝑎
𝑖−1

(1 + 𝜆
ℎ
𝐸
1
) + 𝑎
𝑁−1

𝜆
𝑠
[(𝑁 − 1) 𝐸2

+ 𝐸
3
]

,

(41)

where 𝐸
𝑖
= ∫

∞

0
𝑒
−∫
𝑥

0

𝜇
𝑖
(𝑠)𝑑𝑠

𝑑𝑥 (𝑖 = 1, 2, 3).

From the above availability expression, the system steady-
state availability decreases with the number of the minimal
repair times increasing. So, the system steady-state availabil-
ity is gradually decreasing (for 𝑎 > 1).

Theorem 11. The steady-state failure frequency after the 𝑁th
time repair is

𝑊
𝑓𝑁

=

𝜆
ℎ
∑
𝑁

𝑖=1
𝑎
𝑖−1

+ 𝜆
𝑠
𝑁𝑎
𝑁−1

∑
𝑁

𝑖=1
𝑎
𝑖−1

(1 + 𝜆
ℎ
𝐸
1
) + 𝑎
𝑁−1

𝜆
𝑠
[(𝑁 − 1) 𝐸

2
+ 𝐸
3
]

,

(42)

where 𝐸
𝑖
= ∫

∞

0
𝑒
−∫
𝑥

0

𝜇
𝑖
(𝑠)𝑑𝑠

𝑑𝑥 (𝑖 = 1, 2, 3).
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The proof of Theorem 11 is the same as Theorem 4.1 in
[28].

Of course, we can receive the formulations of the instanta-
neous reliability indices and their corresponding steady-state
values as well, such as the reliability of the system and the
probability of the repairman being busy.

As we all know, the reliability indices are ordinarily
obtained by the Tauberian theorem and Laplacian trans-
formation. However, the proposed method in this paper is
probably more simply and more valuable in some practice
applications, because the only thing needs to be considered is
the eigenvector corresponding to eigenvalue 0 of the system
operator.

In the light of these twomethods, the firstmethod ismore
idealistic and does not exist in real life. Compared with the
firstmethod, the secondmethod ismore practical and simple.

5. Conclusion

In this paper, we dealt with a repairable computer system
which composed of hardware and software in series.We were
dedicated to studying the unique existence and the exponen-
tial stability of the solution of the system. The exponential
stability of the system guaranteed that the stability of the
system was not easy to be affected by some factors such as
failure rate and repair rate. And we presented a new method
to receive the steady-state indices of the system by using
the eigenvector corresponding to eigenvalue 0 of the system
operator. It wasmore simple and practical than the traditional
one.

However, it was well known that it was difficult or even
impossible to obtain the time-dependent solution and the
dynamic indices of the system. This paper presented a new
method to overcome these problems from the view point of
theory.
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