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A numerical procedure proposed by Jang et al. (2011) is applied for the numerical analyzing of static deflection of an infinite
beam on a nonlinear elastic foundation. And one-way spring model is used for the modeling of fully nonlinear elastic foundation.
The nonlinear procedure involves Green’s function technique and an iterative method using the pseudo spring coefficient. The
workability of the numerical procedure is demonstrated through showing the validity of the solution and the convergence test with
some external loads.

1. Introduction

Accurate modeling of nonlinear deflection of an infinite
beam on a nonlinear elastic foundation is crucial for material
and structural engineering. The research can be applied to
strength analysis and practical engineering design applica-
tion, say, to curved plate manufacturing. Therefore, many
theoretical and experimental studies have been carried out
on the nonlinear modeling of an infinite beam on a nonlinear
elastic foundation.

The closed-form solutions for the static and dynamic
response of a uniform beam resting on a linear elastic foun-
dation can be found in several references [1–3]. Timoshenko
[4], Kenney [5], Saito and Murakami [6], and Frýba [7]
formulated a closed-form solution using Green’s function
approach based on a linear assumption. Beaufait andHoadley
[8], Massalas [9], Lakshmanan [10], and Hui [11] proposed
the static, dynamic, and elastic stability analysis of a beam
resting on a nonlinear elastic foundation. And there aremany
researches concerning the linear elastic foundation [12–15].
Among the references, Beaufait and Hoadley [8] approxi-
mated the relationship of the stress-strain curve to be hyper-
bolic, but they approximated the bilinear curve to handle
the nonlinear problem. The applied nonlinear foundation is

active only when the beam is pressing against the foundation,
and it is assumed to be inactive in the regions where the beam
has been displaced away from the foundation. Soldatos and
Selvadurai [16] also applied the hyperbolic-type nonlinear
elastic foundation to analyze finite or infinite beams. Lee
et al. [17–19] developed the exact and semiexact analysis
of a nonuniform beam with general elastic end-restraints.
Kuo and Lee [20] derived the static deflection of a general
elastically end-restrained, nonuniform beam on a nonlinear
elastic foundation under axial and transverse forces.

Recently, Jang et al. [21] proposed a new method for
assessing the nonlinear deflection of an infinite beam on
a nonlinear elastic foundation. They approach the high
nonlinear problems using Green’s function technique with
an iterative method. Jang and Sung [22] proposed a new
functional iterative method for static beam deflection, which
has a variable cross-section. Choi and Jang [23] proved the
existence and uniqueness of the nonlinear deflections of an
infinite beam resting on a nonlinear elastic foundation using
the Banach fixed point theorem. Jang [24] also proposed a
new iterative method for the large deflection of an infinite
beam resting on an elastic foundation based on the v. Karman
approximation of geometrical nonlinearity. From the existing
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Figure 1: Nonlinear elastic foundation model: a nonlinear spring model (one way) and a conventional one (two way).
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Figure 2: An infinite beam on a nonlinear elastic foundation: a nonlinear spring model.

literature, a number of studies have analyzed a beam on
an elastic foundation; however, they just use linear plus a
nonlinear term of spring force, that is, linear-cubic model.
And they are related to the static analysis of nonuniform
beams which is resting on a nonlinear elastic foundation, and
the recovered solution is not accurate or hasmany limits. Few
studies have fully adopted the nonlinear elastic foundation
model, whose spring force is based on one-way springmodel,
as shown in Figure 1. In the real world, at the steady state, the
soil or foundation would not be raised, or they are separable
(in Figures 1 and 2). A nonlinear spring force exists when the
infinite beam deflects downward but does not exist in case of
the other cases.

Although there are many researches, fully nonlinear
elastic foundation was not considered. Beaufait and Hoadley
[8] and Soldatos and Selvadurai [16] approximated the stress-
strain relationship as a bilinear curve. In this paper, one-way
spring model is successfully used to examine the real non-
linear elastic foundation, and the nonlinear iterative method
proposed by Jang et al. [21] is applied. Some numerical exper-
iments are carried out to report the accuracy of the method,
and the convergence of the solution is investigated according
to several physical properties of the system.

2. Mathematical Modeling

2.1. Euler-Bernoulli’s Beam on a Nonlinear Elastic Foundation:
ANonlinear SpringModel. In this paper, the nonlinear spring
force is fully analyzed by the one-way spring model instead of
the conventional mathematical form of the two-way spring
model [25].

The well-known classical Euler-Bernoulli’s beam the-
ory is considered for the solution procedure which is a

simplification of elasticitywhich provides ameans of calculat-
ing the load-carrying and deflection characteristics of beams.
The governing equation for the linear deflection of an infinite
beam on an elastic foundation that satisfies the fourth-order
differential equation is as follows (the weight of the beam is
neglected):

𝐸𝐼
𝑑
4
𝑢

𝑑𝑥4
+ 𝑓 (𝑢) = 𝑤 (𝑥) . (1)

And the reaction force 𝑓(𝑢),
𝑓 (𝑢) = 𝑘 ⋅ 𝑢 + 𝑁 (𝑢) , (2)

and 𝐸, 𝐼, 𝑘, 𝑁(𝑢) and 𝑤(𝑥) are Young’s modulus, the mass
moment of inertia, a linear spring coefficient, a nonlinear part
of spring force, and external load, respectively.

The boundary

𝑢,
𝑑𝑢

𝑑𝑥
,
𝑑
2
𝑢

𝑑𝑥2
, and 𝑑

3
𝑢

𝑑𝑥3
→ 0 as |𝑥| → ∞. (3)

Therefore, (1) and (3) together form a well-defined boundary
value problem. Timoshenko [4], Kenney [5], Saito and
Murakami [6], and Frýba [7] derived the general linear
solutions neglecting the nonlinear part, 𝑁(𝑢), in (2) as
follows:

𝑢 (𝑥) = ∫

∞

−∞

𝐺 (𝑥, 𝜉; 𝑘) ⋅ 𝑤 (𝜉) 𝑑𝜉, (4)

where Green’s function 𝐺 can be defined as

𝐺 (𝑥, 𝜉; 𝑘) =
𝛼

2𝑘
𝑒
−𝛼|𝜉−𝑥|/√2

× sin(
𝛼
𝜉 − 𝑥



√2

+
𝜋

4
) , 𝛼 =

4
√𝑘/𝐸𝐼.

(5)
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Figure 3: Exact solutions in Table 1.
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Figure 4: Applied loading conditions corresponding to the exact solution in Table 1.

The loading condition is assumed to be localized, so 𝑢(𝑥)

in (4) satisfies the boundary conditions in (3). Deriving the
linear solution in (4), a uniformly upward, nonlinear spring
force depends on the beam deflection 𝑢.

In this study, the main idea of the present study is pro-
posed by Jang et al. [21]. The nonlinear spring model is used
for the formulation of a realistic nonlinear elastic foundation.
A pseudo linear spring coefficient 𝑘

𝑝
and a (real) spring

force 𝑓(𝑢) are used. Therefore, the fourth-order differential
equation in (1) is equivalent to the following equation:

𝐸𝐼
𝑑
4
𝑢

𝑑𝑥4
+ 𝑘
𝑝
𝑢 + 𝑓 (𝑢) = 𝑤 (𝑥) + 𝑘

𝑝
𝑢, (6)

where the nonlinear spring force𝑓 depends on the deflection
𝑢:

𝑓 (𝑢) = {
𝑘 ⋅ 𝑢 + 𝑁 (𝑢) , for 𝑢 ≥ 0
0, for 𝑢 < 0,

(7)

or

𝐸𝐼
𝑑
4
𝑢

𝑑𝑥4
+ 𝑘
𝑝
𝑢 = 𝑤 (𝑥) + 𝑘

𝑝
𝑢 − 𝑓 (𝑢) ≡ 𝜙. (8)

Table 1: Three cases of the exact solution.

Case Exact solution 𝑢(𝑥)
a 𝑒

−𝑥
2

b Sin𝑥 ⋅ 𝑒−𝑥
2

c Sin 𝑥 ⋅ 𝑒−𝑥
2
/4

In (8), 𝑘
𝑝
𝑢 is the pseudolinear spring force term and is finally

compensated, so it does not affect the nonlinear solution.
Therefore, (4) shows that (8) must be equivalent to the

following equation:

𝑢 (𝑥) = ∫

∞

−∞

𝐺(𝑥, 𝜉; 𝑘
𝑝
) ⋅ 𝜙 (𝜉) 𝑑𝜉, (9)

where Green’s function with pseudo linear spring coefficient
can be expressed as

𝐺(𝑥, 𝜉; 𝑘
𝑝
) =

𝛽

2𝑘
𝑒
−𝛽|𝜉−𝑥|/√2

× sin(
𝛽
𝜉 − 𝑥



√2

+
𝜋

4
) , 𝛽 =

4
√𝑘
𝑝
/𝐸𝐼.

(10)
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Figure 5: Numerical solutions compared to the exact solutions.

Regarding (8), the nonlinear relation for 𝑢 can be derived as
follows:

𝑢 (𝑥) = ∫

∞

−∞

𝐺(𝑥, 𝜉; 𝑘
𝑝
) ⋅ 𝑤 (𝜉) 𝑑𝜉

+ ∫

∞

−∞

𝐺(𝑥, 𝜉; 𝑘
𝑝
) ⋅ 𝐾 [𝑢 (𝜉)] 𝑑𝜉,

(11)

where the function𝐾 can be written as

𝐾 (𝑢) = 𝑘
𝑝
⋅ 𝑢 − 𝑓 (𝑢) . (12)

Equation (11) is a nonlinear Fredholm integral equation of the
second kind for 𝑢.

2.2. Iterative Procedure. From (11), the nonlinear iterative
procedure is applied [21–24]

𝑢
𝑛+1

(𝑥) = ∫

∞

−∞

𝐺(𝑥, 𝜉; 𝑘
𝑝
) ⋅ 𝑤 (𝜉) 𝑑𝜉

+ ∫

∞

−∞

𝐺(𝑥, 𝜉; 𝑘
𝑝
) ⋅ 𝐾 [𝑢

𝑛
(𝜉)] 𝑑𝜉,

(13)

where𝐾(𝑢) satisfies (7) and (12).

To examine the nonlinear iterative procedure in (13) by
simulation, it should be discretized as follows:

𝑢
𝑛+1

(𝑥) =

N
∑

𝑗=1

𝑊
𝑗
{𝐺 (𝑥, 𝜉

𝑗
; 𝑘
𝑝
) ⋅ 𝑤 (𝜉

𝑗
)

+ 𝐺 (𝑥, 𝜉; 𝑘
𝑝
) ⋅ 𝐾 [𝑢

𝑛
(𝜉
𝑗
)]} ,

𝑗 = 0, 1, 2, . . . , 𝑁,

(14)

where 𝑊
𝑗
denotes the weights for the integration rule. The

number 𝑁 in the summation of (14) denotes the total
segments of the interval (−𝑅, 𝑅), and 𝑅 is a sufficiently large
value satisfying (3).

3. Numerical Experiments

In this section, numerical experiments are performed to
determine the validity of the iterative method. This study
assumes a nonlinear spring force 𝑓(𝑢) in (7) and examines
how accurate the solution converges to an exact solution.The
convergence of themethod is investigated with some external
loading conditions.
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Figure 6: Convergence behaviors of the iterative solutions.

3.1. Nonlinear Spring Model. For simplicity, the present study
considers an infinite beam on a nonlinear elastic foundation,
whose spring force is derived as follows:

𝑓 (𝑢) = {
𝑘 ⋅ 𝑢 + 𝛾 ⋅ 𝑢

3
, for 𝑢 ≥ 0

0, for 𝑢 < 0,
(15)

where𝑁(𝑢) in (7) is chosen immediately as a cubic form

𝑁(𝑢) = 𝛾 ⋅ 𝑢
3
. (16)

3.2. Comparison with Exact Solution. To determine if the
iterative method converges to an exact solution, the 3 cases
of exact solutions listed in Table 1 are first assumed and are
illustrated in Figure 3. These cases are chosen to be infinitely
differentiable and satisfy the conditions in (3). The following
are assumed: 𝐸 = 𝐼 = 𝑘 = 1, 𝑘

𝑝
= 3, and 𝛾 = 0.2, and the

initial guess of the deflection is 𝑢
0
= 0. Simpson’s integration

rule is applied to the numerical integration. Three cases of
external loads, shown in Figure 4 are obtained by substitut-
ing the exact solutions in Table 1 to (6). Under the load-
ing condition, the nonlinear iterative method in Section 2

is applied to obtain the solution. Figure 5 compares the exact
and numerical solutions, and Figure 6 shows the convergence
behavior of the solutions in Figure 5. The errors of the solu-
tions at the 𝑛th iteration are defined as follows:

Error (𝑛) =
𝑢exact − 𝑢𝑛

2
𝑢exact

2

, where ‖𝑧‖
2
≡ (

𝑁

∑

𝑖=1

𝑧𝑖


2

)

1/2

.

(17)
Three cases of Error (𝑛) are plotted as a function of the
iteration number in Figure 7. The solutions converge at 200–
300 iterations.

3.3. Convergence of the Procedure. The accuracy of the
applied iterative method for the nonlinear spring model is
proven in Section 3.2. In this section, 2 cases of loading
conditions are investigated to show the convergence of the
solutions.

The locally distributed rectangular-type loadings in
Figure 8 are taken

𝑤normal (single) (𝑥) = {
1 |𝑥| ≤ 1

0 otherwise.
(18)
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Figure 7: Errors between the exact solutions and iterative solutions.
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Figure 8: Applied loading.

Figure 9 presents the convergence behavior of the solutions
according to the 3 cases of 𝑘

𝑝
: 𝐸 = 𝐼 = 𝑘 = 1

and 𝛾 = 0.2. As specified in Section 2.1, 𝑘
𝑝
does not

affect the converged iterative solutions, but the convergence
characteristics changed. The solution converged to a steady
state faster when 𝑘

𝑝
is small.

In Figure 10, two cases of converged solutions are com-
pared: the numerical results using the one-way and two-way
spring models. The loading condition is 𝑤normal (single)(𝑥) in
(18).They are different only when the beamdeflected upward;
that is, the deflections near 𝑥 = ±5 are larger when the beam
is separable (or free) from the foundation, whereas the one-
way spring model is not. Of course, at 𝑥 = 0, the solutions are
equivalent because the physical system is the same in Figure 1

for 𝑢 > 0. Therefore, Figure 10 shows the validity of the
applied iterative method for the nonlinear spring model.

Another loading condition in Figure 11 is taken as follows:

𝑤normal (𝑥) = {
1 4 ≤ |𝑥| ≤ 5, 1 ≤ |𝑥| ≤ 2

0 otherwise.
(19)

Other numerical experiments are also conducted according
to the 3 cases of a linear spring coefficient 𝑘, whereas the
properties (𝐸 = 𝐼 = 𝑘 = 1 and 𝛾 = 0.2) are fixed, and
the solution converged (Figure 12). Figure 13 compares the
solutions from the one-way and two-way spring models: 𝐸 =

𝐼 = 𝑘 = 1, 𝛾 = 0.2, and 𝑘
𝑝
= 3.



Journal of Applied Mathematics 7

−0.2

0

0.2

0.4

0.6

0.8

𝑛 = 1

𝑛 = 2

𝑛 = 5

𝑛 = 10

𝑛 = 30

−20 −10 0 10 20
𝑥

−15 −5 5 15

𝑢
(
𝑥
)

(a)

−0.2

0

0.2

0.4

0.6

0.8

𝑛 = 1

𝑛 = 3

𝑛 = 10

𝑛 = 30

𝑛 = 60

−10 0 10 20
𝑥

−15 −5 5 15

𝑢
(
𝑥
)

−20

(b)

−0.2

0

0.2

0.4

0.6

0.8

𝑛 = 1

𝑛 = 3

𝑛 = 10

𝑛 = 40

𝑛 = 90

−10 0 10 20
𝑥

−15 −5 5 15

𝑢
(
𝑥
)

−20

(c)

Figure 9: Convergence behavior of the applied iterative method 𝐸 = 𝐼 = 𝑘 = 1, 𝛾 = 0.2: (a) 𝑘
𝑝
= 3, (b) 𝑘

𝑝
= 6, and (c) 𝑘

𝑝
= 10.

−20 −10 0 10 20
𝑥

𝑢
(
𝑥
)

One way
Two way

0

0.2

0.4

0.6

0.8

−0.2

(a)

One way
Two way

−5 0 5

−0.04

−0.02

0

0.02

0.04

0.06

𝑥

𝑢
(
𝑥
)

(b)

Figure 10: Validity of the solution.
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Figure 11: Applied loading conditions.
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Figure 12: Convergence behavior of the solutions 𝐸 = 𝐼 = 1, 𝛾 = 0.2, and 𝑘
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= 3: (a) 𝑘 = 1, (b) 𝑘 = 1.5, and (c) 𝑘 = 2.

Finally, the validity and accuracy of the applied iterative
procedure are investigated. The nonlinear spring force is
considered, and the iterative procedure is applied successfully
for the solution. Convergence of the deflections according to
the external loading conditions is observed for the effects of
the pseudo 𝑘

𝑝
and real 𝑘.

4. Conclusion

In this work, we succeeded in applying the numerical method
proposed by Jang et al. [21] to find the static deflection of
an infinite beam on a full nonlinear elastic foundation. For
that, one-way spring model is considered for the formulation
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of the nonlinear elastic one. Since the problem concerns
one-way spring force, the governing equation for the static
beam deflection is transformed as in (11). For the solution, an
iterative procedure is applied for the calculation of the high
nonlinearity. Some numerical experiments are carried out for
showing the validity and the fast convergence of the applied
numerical method. And we can also find that the results
converge to the solutions fast for certain external loads.
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