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Annual Crop Planning (ACP) is an NP-hard-type optimization problem in agricultural planning. It involves finding optimal
solutions concerning the seasonal allocations of a limited amount of agricultural land amongst the various competing crops that
are required to be grown on it. This study investigates the effectiveness of employing three new local search (LS) metaheuristic
techniques in determining solutions to an ACP problem at a new Irrigation Scheme. These three new LS metaheuristic techniques
are the Best Performance Algorithm (BPA), Iterative Best Performance Algorithm (IBPA), and the Largest Absolute Difference
Algorithm (LADA). The solutions determined by these LS metaheuristic techniques are compared against the solutions of two
other well-known LS metaheuristic techniques in the literature. These techniques are Tabu Search (TS) and Simulated Annealing
(SA). The comparison with TS and SA was to determine the relative merits of the solutions found by BPA, IBPA, and LADA. The
results show that TS performed as the overall best. However, LADA determined the best solution that was the most economically
feasible.

1. Introduction

Increases in population growth have increased the need for
more food to be produced throughout the world. At present,
the shortages in food supply have resulted in the problem of
starvation, being a hard-felt reality in the lives of millions of
people.This is particularly true in the 4th world countries. To
combat this problem for the future, the productivity of food
needs to increase.

The sector, that is, the primary supplier of food in the
world, is the agricultural sector [1]. To try and meet the
growing demands for food, the agricultural sector needs to
increase its output. Optimizing the production of food at the
current agricultural practices is important but is not enough
to meet the future demands. To produce more food in the
future, more land must be made available for agricultural
production.

The allocations of land, for agricultural production, will
depend on the decisions made by the local authorities.

For land to be allocated, it needs to be accessed to determine
its feasibility for agricultural production and if the crops
grown on it will be sustainable in the future.This is important
for economic development.

To determine the agricultural potential of a given area
of land, several factors will need to be considered. The
main factors considered are the soil characteristics and
climate conditions [2]. For crop production, these factors will
determine the types of crops that will most suitably adapt to
the given environmental conditions. Other important factors
considered are the natural land resources and agricultural
trends, amongst others.

Natural land resources such as lakes and rivers are
very valuable commodities. They can be used to source
irrigated water. Irrigated water and rainfall are important in
determining the full agricultural potential of a given area of
agricultural land. The agricultural trends will determine the
types of crops that will be the most suitable for economic
benefits.
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When an area of land gets allocated for the development
of a new Irrigation Scheme, and it has been finalized which
crops will be cultivated, then solutions need to be found
concerning the hectare allocations amongst the competing
crops. In determining the hectare allocations, it needs to
be considered that different types of crops grow in different
seasons, grow for different lengths of time, and have different
plant requirements.These factorsmust be considered in order
to determine feasible solutions.

The problem of trying to optimize the seasonal hectare
allocations, of a given area of agricultural land amongst
the various competing crops that are required to be grown
within a year, is an NP-hard-type optimization problem in
agricultural planning called Annual Crop Planning (ACP).
ACP aims at determining solutions that seek to maximize
the total gross profits that can be earned from a given area
of agricultural land, in making the most efficient uses of
the limited resources available for agricultural production.
Limited resources include land, irrigated water supply, and
the various costs associated with agricultural production.The
solutions found must satisfy the multiple land and irrigation
water allocation constraints that are associated with ACP, in
order to be feasible.

This research introduces a new Annual Crop Planning
mathematical model. The model has been formulated by the
authors of this paper. It is intended to be used to determine
solutions to the ACP problem at a new Irrigation Scheme.

Previous studies in crop and irrigation planning have
used both single and multiobjective mathematical mod-
els. Many optimization techniques have been used to pro-
vide solutions to these models. These include Linear Pro-
gramming (LP), Simulated Annealing (SA), Particle Swarm
Optimization (PSO), and Evolutionary Algorithms (EA’s),
amongst others.

Pant et al. [3] employed the Differential Evolution (DE)
algorithm to provide solutions to a crop planning problem
under adequate, normal and limited irrigated water supply.
The objective was to maximize the net benefits gained under
these conditions. It was found that DE performed better than
the programming tool LINGO. In [4], Pant et al. investigated
the performances of four EA’s in providing solutions to a crop
planning problem. These algorithms included the Genetic
Algorithm (GA), PSO, DE, and Evolutionary Programming
(EP). Solutions were also determined using LINGO. The
solutions found showed that, from all heuristic algorithms,
GA performed poorly and that DE, PSO, and EP were all
comparable. Georgiou and Papamichail [5] used SA in com-
bination with the Stochastic Gradient Descent Algorithm to
determine solutions concerning the optimized water release
policies of a reservoir. The released water needed to be
allocated efficiently amongst the various crops being grown.
To maximize profits, the “optimal” cropping pattern needed
to be determined. Wardlaw and Bhaktikul [6] used GA to
solve a problem of irrigated water scheduling, using a 0-
1 approach. The research found that GA performed well
in being able to distribute irrigated water to several farm
plots in satisfying the soil moisture content levels, under
water stress conditions.The water allocations were done on a
rotational basis. Sarker andRay [7] proposed an improved EA

known as theMultiobjective Constrained Algorithm (MCA).
MCA was used to provide solutions to a multiobjective crop
planning problem. The research found that MCA performed
relatively better compared to the two other optimization tech-
niques used. These techniques included the 𝜀-constrained
method and the Nondominated Sorting Genetic Algorithm
(NSGAII). Raju and Kumar [8] compared the performances
of GA and LP in providing solutions to a crop planning
problem. The objective was to maximize the net benefits
gained.The performances of GA and LP were relatively close.
It was concluded that GA is an effective heuristic algorithm
that can be used for irrigation planning. Reddy andKumar [9]
studied the effectiveness of using Elitism-Mutation Particle
Swarm Optimization (EMPSO) in determining the short-
term release policies of irrigated water from a reservoir,
under water scarce conditions. The study concluded that
the heuristic algorithm is effective in providing short-term
solutions for multicrop irrigation.

This research introduces three new local search (LS)
metaheuristic algorithms in the literature. These algorithms
are called the Best Performance Algorithm (BPA), the Iter-
ative Best Performance Algorithm (IBPA), and the Largest
Absolute Difference Algorithm (LADA). These algorithms
are used to provide solutions to an ACP problem at a new
Irrigation Scheme. To determine the relative merits of the
solutions provided by these algorithms, their solutions have
been compared against the solutions of two traditional LS
metaheuristic algorithms in the literature. These popular
metaheuristic algorithms are Tabu Search (TS) and Simulated
Annealing (SA). The solutions determined and comparisons
made will indicate the possible strengths and/or weaknesses
of the LS algorithms, in determining solutions to this ACP
problem. The solutions found will be valuable in making
suggestions concerning the seasonal hectare allocations for
the crops that are required to be grown.

The rest of this paper is structured as follows. Section 2
describes and presents the formulation of the ACP mathe-
maticalmodel. Section 3 describes the case study of theTaung
Irrigation Scheme. Section 4 describes the SI metaheuristic
algorithms used. Section 5 presents and discusses the experi-
mental results obtained. Finally, Section 6 draws conclusions
and outlines possible future work.

2. The Annual Crop Planning
Mathematical Model

This Annual Crop Planning (ACP) mathematical model has
been formulated by the authors of this paper. It is intended to
be used to determine solutions to the Annual Crop Planning
problem at a new Irrigation Scheme. The feasible solutions
found must allocate the limited amount of agricultural land
amongst the various competing crops that are required to
be grown within the year. These solutions must satisfy all
the constraints associated with the objective function. The
objective in determining an optimal solution is to maximize
the total gross profits that can be earned, in making the
most efficient usage of the limited resources available. The
limited resources include land, irrigated water supply, and
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the variable costs associated with agricultural production. To
determine feasible solutions, it must be taken into account
that the different types of crops grow in different seasons,
grow for different lengths of time, and have different plant
requirements. To make efficient use of irrigated water supply,
precipitation must be taken into account.

The crops cultivated for agricultural production include
those that are grown all year around. These are the tree
bearing crops and perennials. Other crop types include the
seasonal crops such as the summer, autumn, and winter
crops, amongst others. Single-crop plots of land are allocated
to those crops that are grown all year around. Double-crop
plots of land are allocated to two different types of crops that
are grown in sequence within the year. Triple-crop plots of
land are allocated to three different types of crops that are
grown in sequence within a year and so on.

Soil characteristics are also a factor in crop planning.
Certain crops may adapt well only to certain types of soils.
Therefore, the utilization of land is important for optimal
yields. Irrigation application is also important. Too much or
too little applications of water will lead to suboptimal plant
growth. This will affect the yield of the crop. Soils are also
sensitive to leaching due to excessive water applications [1].
Therefore, the seasonal irrigated water allocations amongst
the various crops need to be well planned.

The ACP mathematical model for determining solutions
at a new Irrigation Scheme is formulated as follows.

2.1. Indices

(i) 𝑘: plot types (1 = single-crop plots, 2 = double-crop
plots, 3 = triple-crop plots, etc.).

(ii) 𝑖: indicative of the groups of crops that are grown in
sequence throughout the year, on plot type 𝑘 (𝑖 = 1

represents the 1st group of sequential crops, 𝑖 = 2

represents the 2nd group of sequential crops, 𝑖 = 3

represents the 3rd group of sequential crops, etc.).
(iii) 𝑗: indicative of the individual crops grown at stage 𝑖,

on plot 𝑘.

2.2. Input Parameters

(i) 𝑙: number of different plot types.
(ii) 𝑁𝑘: number of sequential groups of crops grown

within a year, on plot 𝑘.
(iii) 𝑀𝑘𝑖: number of different types of crops grown at stage

𝑖, on plot 𝑘.
(iv) 𝐹𝑘𝑖𝑗: average fraction per hectare of crop 𝑗, at stage

𝑖, on plot 𝑘, which needs to be irrigated (1 = 100%
coverage, 0 = 0% coverage).

(v) 𝑅𝑘𝑖𝑗: averaged rainfall estimates that fall during the
growing months for crop 𝑗, at stage 𝑖, on plot 𝑘.

(vi) CWR𝑘𝑖𝑗: crop water requirements of crop 𝑗, at stage 𝑖,
on plot 𝑘.

(vii) 𝑇: total hectares of land allocated for the irrigation
scheme.

(viii) 𝐴: volume of irrigated water that can be supplied per
hectare (ha−1).

(ix) 𝑃: price of irrigated water m−3.
(x) 𝑂𝑘𝑖𝑗: other operational costs ha

−1 of crop 𝑗, at stage 𝑖,
on plot 𝑘. These costs exclude the cost of irrigation.

(xi) 𝑌𝑅𝑘𝑖𝑗: the amount of yield that can be obtained in tons
per hectare (t ha−1) from crop 𝑗, at stage 𝑖, on plot 𝑘.

(xii) 𝑀𝑃𝑘𝑖𝑗: producer prices per ton (t
−1) for crop 𝑗, at stage

𝑖, on plot 𝑘.
(xiii) 𝐿𝑏𝑘𝑖𝑗: lower bound for crop 𝑗, at stage 𝑖, on plot 𝑘.
(xiv) 𝑈𝑏𝑘𝑖𝑗: upper bound for crop 𝑗, at stage 𝑖, on plot 𝑘.
(xv) 𝐿𝑏 𝑃𝑘: lower bound for plot type 𝑘.
(xvi) 𝑈𝑏 𝑃𝑘: upper bound for plot type 𝑘.

2.3. Calculated Parameters

(i) 𝐼𝑅𝑘𝑖𝑗: volume of irrigated water estimates that should
be applied to crop 𝑗, at stage 𝑖, on plot 𝑘 (𝐼𝑅𝑘𝑖𝑗𝑚

3
=

(CWR𝑘𝑖𝑗𝑚 − 𝑅𝑘𝑖𝑗𝑚) ∗ 10000𝑚
2
∗ 𝐹𝑘𝑖𝑗).

(ii) 𝑇𝐴: total volume of irrigated water that can be
supplied to the given area of land, within a year (𝑇𝐴 =

𝑇 ∗ 𝐴).
(iii) 𝐶 𝐼𝑅𝑘𝑖𝑗: the cost of irrigated water ha−1 of crop 𝑗, at

stage 𝑖, on plot 𝑘 (𝐶 𝐼𝑅𝑘𝑖𝑗 = 𝐼𝑅𝑘𝑖𝑗 ∗ 𝑃).

(iv) 𝐶𝑘𝑖𝑗: variable costs ha
−1 of crop 𝑗, at stage 𝑖, on plot

𝑘 (𝐶𝑘𝑖𝑗 = 𝑂𝑘𝑖𝑗 + 𝐶 𝐼𝑅𝑘𝑖𝑖𝑗).

(v) 𝐵𝑘𝑖𝑗: gross margin that can be earned ha−1 for crop 𝑗,
at stage 𝑖, on plot 𝑘 (𝐵𝑘𝑖𝑗 = 𝑀𝑃𝑘𝑖𝑗 ∗ 𝑌𝑅𝑘𝑖𝑗 − 𝐶𝑘𝑖𝑗).

2.4. Variables

(i) 𝐿𝑘: total area of land allocated for agricultural pro-
duction for plot type 𝑘.

(ii) 𝑋𝑘𝑖𝑗: area of land, in hectares, that can be feasibly
allocated to crop 𝑗, at stage 𝑖, on plot 𝑘.

2.5. Objective Function. Maximize

𝑓 =

𝑙

∑

𝑘=1

𝑁𝑘

∑

𝑖=1

𝑀𝑘𝑖

∑

𝑗=1

𝑋𝑘𝑖𝑗𝐵𝑘𝑖𝑗. (1)

In (1), 𝑘 represents the plot types. 𝑘 = 1 indicates the
single-crop plots, 𝑘 = 2 indicates the double-crop plots, and
so on. For each plot type 𝑘, 𝑖 is indicative of the number of
groups of crops that are grown in sequence throughout the
year. For 𝑘 = 1, 𝑁𝑘 (or 𝑁1) will be equivalent to 1. This will
represent the group of crops that are grown all year around.
For 𝑘 = 2, 𝑁𝑘 = 2. This will represent two groups of crops
that are grown in sequence throughout the year.These are the
summer and winter crop groups. The explanation is similar
for 𝑘 = 3, and so on. For each sequential crop group 𝑖, grown
on plot 𝑘, 𝑗 will represent the individual crops grown. For
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𝑘 = 1 and 𝑖 = 1, 𝑗 will be indicative of all the tree bearing
and perennial crops grown. For 𝑘 = 2 and 𝑖 = 1, 𝑗 will be
indicative of all the summer crops grown. For 𝑘 = 2 and 𝑖 = 2,
𝑗 will be indicative of all the winter grown, and so on.

Equation (1) is subjected to the land and irrigated water
allocation constraints given in Sections 2.6 and 2.7.The gross
benefits 𝐵𝑘𝑖𝑗 that can be earned per crop must also satisfy the
nonnegative constraint given in Section 2.8.

2.6. Land Constraints. Feasible solutions must satisfy the
lower and upper bound constraints of the plot types 𝑘. This
constraint is given in

𝐿𝑏 𝑃𝑘 ≤ 𝐿𝑘 ≤ 𝑈𝑏𝑃𝑘
, ∀𝑘, 𝑖, 𝑗. (2)

The sumof the hectares allocated for each plot type 𝑘must
be less than or equal to 𝑇. This constraint is given by

𝑙

∑

𝑘=1

𝐿𝑘 ≤ 𝑇. (3)

The sum of the hectares allocated for each crop 𝑗, at stage
𝑖, on plot 𝑘, must be less than or equal to the total area of
land allocated for agricultural production on plot type 𝑘.This
constraint is given by

𝑀𝑘𝑖

∑

𝑗

𝑋𝑘𝑖𝑗 ≤ 𝐿𝑘, ∀𝑘, 𝑖. (4)

The lower and upper bound constraints for each crop
must be satisfied. This constraint is given by

𝐿𝑏𝑘𝑖𝑗 ≤ 𝑋𝑘𝑖𝑗 ≤ 𝑈𝑏𝑘𝑖𝑗, ∀𝑘, 𝑖, 𝑗. (5)

2.7. IrrigationConstraints. The total volume of irrigatedwater
that is required for the production of all crops, within the
year, must be less than or equal to the total volume of
irrigated water that can be supplied to the given area of land.
This constraint considers that some crops may require more
irrigated water than what is supplied ha−1. It is therefore
the responsibility of the farmer to distribute his supply of
irrigated water efficiently. This constraint is given by (6)
below:

∑

𝑘

∑

𝑖

∑

𝑗

𝐼𝑅𝑘𝑖𝑗 ≤ 𝑇𝐴. (6)

2.8. Nonnegative Constraints. The gross profits that can be
earned per crop must be greater than zero. This constraint is
given by

𝐵𝑘𝑖𝑗 > 0, ∀𝑘, 𝑖, 𝑗. (7)

3. Case Study

The Taung Irrigation Scheme (TIS) is situated in the Taung
District, in the North West Province of South Africa. It is a
neighbouring Irrigation Scheme to the Vaalharts Irrigation

Scheme (VIS). The VIS is one of the largest Irrigation
Schemes in the world. TIS currently consists of a total of
3,764 ha of irrigated land [2].

The irrigated water currently supplied to the TIS is drawn
from the Vaal River and is supplied via the Vaalharts Canal
System. The Vaalharts Canal System also supplies irrigated
water to the VIS. The irrigated water supplied to the TIS
is supplied at a basic quota of 8,417m3 ha−1 annum−1 to the
farmers [2].

Located in the area of the TIS is the Taung Dam. At full
capacity the dam consists of a total volume of 62.97 million
m3 of water. The dam was originally constructed to supply
irrigatedwater to theTIS, but no infrastructure had been built
to do so.

A recent survey [2] had been done to determine if
extending the existing TIS would be feasible in developing
new irrigated areas. If it is found that the adjacent portions
of land are feasible, then the irrigated water supplied to the
TIS will be drawn from the Taung Dam.

The survey found that 3,315 ha are acceptable for agri-
cultural production. It is also believed that agricultural
production on this portion of land will match the high
agricultural output of the neighbouring VIS.

The current expansion of the TIS will cater for 175 people
that had been previously excluded from the land. A total of
1,750 ha (10 ha per person) will now be allocated to them for
restitution. According to the choices of the local department
of agriculture and the local farmers, themost suitable crops to
be cultivated on this portion of land are those listed in Table 1
[2].

The crops consist of Lucerne, which is grown all year
around (y). The rest of the crops are the summer (s) and
winter (w) crops. Lucerne will be grown on single-crop plots
of land. The summer and the winter crops will be grown on
double-crop plots of land.

To determine solutions concerning the seasonal hectare
allocations, amongst the various competing crops that are
required to be grown, the Crop Water Requirements (CWR)
and the Average Rainfall (AR) statistics need to be deter-
mined. The AR values are the average amounts of rain that
is expected to fall during the growing months of each crop.
TheCWR is provided by [2].The average rainfall statistics are
obtained from [10].

The producer prices per ton (ZAR t−1)of yield are deter-
mined from [11, 12] (ZAR stands for Zuid-Afrikaanse Rand
which is the Dutch translation of “South African Rand.” The
Rand is the currency in South Africa). The yield expected
(t ha−1) per crop is determined from [13]. The water quota
of 8,417m3 ha−1annum−1 will remain the same. The cost of
irrigated water is 8.77 cents/m3 [14].

4. Methodology

Heuristic algorithms are decision algorithms that use trial
and error techniques in determining the next solution from
the solution space. Without using “intelligent” techniques,
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Table 1: Crop and average rainfall statistics.

Crops CWR (mm) AR (mm) ZAR t−1 t ha−1

Lucerne (y) 1,445 444.7 1,185.52 16.0
Tomato (s) 1,132 350.8 4,332.00 50.0
Pumpkin (s) 794 279.0 1,577.09 20.0
Maize (s) 979 279.0 1,321.25 9.0
Ground Nut (s) 912 339.5 5,076.00 3.0
Sunflower (s) 648 314.9 3,739.00 3.0
Barley (w) 530 58.3 2,083.27 6.0
Onion (w) 429 177.0 2,397.90 30.0
Potato (w) 365 152.8 2,463.00 28.0
Cabbage (w) 350 152.8 1,437.58 50.0

the heuristic algorithms can suffer from premature con-
vergence. Premature convergence occurs when the algo-
rithm gets stuck within a local neighbourhood structure of
the solution space, where the local optima are not close
enough to the global optima. To reduce the possibility of
premature convergence,many heuristic algorithms have been
developed using more intelligent techniques. Some of these
techniques include using memory abilities, having the ability
to randomly “jump” to other neighbourhood structures of
the solution space and having the ability to learn from
other “agents,” amongst others. Heuristic algorithms that use
intelligent techniques, in determining stochastic solutions,
are called metaheuristic algorithms.

There are two types of metaheuristic algorithms. These
are the global search (GS) and local search (LS)metaheuristic
algorithms. GS algorithms aim at exploring the domains of
the solution space in the hope of trying to find the global
optimum solution. LS metaheuristic algorithms exploit the
local neighbourhood structures of the solution space in the
hope of trying to find the local optimum solutions. The
best local optimum solution found by both the GS and
LS techniques represents the best solution found by the
algorithms. Both GS and LS metaheuristic algorithms have
provided effective solutions to many real-world optimization
problems that are NP-hard in nature.

This research introduces three new LS metaheuristic
algorithms in the literature. These algorithms have been
developed by the authors of this paper. The algorithms are
called the Best Performance Algorithm (BPA), the Itera-
tive Best Performance Algorithm (IBPA), and the Largest
Absolute Difference Algorithm (LADA). To investigate the
effectiveness of these algorithms, they have been used to
try and determine solutions to the ACP problem at the
TIS. To determine the relative merits of their solutions,
their solutions will be compared against the solutions of
two traditional LS metaheuristic algorithms in the litera-
ture. These algorithms are Tabu Search (TS) and Simulated
Annealing (SA). Descriptions of these algorithms are given
in the following subsections.

4.1. Best PerformanceAlgorithm. TheBest PerformanceAlgo-
rithm is modelled on the competitive nature of professional
athletes. Professional athletes desire to push the boundaries

of their best performances within competitive environments.
This occurs for several reasons.The reasons could be personal
and/or financial, amongst others. However, to give off their
best performances, the athletes need to strategize and prac-
tice. Strategizing and practice will help them improve their
talents, in developing refined skills. These refined skills will
enable the athletes to perform at their best within competitive
environments, irrespective of their sporting disciplines.

An effective strategy used in improving performances
is to make use of technology. Technology can be used to
identify the weaknesses and strengths of the athletes in them
delivering a performance. By identifying and then strength-
ening their weaknesses or even developing new techniques, in
delivering a performance, an athlete could possibly register
improved performances in being competitive. One way to
identify an athlete’s weaknesses and strengths is to maintain
an archive or a collection of the athlete’s best registered
performances. This collection will provide a reference to
which the athlete can go back to in order to review the way a
previous best performance was delivered. Once weaknesses
are identified, appropriate changes can be made to the
techniques used in delivering a performance. This will help
the athlete develop refined skills which will improve the
chances of the athlete delivering improved performance. Best
performances can include those performed within competi-
tive environments and even those performed during training
sessions. Modelled on the idea of an athlete maintaining a
collection of a limited number of his/her best performances
is how BPA is implemented.

BPA is implemented by maintaining a sorted list of the
best performances of an individual athlete. This list is called
the Performance List (PL). The PL only maintains a limited
number of the best recorded performances of an athlete, as
the athlete will only be interested in working with a limited
number of his/her best recordedperformances. Performances
are arranged according to the “quality” of the performances
delivered. The quality of a performance is a measure of the
result obtained in executing that performance.The better the
quality of a performance is the higher up on the PL will be its
ranking.

In trying to develop refined skills or possibly determining
a new technique, which may lead to improved performances
being delivered, the athlete will review a performance from
the PL and will seek to make appropriate changes. By making
slight changes (performing local search) in the way that the
reviewed performance was delivered, an improved technique
may be determined which may lead to a better quality
performance. If an improved technique is found, then the
PL will be updated with this performance, provided that it at
least improves on theworst registered performance on the PL.
When improved performances get inserted into the PL, the
worst performance gets removed. The sorted order of the PL
must always be maintained. Any improved technique found
which produces a performance that results in the quality of
that performance being identical to the quality of another
performance, that is, already registered on the PL, will not be
considered.

Upon making slight changes to the technique used in
delivering a previous performance, which results in an
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(1) Set the index variable, 𝑖𝑛𝑑𝑒𝑥 = 0

(2) Set the size of the Performance List, 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒
(3) Initialize probability, 𝑝𝑎
(4) Populate the Performance List (PL) with random

solutions
(5) Calculate the fitness values of the solutions in 𝑃𝐿, i.e.

𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠

(6) Sort 𝑃𝐿 and 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 according to 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠

(7) Initialize 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 to 𝑃𝐿𝑖𝑛𝑑𝑒𝑥
(8) for 𝑖 to 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
(8.1) 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Perform Local Search (𝑤𝑜𝑟𝑘𝑖𝑛𝑔)
(8.2) 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Evaluate (𝑤𝑜𝑟𝑘𝑖𝑛𝑔)
(8.3) if𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 better than 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒−1 then

(8.3.1) Update 𝑃𝐿 with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔
(8.3.2) Update 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 with 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

(8.4) end if
(8.5) if random[0, 1] > 𝑝

𝑎
then

(8.5.1) 𝑖𝑛𝑑𝑒𝑥 = Select index,
e.g. Random[0, 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒]

(8.5.2) 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = 𝑃𝐿𝑖𝑛𝑑𝑒𝑥

(8.6) end if
(9) end for
(10) return 𝑃𝐿0

Algorithm 1

updated technique, the athlete may want to continue making
slight changes to the updated techniques if he/she desires to
do so. If the athlete wants to work with another performance
from the PL, then the athlete will choose to do so. If improved
techniques are found along the way, then the PL will get
updated accordingly. After a sufficient amount of time, with
enough strategizing and implementation, the athlete will
determine the best technique to use, whichwill allow him/her
to perform at best.

From a heuristic perspective, the best performances
recorded on the PL refer to the best solutions found by
the heuristic algorithm. The performance/solution that the
athlete will consider working with is called the “working”
solution. Local changes (slight changes) are made to this
working solution in the hope of trying to determine an
improved solutionwithin the local neighbourhood structures
of the solution space. If updated working solutions at least
improve on the worst solution found on the PL, then the PL
will get updated. The athlete will continue working with this
updated working solution for the next iteration or choose
another solution from the PL to be its new working solution,
given a certain probability. The probability symbolizes the
athletes’ willingness to continue working with an updated
working solution or not.

PL will always only get updated with solutions that give
unique performance results. This will prevent the algorithm
from working with solutions that produce identical results.
After a predetermined number of iterations is completed
the best solution found will be representative of the best
technique determined by the athlete. This best solution will
be the first solution registered on the PL.

The algorithm for the BPA is as Algorithm 1.

4.2. Iterative Best Performance Algorithm. With the BPA, an
athlete determines improved techniques by making slight
changes to the techniques used in delivering a limited
number of the athletes best recorded performances (refer
to Section 4.1). At different iterations of the algorithm, the
performance/solution chosen to beworkedwithwill either be
a new performance selected from the Performance List (PL)
or the updated performance worked with from the previous
iteration. Working with an updated performance determines
the “willingness” of the athlete to continue working with
that previous worked with performance. This willingness is
represented by a predetermined probability variable in the
algorithm. Given this probability, the algorithm either works
with a previous worked with performance or not.

The Iterative Best Performance Algorithm (IBPA) is
modelled on the sameprinciples as BPA.However, with IBPA,
the athlete will continue to work with the same performance
for a specified amount of time.This performance is viewed as
a reference performance. Using this reference performance,
the athlete will make slight changes to the technique used
in delivering that performance in the hope of trying to
determine improved techniques. The athlete will continue
to do this for a specified amount of time, in order to
be satisfied that enough attempts were made in working
with an individual performance. After the athlete completes
working with a reference performance, another reference
performance will be chosen to be worked with from the
Performance List (PL). In working with these reference
performances improved techniquesmay be determined along
the way. These improved techniques may lead to improved
performances being delivered. If improved performances are
delivered, then the PL will get updated accordingly.

In the implementation of IBPA, the reference perfor-
mance is considered the “current” solution. This current
solution remains the same for a predetermined number of
iterations.This iteration count will be referred to as the “steps
per change.” The steps per change remain constant for the
current solution worked with, for the number of current
solutions that the athlete is willing to work with.The number
of current solutions that the athlete is willing to work with is
also specified by a predetermined number of iterations. This
iteration count is referred to as the “number of iterations.”

For each step per change, local search (slight changes)
is performed on the current solution. This will generate a
“working” solution. Similar to BPA, if the working solution
at least improves on the worst solution on the PL, then the
PL will get updated accordingly. After the number of steps
per change complete, in working with the current solution,
another current solution will get chosen from the PL for
the next set of steps per change. This process will continue
until the number of iterations complete. After the number of
iterations is completed, the best solution determined will be
the first solution on the PL. This solution is representative of
the best technique determined by the athlete.

The algorithm for the IBPA is as Algorithm 2.

4.3. Largest Absolute Difference Algorithm. Difference, in
mathematical terms, is the amount which remains after one
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(1) Set the index variable, 𝑖𝑛𝑑𝑒𝑥 = 0

(2) Set the size of the Performance List, 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒
(3) Populate the Performance List (PL) with random

solutions
(4) Calculate the fitness values of the solutions in 𝑃𝐿, i.e.

𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠

(5) Sort 𝑃𝐿 and 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 according to 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠

(6) Initialize 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to 𝑃𝐿𝑖𝑛𝑑𝑒𝑥
(7) for 𝑖 to 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

(7.1) for 𝑗 to 𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶ℎ𝑎𝑛𝑔𝑒 do
(7.1.1)𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Perform Local Search (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
(7.1.2)𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Evaluate (𝑤𝑜𝑟𝑘𝑖𝑛𝑔)
(7.1.3) if𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 better than 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒−1

then
(7.1.3.1) Update PL with 𝑤𝑜𝑟𝑘𝑖𝑛𝑔
(7.1.3.2) Update 𝑃𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 with 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

(7.1.4) end if
(7.2) end for
(7.3) 𝑖𝑛𝑑𝑒𝑥 = Select 𝑖𝑛𝑑𝑒𝑥,

e.g. Random[0, 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒]
(7.4) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑃𝐿𝑖𝑛𝑑𝑒𝑥 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 ̸= 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖−1)

(8) end for
(9) return𝑃𝐿0

Algorithm 2
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|𝑥− 𝑦|

R

Figure 1: The absolute difference between the values 𝑥 and 𝑦.

quantity is subtracted from another. An example is when the
number 3 is subtracted from the number 6. The remainder is
equivalent to −3. The remainder is negative because 3 is less
than 6.

The absolute difference between two real numbered values
𝑥 and 𝑦 is the absolute value of their difference. It is denoted
by |𝑥 − 𝑦| and is mathematically defined as follows:





𝑥 − 𝑦





= {

(𝑥 − 𝑦) , if (𝑥 − 𝑦) ≥ 0,

− (𝑥 − 𝑦) , if (𝑥 − 𝑦) < 0.

(8)

The absolute difference will always be either positive or
zero (if 𝑥 ≡ 𝑦). On a real line, it can be seen as the magnitude
or difference between points 𝑥 and 𝑦. This can be seen in
Figure 1.

The Largest Absolute Difference Algorithm (LADA) is
modelled on the ability to calculate an absolute difference
between real numbers.

During an optimization process [15], a solution vector
𝑥 ∈ 𝜃 ⊆ R𝑝 is the input vector to the objective function
𝑓. 𝑥 is the 𝑝-dimensional vector of design variables of 𝑓;
that is, 𝑥 = {𝑥1, . . . , 𝑥𝑝}. Design variables can be continuous
or discrete depending on the type of optimization problem.
The values of the design variables will determine the state
(or quality) of the objective function within the domain of
the solution space. Several solutions can exist depending on

the different values of the design variables. By taking two of
these solutions 𝑥𝑖 and 𝑥𝑗, a vector of absolute differences (𝑑)
can be determined by calculating the absolute differences of
the values of the adjacent elements of vectors 𝑥𝑖 and 𝑥𝑗. 𝑑 is
determined by using

𝑑𝑘 =






𝑥𝑖,𝑘 − 𝑥𝑗,𝑘







for 𝑘 = 1, . . . , 𝑝. (9)

The elements of 𝑑 are indicative of how far away from
each other are the adjacent elements of the solution vectors 𝑥𝑖
and 𝑥𝑗. The indices of 𝑑, which are indicative of the smallest
absolute differences, represent the indices of 𝑥𝑖 and 𝑥𝑗 that
are most similar. The indices 𝑑 with the largest absolute
differences represent the indices of 𝑥𝑖 and 𝑥𝑗 that are least
similar. By performing local search on the adjacent elements
of 𝑥𝑖 and 𝑥𝑗, indexed by the largest absolute differences of 𝑑,
new solution vectors 𝑥

𝑖
and 𝑥



𝑗
can be determined. If these

new “child” solutions improve on their “parent” solutions,
then these solutions will get drawn closer together in moving
towards the global optimum. By performing this local search
technique on a population of solutions, the population will
converge towards the global optimum in an iterative way.

LADA is implemented by maintaining a population of
solutions in a list called the Solutions List (SL). SL must at
least be greater than or equal to 2. Also, the best solution
found in SLmust be recorded in a variable called 𝑏𝑒𝑠𝑡. LADA
is executed for a specified number of iterations. At each
iteration 𝑙, two solutions 𝑥𝑖 and 𝑥𝑗 will be randomly selected
from SL (𝑖 ̸= 𝑗). 𝑥𝑖 and 𝑥𝑗 get copied respectively into their
“working” variables𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑖
and𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑗
. Using𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑖

and 𝑤𝑜𝑟𝑘𝑖𝑛𝑔
𝑗
, the vector of absolute differences 𝑑𝑙 can be

determined. To implement local search, using 𝑑𝑙, the number
of largest absolute differences to be worked with must be
specified. This is given by the variable 𝑚, where 0 < 𝑚 ≤

𝑛. Having determined 𝑑𝑙 and knowing 𝑚, two new child
solutions are generated by making permissible changes to
𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑖
and𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑗
. If𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑖
provides a better quality

solution than SL𝑖, then SL𝑖 will be replaced by 𝑤𝑜𝑟𝑘𝑖𝑛𝑔
𝑖
.

Similarly, if 𝑤𝑜𝑟𝑘𝑖𝑛𝑔
𝑗
improves on SL𝑗, SL𝑗 will be replaced

by𝑤𝑜𝑟𝑘𝑖𝑛𝑔
𝑗
. If𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑖
or𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑗
improves on 𝑏𝑒𝑠𝑡, then

𝑏𝑒𝑠𝑡must be updated accordingly.The quality of the solutions
of𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑖
and𝑤𝑜𝑟𝑘𝑖𝑛𝑔

𝑗
must not be identical to the quality

of another solution found in SL. Disallowing identical quality
solutions ensures the uniqueness of the solutions listed on the
SL. After the specified number of iterations is completed the
best solution found will be recorded in 𝑏𝑒𝑠𝑡.

The algorithm for the LADA is as Algorithm 3.

4.4. Tabu Search. Tabu Search (TS) is based on the idea
of something that should not be interfered with [16, 17].
TS implements this idea by recording a specific number of
unique best solutions found in a list called the Tabu List (TL).
If a new solution is found, which improves on the solutions
recorded in the TL, the new solution gets added to the TL.
Any new solutions found, that is, identical to those that are
already registered in the TL, will not be considered. This
eliminates the possibility of exploiting identical moves.
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(1) Set the size of the Solutions List, 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒
(2)Populate the Solutions List (SL) with random solutions
(3)Calculate the fitness values of the solutions in 𝑆𝐿, i.e.

𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠

(4) Set the no. of absolute differences to consider,𝑚
(5) Set the best solution (𝑏𝑒𝑠𝑡) and best fitness (𝑓 𝑏𝑒𝑠𝑡) using

𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠

(6) for 𝑖 to 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
(6.1) 𝑖𝑛𝑑𝑒𝑥1 = Select 𝑖𝑛𝑑𝑒𝑥1, e.g. Random[0, 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒]
(6.2) 𝑖𝑛𝑑𝑒𝑥2 = Select 𝑖𝑛𝑑𝑒𝑥2, e.g. Random[0, 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒]

(𝑖𝑛𝑑𝑒𝑥1 ̸= 𝑖𝑛𝑑𝑒𝑥2)
(6.3)𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1 = 𝑆𝐿𝑖𝑛𝑑𝑒𝑥1

(6.4)𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2 = 𝑆𝐿𝑖𝑛𝑑𝑒𝑥2

(6.5) 𝑑 = 



𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1 − 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2






(6.6) Perform LS (𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1, 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2, 𝑑,𝑚)

(6.7)𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1 = Evaluate (𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1)

(6.8)𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2 = Evaluate (𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2)

(6.9) if𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1 better than 𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥1 then
(6.9.1) 𝑆𝐿𝑖𝑛𝑑𝑒𝑥1 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1

(6.9.2) 𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥1 = 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1

(6.9.3) if𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1 better than 𝑓 𝑏𝑒𝑠𝑡 then
(6.9.3.1) 𝑏𝑒𝑠𝑡 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1

(6.9.3.2)𝑓 𝑏𝑒𝑠𝑡 = 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 1

(6.9.4) end if
(6.10) end if
(6.11) if𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2 better than 𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥2 then

(6.11.1) 𝑆𝐿𝑖𝑛𝑑𝑒𝑥2 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2

(6.11.2) 𝑆𝐿 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥2 = 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2

(6.11.3) if𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2 better than 𝑓 𝑏𝑒𝑠𝑡 then
(6.11.3.1) 𝑏𝑒𝑠𝑡 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2

(6.11.3.2)𝑓 𝑏𝑒𝑠𝑡 = 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 2

(6.11.4) end if
(6.12) end if

(7) end for
(8) return 𝑏𝑒𝑠𝑡

Algorithm 3

TS also maintains a record of the “best” overall solution.
Using a “current” solution, TS generates a list of candidate
solutions, which are local to the current solution. The new
candidate solutions determined must be cross-referenced
against the TL.This will eliminate the possibility of repeating
identical moves. Once the candidate list is determined, the
best candidate solution from the list can-found. This best
candidate solution becomes the new current solution for the
next iteration. If this new current solution improves on the
best solution found so far, then it also gets recorded as the
best solution and gets inserted into the TL. The TL is usually
updated using the last in first out technique.

Generating new solutions is done in a deterministic way,
using local search. This process continues iteratively for a
specific number of iterations.

The algorithm for TS is as Algorithm 4.

4.5. Simulated Annealing. Simulated Annealing (SA) [18, 19]
models the annealing process, when heated metal begins
to cool. The hotter the metal gets, when heated, the more
volatile its atomic structure will become. This will result in a
weakened and more unstable structure. However, when the

(1) Generate an initial random solution = 𝑏𝑒𝑠𝑡

(2) Set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑏𝑒𝑠𝑡

(3) Evaluate the fitness of 𝑏𝑒𝑠𝑡 = 𝑓 𝑏𝑒𝑠𝑡

(4) Set the fitness of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑓 𝑏𝑒𝑠𝑡

(5) Set the size of the Tabu List, 𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑆𝑖𝑧𝑒
(6) Set the size of the Candidate List, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡𝑆𝑖𝑧𝑒
(7) Initiate the Tabu List 𝑇𝐿 and the 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡
(8) for 𝑖 to 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

(8.1)𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 = Generate List (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
(8.2) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Find Best Candidate (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡)
(8.3)𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = Evaluate (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
(8.4) if 𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 better than 𝑓 𝑏𝑒𝑠𝑡 then

(8.4.1)𝑓 𝑏𝑒𝑠𝑡 = 𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

(8.4.2) 𝑏𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

(8.4.3) Update 𝑇𝐿 with 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
(8.5) end if

(9) end for
(10) return 𝑏𝑒𝑠𝑡

Algorithm 4

heated metal begins to cool, the highly energized metallic
atoms loose energy and the structure begins to stabilize.
When the metal is completely cooled, an equilibrium state is
reached. The cooling process must be slow for the annealing
to be successful. Reaching an equilibrium state is symbolic of
an “optimal” solution being found for optimization problems.

SA starts off with randomly generated, but equivalent,
“best,” “current” and “working” solutions. It starts off with
an initial temperature (𝑇) and then decreases by a constant
factor (𝛼) until it reduces its final temperature (𝐹). At each
reduced temperature (𝑇 × 𝛼), SA iteratively searches for
local solutions to the current solution. This constitutes the
working solution. If the working solution is better than the
current solution, the current solution is replaced by this
working solution. If this current solution is better than the
best solution, then the best solution becomes this current
solution. Worst working solutions can replace the current
solution, given a certain probability.This strategy reduces the
chances of premature convergence.

This process continues until𝐹 is reached.𝐹 symbolizes an
equilibrium state being reachedwhere the best solution found
will be given.

The algorithm for SA is as Algorithm 5.

5. Testing and Evaluation

The nonheuristic specific parameters, required for the execu-
tion of the algorithms, had been set according to the values
given in Tables 2 and 3. The lower and upper bound settings
for the different plot types are given in Table 2.

Table 3 gives the lower and upper bound settings, the
land coverage fraction values, the cost of irrigated water, and
the operational costs for each crop. The large differences in
the lower and upper bound values were to investigate the
ability of the heuristic algorithms in determining solutions
in a larger solution space 𝐹𝑘𝑖𝑗 ∈ [0, 1]. 𝐶𝐼𝑅𝑘𝑖𝑗 is the cost of the



Journal of Applied Mathematics 9

(1) Generate an initial random solution = 𝑏𝑒𝑠𝑡

(2) Set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = 𝑏𝑒𝑠𝑡

(3) Evaluate the fitness of 𝑏𝑒𝑠𝑡 = 𝑓 𝑏𝑒𝑠𝑡

(4) Set the fitness of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and the fitness of
𝑤𝑜𝑟𝑘𝑖𝑛𝑔(𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔) = 𝑓 𝑏𝑒𝑠𝑡

(5) Initiate starting temperature 𝑇 and final temperature 𝐹
(6)while 𝑇 ≥ 𝐹 do

(6.1) for 𝑖 to 𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶ℎ𝑎𝑛𝑔𝑒 do
(6.1.1)𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Generate Solution (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
(6.1.2)𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = Evaluate (𝑤𝑜𝑟𝑘𝑖𝑛𝑔)
(6.1.3) if 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 better than 𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then

(6.1.3.1) 𝑢𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = true
(6.1.4) else

(6.1.4.1) Calculate acceptance probability 𝑃
(6.1.4.2) if 𝑃 > random[0, 1] then

(6.1.4.2.1) 𝑢𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = true
(6.1.4.3) end if

(6.1.5) end else
(6.1.6) if 𝑢𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 then

(6.1.6.1) 𝑢𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = false
(6.1.6.2)𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

(6.1.6.3) 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔
(6.1.6.4) if 𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 better than 𝑓 𝑏𝑒𝑠𝑡 then

(6.1.6.4.1) 𝑏𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

(6.1.6.4.2)𝑓 𝑏𝑒𝑠𝑡 = 𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

(6.1.6.5) end if
(6.1.7) end if

(6.2) end for
(6.3) Update 𝑇 according to cooling schedule

(7) end while
(8) return 𝑏𝑒𝑠𝑡

Algorithm 5

Table 2: Lower and upper bounds for each plot type.

Plot types Bounds (ha)
𝐿𝑏 𝑃𝑘 𝑈𝑏 𝑃𝑘

Single crop 10 1,700
Double crop 50 1,740

irrigated water per hectare per crop (ZAR ha−1).𝑂𝑘𝑖𝑗 is set to
a third of the producer prices per ton of yield (ZAR ha−1).

The initial parameters for the heuristic algorithms were
set as follows:

(i) BPA—the 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 was set at 20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
was set at 100,000. 𝑝𝑎 was set at 0.2.

(ii) IBPA—the 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 was set at 20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
was set at 5,000. The 𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶ℎ𝑎𝑛𝑔𝑒 was set at 20.

(iii) LADA—the 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 was set at 20. The
𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 was set at 50,000. 𝑚 was set at
3.

(iv) TS—the 𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑆𝑖𝑧𝑒 was set at 7. The
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡𝑆𝑖𝑧𝑒 was set at 20. The 𝑛𝑜𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
was set at 5,000.

(v) SA—the 𝑠𝑡𝑒𝑝𝑠𝑃𝑒𝑟𝐶ℎ𝑎𝑛𝑔𝑒 was set at 100. 𝑇 was set at
230. 𝐹 was set at 0.01. 𝛼 was set at 0.99.

Table 3: Nonheuristic specific parameters required for the execu-
tion of the algorithms.

Crops 𝐿𝑏𝑘𝑖𝑗 𝑈𝑏𝑘𝑖𝑗 𝐹𝑘𝑖𝑗 𝐶 𝐼𝑅𝑘𝑖𝑗 𝑂𝑘𝑖𝑗

Lucerne (y) 10 1,700 1 877.26 6,259.52
Tomato (s) 10 1,740 1 685.11 71,478.00
Pumpkin (s) 10 1,740 1 451.66 10,408.80
Maize (s) 10 1,740 1 613.90 3,924.09
Groundnut (s) 10 1,740 1 502.08 5,025.24
Sunflower (s) 10 1,740 1 292.13 3,701.61
Barley (w) 12.5 1,740 1 413.68 4,124.88
Onion (w) 12.5 1,740 1 221.00 23,739.30
Potato (w) 12.5 1,740 1 186.10 22,758.12
Cabbage (w) 12.5 1,740 1 172.94 23,720.00

Table 4: The average execution times, in milliseconds, and the 95%
Confidence Interval values for each heuristic algorithm.

Methods AVG (ms) 95% CI
BPA 229 AVG ± 3
IBPA 223 AVG ± 3
LADA 147 AVG ± 2
TS 184 AVG ± 5
SA 212 AVG ± 3

To compare the heuristic algorithms fairly, the heuristic
specific parameter settings ensured that each algorithm is
executed for 100,000 objective function evaluations. Each
algorithm was then run 100 times using different population
sets for each run.

The population sets had been initially randomly gen-
erated. Each population set contained 𝑙𝑖𝑠𝑡𝑆𝑖𝑧𝑒 number of
solutions, that is, 20. For explanation, we mathematically
denote each population set as 𝑝𝑜𝑝

𝑖
, for 𝑖 = 1, . . . , 100. Then,

for each run 𝑖, 𝑝𝑜𝑝
𝑖
was used as the input population set for

BPA, IBPA, and LADA. This was to set the Performance List
(PL) for BPA and IBPA and the Solutions List (SL) for LADA.
The best solution from each 𝑝𝑜𝑝

𝑖
was also used to initialize

𝑏𝑒𝑠𝑡 for TS and SA.
From the 100 best solutions determined, by each heuristic

algorithm, their overall best solutions and (where applicable)
their average results have been documented. Using the
populations of the 100 best solutions determined by each
heuristic algorithm, the 95% Confidence Interval (CI) have
been calculated. These were for the execution times and for
the fitness values (total gross profits earned). The results are
explained in the following.

Table 4 gives the statistics of the average execution times
(AVG) inmilliseconds (ms) and the 95%Confidence Interval
(95% CI) values of each heuristic algorithm. It can be
observed that LADA executed the fastest on average.This was
followed by TS, SA, IBPA, and BPA.The relatively fast average
execution time of LADA is due to its ability to work with two
solutions per iteration.

The 95% CI values, from Table 4, mean that we can be
95% certain that the 100 execution times of each heuris-
tic algorithm have fallen within those interval estimates.
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Figure 2: The average execution times, in milliseconds (ms), and
the 95% CI values of each heuristic algorithm.

Table 5: Statistics for the Best Fitness Values (BFVs), Average Best
Fitness Values (ABFVs), and 95% Confidence Interval (95% CI)
values.

Methods BFV (ZAR) ABFV (ZAR) 95% CI
BPA 295,382,093 287,575,514 ABFV ± 732,543
IBPA 296,166,629 288,864,091 ABFV ± 756,861
LADA 296,241,511 280,062,612 ABFV ± 1,352,737
TS 298,765,873 296,886,105 ABFV ± 185,479
SA 294,824,404 288,363,133 ABFV ± 866,622

By observing those CI values, we conclude that the execution
times of each algorithm have been fairly consistent. A visual
representation of the statistical values fromTable 4 is given in
Figure 2 below. In Figure 2, the 95%CI values are represented
by the black interval estimates.

Table 5 gives the statistical values of the overall best
BFV and average best ABFV fitness values for each heuristic
algorithm.The fitness values are the total gross profits earned.
The 95% CI values for the fitness value populations, of each
algorithm, are also given.

From Table 5, it is observed that TS determined the
highest BFV. This was followed by LADA, IBPA, BPA, and
then SA. On average, TS was also the best. This was followed
by IBPA, SA, BPA, and then LADA. Although LADA’s BFV
was higher than IBPA, BPA, and SA, its average performance
was the worst overall. This proves that LADA had the ability
to determine good solutions, although it performed relatively
poorly on average.

A graphical comparison of the algorithms best and
average fitness values, as determined from Table 5, is given
in Figure 3. The 95% CI values are represented by the black
interval estimates over the average fitness values.

The solutions found by the algorithms were in a solution
space of constantly changing plot-type hectare allocations.
The hectare allocations for each plot-type needed to be
determined first before the hectare allocations of the crops.
The hectare allocations needed to satisfy the land constraints
given in Section 2.6.
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Figure 3: A comparison of each algorithm best and average fitness
values determined along with the 95% CI estimates.

For each algorithm, the best solution determined from
the “population” of solutions at iteration 𝑡, for plot-type
hectare allocations 𝑝, will not necessarily be the best solution
at iteration (𝑡 + 1) for plot-type hectare allocations (𝑝 + 1).
The change in the plot-type hectare allocations at iteration
(𝑡 + 1) will change the crop hectare allocations accordingly,
so the land constraints do not break.The constantly changing
dimensions of the solution space make it very difficult for the
algorithms to perform exploitation. This makes the problem
difficult, in determining effective solutions.

Under the circumstance of the constantly changing
dimensions of the solution space, TS had performed most
consistently. This is confirmed by its low 95% CI fitness
value. BPA had the second lowest 95% CI fitness value.
This is followed by IBPA, SA, and LADA. By observing and
comparing each algorithm BFV, ABFV, and 95% CI fitness
value solutions, we conclude that TS had been the strongest
heuristic algorithm, in providing solutions to this particular
optimization problem.

The strength of TS, in performing as the overall best, is
due to its strong exploitation ability. At iteration 𝑡, generating
a candidate list of solutions allows for TS to maximize its
exploitation within the local neighbourhood structure of
the solution space for plot-type hectare allocations 𝑝. The
best candidate solution determined at iteration 𝑡 will be
the best solution found for plot-type hectare allocations 𝑝,
but as explained earlier, it will not necessarily be the best
“working” solution at iteration (𝑡 + 1) for plot-type hectare
allocations (𝑝 + 1). However, if (𝑝 + 1) is very similar
to 𝑝, then the working solution at iteration (𝑡 + 1) will
become very valuable in trying to effectively exploit the local
neighbourhood structure of the solution space even further.
The possibility of (𝑝 + 1) being similar to 𝑝 and in using
the best candidate solution, from iteration 𝑡, as the working
solution at iteration (𝑡 + 1) encourages further exploitation.
This is the reason why TS has performed well.

Similar to TS, IBPA uses a “current” solution to perform
exploitation at each iteration 𝑡 for a certain number of “steps
per change.” The solution chosen as the current solution
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Figure 4:The performance of the heuristic algorithms in determin-
ing their overall best fitness value solutions.

Table 6: Statistics of the irrigation water requirements (IWR) and
variable costs of production (VCP) for the best solutions found.

Methods IWR (m3) VCP (ZAR)
BPA 16,922,183 147,701,718
IBPA 16,961,536 148,093,316
LADA 17,244,651 74,544,333
TS 17,142,919 149,397,333
SA 17,070,610 147,446,530

at iteration 𝑡 is restricted to the solutions listed on the
Performance List (PL). Any “working” solution generated
from the current solution, at iteration 𝑡, will therefore not
necessarily be related to the current solution chosen at
iteration (𝑡 + 1). This holds even if any working solution
generated updates the PL.Thepossibility of further exploiting
a local neighbourhood structure of the solution space if 𝑝 is
very similar to (𝑝 + 1) is therefore minimized.

The purpose of maintaining updated lists of their best
solutions found, for BPA, IBPA, and LADA, is to facilitate
exploration of the solution space. Performing local search
facilitates exploitation. For this particular optimization prob-
lem, IBPA and BPA determined a better balance in per-
forming exploration and exploitation, compared to LADA.
This is concluded in comparing their performances to SA.
SA has a naturally good balance in its ability to perform
exploration and exploitation. LADA seems to be stronger in
its explorative ability. This explains its relatively high BFV
solution found and its relatively low ABFV performance.

Figure 4 shows the performances of the heuristic algo-
rithms in them determining their best fitness value (BFV)
solutions. It is seen that TS had clearly outperformed all
heuristic algorithms in determining its BFV. SA had initially
progressed at a very fast rate, up to about 10,000 objective
function evaluations, compared to BPA, IBPA, and LADA.
BPA, IBPA, and LADA performed very similarly in progres-
sively improving on their BFV performances.
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Figure 5: IrrigatedWater Requirements (IWR) of the best heuristic
solutions.

Table 6 gives the statistics of the irrigation water require-
ments (IWR) and the variable costs of production (VCP)
for the best solution determined by each of the heuristic
algorithms. BPA’s solution required the least amount of
irrigated water. At a cost of ZAR 0.0877m−3, the cost of this
irrigated water is ZAR 1,484,075. The IWR of IBPA, SA, TS,
and LADA was a volume of 39,353, 148,427, 220,736, and
322,468m3 more than BPA’s IWR, respectively. At a water
quota of 8,417m3 ha−1annum−1, BPA’s IWR value would have
supplied irrigated water to 4, 17, 26, and 38 ha’s less than the
IWR of IBPA, SA, TS, and LADA, respectively.

A graphical representation of the IWR’s, as determined
from Table 6, is shown in Figure 5.

From Table 6, it is also observed that the variable costs of
production (VCP) of SA, BPA, IBPA, andTS are similar. From
these four algorithms, SA’s VCP value is the lowest and TS’s
VCP value is the highest. Interestingly enough, LADA’s VCP
value is about half in comparison to the VCP values of each of
the other heuristic algorithms. Compared to SA, LADA’s VCP
value is ZAR 72,902,197 less. In comparison to TS, LADA’s
VCP value is ZAR 74,853,000 less. Although TS determined
a best solution overall that earned an extra gross profit of
ZAR 2,524,362 and required a volume of 101,732m3 less of
irrigated water, in comparison to LADA’s best solution, the
remarkable saving in LADA’s VCP value means that LADA
determined the most economically feasible solution, from all
heuristic algorithms.

A graphical representation of the VCP values, as deter-
mined from Table 6, is shown in Figure 6.

Table 7 gives the plot-type hectare allocations for the best
solution found by each heuristic algorithm. BPA, IBPA, TS,
and SA determined that the total gross profits will be greater
in allocating more land for the double-crop plots of land.
LADA’s best solution determined that allocatingmore land to
the single-crop plots would be better.This is despite Lucerne’s
relatively high IWR and relatively low producer price t−1
values, compared to the other crop types.

Figure 7 gives a graphical comparison of the seasonal
hectare allocations of each crop, for the best solution deter-
mined by each heuristic algorithm. For the single-crop
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Figure 6: The variable costs of production (VCP) values of the best
heuristic solutions.

Table 7: Plot-type hectare allocations for each heuristic algorithm.

Methods Single-crop plots Double-crop plots
BPA 17 1733
IBPA 12 1738
LADA 956 794
TS 14 1736
SA 18 1732

plots of land, BPA, IBPA, TS, and SA determined similar
hectare allocations for Lucerne. LADA’s hectare allocation
was clearly higher. For the double-crop plots of land, all
heuristic algorithms allocated the most amount of land to
Tomato, Onion, and Cabbage. BPA, LADA, and SA allocated
a relatively higher percentage of land for Potato, compared
to IBPA and TS. The large hectare allocations for Tomato are
due to its high yield ha−1 and high producer price t−1 values.
Similar hectare allocations were determined for Pumpkin,
Maize, Ground Nuts, and Sunflower, by each algorithm.

Table 8 gives the statistical values of each crop hectare
allocation (ha’s crop−1), irrigated water requirements (IWR),
and variable costs of production (VCP) for the best solution
determined by each heuristic algorithm.

The program was written in the Java programming lan-
guage. It was programmed using the Netbeans 7.0 Integrated
Development Environment. All simulations were run on
the same platform. The computer used had a Windows 7
Enterprise operating system, an Intel Celeron Processor 430,
3GB of RAM, and a 500GB hard drive.

In developing object-oriented versions of these LS meta-
heuristic algorithms, each algorithm was relatively easy to
implement. Each algorithm also requires few parameter
settings.

6. Conclusion

The shortages in food supply, and the increases in popula-
tion growth, have increased the need for more food to be
produced. To try and meet this growing demand for food,
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Figure 7: A comparison of the hectare allocations, per crop, for the
best solution found by each heuristic algorithm.

it is important that new Irrigation Schemes be developed to
increase the agricultural output.

The planning of new Irrigation Schemes requires that
optimized solutions be found concerning the seasonal
hectare allocations of the crops that are required to be
grown within the year. The solutions found must seek to
maximize the total gross profits that can be earned, inmaking
the most efficient usage of the limited resources available
for agricultural production. Determining solutions to this
problem is referred to as Annual Crop Planning (ACP).
ACP is anNP-hard-type optimization problem in agricultural
planning.

This research has introduced a new ACP mathematical
model. The model is intended to be used to determine
solutions to the ACP problem at a new Irrigation Scheme.

The case study in this paper is the Taung Irrigation
Scheme (TIS), situated in the North West Province of South
Africa. The Irrigation Scheme is currently being expanded to
cater for an extra 1,750 hectares of irrigated land.This portion
of land is required to grow 10 different types of crops.

To determine solutions for this ACP problem, three
new Local Search (LS) metaheuristic algorithms have been
introduced in the literature. These algorithms have been
investigated in trying to determining near-optimal solutions
for this problem. The new algorithms introduced are the
Best Performance Algorithm (BPA), the Iterative Best Per-
formance Algorithm (IBPA), and the Largest Absolute Dif-
ference Algorithm (LADA). To determine the relative merits
of their solutions found, their solutions have been compared
against the solutions of two other well-known LSmetaheuris-
tic algorithms in the literature. These popular metaheuristic
algorithms are Tabu Search (TS) and Simulated Annealing
(SA).

To ensure fairness in the performances of the heuristic
algorithms, their parameter specific settings had been set to
execute for the same number of objective function evalu-
ations. The list sizes for BPA, IBPA, and LADA were also
set to be the same. Each heuristic algorithm was then run
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Table 8: Crop statistics of the best solution determined by each heuristic algorithm.

Crops Methods ha’s crop−1 IWR (m3) VCP (ZAR)

Lucerne

BPA 17 169,016 120,587
IBPA 12 123,883 88,386
LADA 956 9,560,965 6,821,407
TS 14 138,942 99,130
SA 18 175,621 125,299

Tomato

BPA 1,465 11,442,080 105,695,864
IBPA 1,461 11,416,473 105,459,327
LADA 671 5,242,001 48,422,824
TS 1,483 11,587,560 107,039,732
SA 1,463 11,426,259 105,549,719

Pumpkin

BPA 62 318,126 670,872
IBPA 73 375,268 791,375
LADA 31 159,882 337,164
TS 62 319,971 674,763
SA 67 343,852 725,124

Maize

BPA 75 522,969 339,033
IBPA 63 443,563 287,555
LADA 30 211,339 137,008
TS 63 437,786 283,810
SA 65 454,319 294,528

Ground Nuts

BPA 69 392,341 378,794
IBPA 73 416,717 402,328
LADA 32 184,256 177,894
TS 64 363,636 351,080
SA 61 351,911 339,759

Sunflower

BPA 63 211,220 253,245
IBPA 67 223,812 268,341
LADA 30 99,098 118,815
TS 65 215,246 258,072
SA 77 255,319 306,118

Barley

BPA 46 216,110 207,935
IBPA 36 171,475 164,988
LADA 12 57,471 55,297
TS 41 195,287 187,899
SA 59 278,448 267,915

Onion

BPA 499 1,258,048 11,961,592
IBPA 775 1,952,043 18,560,133
LADA 276 695,752 6,615,253
TS 974 2,455,286 23,345,004
SA 827 2,084,191 19,816,604

Potato

BPA 329 699,027 7,558,257
IBPA 73 155,092 1,676,941
LADA 241 512,445 5,540,829
TS 57 121,629 1,315,123
SA 211 448,211 4,846,302

Cabbage

BPA 859 1,693,246 20,515,539
IBPA 854 1,683,210 20,393,942
LADA 264 521,442 6,317,842
TS 663 1,307,576 15,842,720
SA 635 1,252,479 15,175,162
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100 times. For each run, a different population set was
used as the input “population” for each heuristic algorithm.
From the 100 solutions determined, by each algorithm, the
overall best solution and the average performances had been
documented.

The solutions found by the heuristic algorithms were in
a solution space of constantly changing dimensions. This
circumstance made it very difficult for the algorithms to
determine effective solutions. Having stronger exploitation
abilities would have been beneficial to the heuristic algo-
rithms, for this particular optimization problem.

Our results show that TS performed as the overall best
technique. It determined the best overall solution andwas the
best on average. Its consistent performance in determining
good solutions was confirmed by its low 95% Confidence
Interval (CI) fitness value. The second best solution was
determined by LADA. This was followed by IBPA, BPA, and
then SA. On average, IBPA performed the second best. This
was followed by SA, BPA, and then LADA. The average
execution times of BPA, IBPA, TS, and SA were similar. The
execution time on LADA was clearly the fastest.

Although LADA performed the worst on average, its
best solution required the least financial investment. This
investment was nearly half of the investment required by
the best solution determined for each of the other heuristic
algorithms.This point, combinedwith LADA’s relatively good
best fitness value, meant that LADA’s best solution was the
most economically feasible.

The advantage of each algorithm is its ease of imple-
mentation. Each algorithm also only requires few parameter
settings.

Possible futureworkwill be to investigate the effectiveness
of employing BPA, IBPA, and LADA in providing solutions to
other NP-hard-type optimization problems in the literature.
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