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Let T be a singular nonintegral operator; that is, it does not have an integral representation by a kernel with size estimates, even
rough. In this paper, we consider the boundedness of commutators with T and Lipschitz functions. Applications include spectral
multipliers of self-adjoint, positive operators, Riesz transforms of second-order divergence form operators, and fractional power of
elliptic operators.

1. Introduction

Let 𝑇 be a bounded operator on 𝐿
𝑝
(R𝑛

) for some 𝑝, 1 <

𝑝 < ∞. Ameasurable function𝐾(𝑥, 𝑦) is called an associated
kernel of 𝑇 if

𝑇𝑓 (𝑥) = ∫
𝑋

𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦 (1)

holds for each continuous function 𝑓 with compact support
and for almost all 𝑥 not in the support of 𝑓.

The kernel 𝐾(𝑥, 𝑦) is said to satisfy the following.
(i) The pointwise Hörmander condition on 𝑥 variable if

there exist 0 < 𝛼 ≤ 1 and 𝑐, 𝑐1 ≥ 1 such that

𝐾 (𝑥, 𝑦) − 𝐾 (𝑧, 𝑦)
 ≤ 𝑐

|𝑥 − 𝑧|
𝛼

𝑥 − 𝑦


𝑛+𝛼
, (2)

when |𝑥 − 𝑦| ≥ 𝑐1|𝑥 − 𝑧|, and 𝐵(𝑥, 𝑟) denotes the ball with
center 𝑥, radius 𝑟.

(ii) The integral Hörmander condition on 𝑦 variable if
there exist constants 𝐶 and 𝑐2 ≥ 1 such that

∫
|𝑥−𝑦|≥𝑐

2
|𝑧−𝑦|

𝐾 (𝑥, 𝑦) − 𝐾 (𝑥, 𝑧)
 𝑑𝑥 ≤ 𝐶, (3)

for all 𝑦, 𝑧 ∈ R𝑛.

It is well known that if 𝑇 is bounded on 𝐿
𝑞
(R𝑛

) for some
𝑞, 1 < 𝑞 < ∞, and 𝑏 ∈ BMO, the two Hörmander conditions
(i) and (ii) above are sufficient to imply that the commutator
[𝑏, 𝑇] is bounded on 𝐿

𝑝
(R𝑛

) for all 𝑝, 1 < 𝑝 < ∞, with norm
[𝑏, 𝑇](𝑓)

𝑝 ≤ 𝐶‖𝑏‖∗
𝑓

𝑝, (4)

where the commutator [𝑏, 𝑇] is defined by [𝑏, 𝑇](𝑓) = 𝑇(𝑏𝑓)−

𝑏𝑇(𝑓) and ‖𝑏‖∗ is the BMO seminorm of 𝑏. See [1, 2] for
BMO functions on Euclidean spaces R𝑛 and [3] for spaces of
homogeneous type.

A particular case of the result of Janson [2] states that
[𝑏, 𝑇] : 𝐿

𝑝
→ 𝐿

𝑞 is bounded, 1 < 𝑝 < 𝑞 < ∞, if 𝑏 ∈ Λ̇ 𝛽,
𝛽 = 𝑛(1/𝑝 − 1/𝑞). Here, Λ̇ 𝛽 is the homogeneous Lipschitz
space determined by the first difference operator.

In [4], Duong and Yan have replaced the two Hörmander
conditions (2) and (3) by the following weaker conditions
(5) and (6) below which previously appeared in [5] and
still concluded that the commutator [𝑏, 𝑇] is bounded on
𝐿
𝑝
(R𝑛

) for all 𝑝, 1 < 𝑝 < ∞. And in [6], Hu and Yang
obtained the weighted boundedness of maximal commutator
when 𝑇 satisfy (5) and (6). Roughly speaking, we assume the
following.

(iii) There exists a class of operators 𝐴 𝑡 with kernels
𝑎𝑡(𝑥, 𝑦), which satisfy the condition (23) in Section 2, so that
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the kernels 𝑘𝑡(𝑥, 𝑦) of the operators (𝑇 − 𝐴 𝑡𝑇) satisfy the
condition

𝑘𝑡 (𝑥, 𝑦)
 ≤ 𝑐

𝑡
𝛾/𝑚

𝑥 − 𝑦


𝑛+𝛾
, (5)

when |𝑥 − 𝑦| ≥ 𝑐2𝑡
1/𝑚 for some 𝛾,𝑚 > 0, where 𝑐 is a positive

constant.
(iv) There exists a class of operators 𝐵𝑡 with kernels

𝑏𝑡(𝑥, 𝑦), which satisfy the condition (23), such that (𝑇 −

𝑇𝐵𝑡) have associated kernels𝐾𝑡(𝑥, 𝑦) and there exist positive
constants 𝑐3, 𝑐4 such that

∫
|𝑥−𝑦|≥𝑐

3
𝑡1/𝑚

𝐾𝑡 (𝑥, 𝑦)
 𝑑𝑥 ≤ 𝑐4, ∀𝑦 ∈ R

𝑛
. (6)

Under conditions (5) and (6), if 𝑇 is bounded on 𝐿
𝑞
(R𝑛

)

for some 𝑞, 1 < 𝑞 < ∞, then the commutator [𝑏, 𝑇] is
bounded on 𝐿

𝑝
(R𝑛

) for all 𝑝, 1 < 𝑝 < ∞.
In [7], Auscher and Martell have considered the commu-

tators of singular nonintegral operators, where the implicit
terminology has been introduced in [8]. By this we mean
that they are still of order 0, but they do not have an integral
representation by a kernel with size and/or smoothness
estimates. Let 1 ≤ 𝑝0 < 𝑞0 ≤ ∞. Suppose that the singular
nonintegral operator 𝑇 is a sublinear operator bounded on
𝐿
𝑝
0(R𝑛

) and that {𝐴𝑟}𝑟>0 is a family of operators acting
from 𝐿

∞

𝑐
(R𝑛

) into 𝐿
𝑝
0(R𝑛

). Auscher and Martell assume the
following.

(v) For all 𝑓 ∈ 𝐿
∞

𝑐
(R𝑛

) and all balls 𝐵 where 𝑟(𝐵) denotes
its radius,

(
1

|𝐵|
∫
𝐵

𝑇 (𝐼 − 𝐴𝑟(𝐵)) 𝑓


𝑝
0

𝑑𝑥)

1/𝑝
0

≤ 𝐶

∞

∑

𝑗=1

𝛼𝑗(
1

2
𝑗+1𝐵



∫
2𝑗+1𝐵

𝑓


𝑝
0

𝑑𝑥)

1/𝑝
0

.

(7)

(vi) For all𝑓 ∈ 𝐿
∞

𝑐
(R𝑛

) and all balls𝐵where 𝑟(𝐵) denotes
its radius,

(
1

|𝐵|
∫
𝐵

𝑇𝐴𝑟(𝐵)𝑓


𝑞
0

𝑑𝑥)

1/𝑞
0

≤ 𝐶

∞

∑

𝑗=1

𝛼𝑗(
1

2
𝑗+1𝐵



∫
2𝑗+1𝐵

𝑇𝑓


𝑝
0

𝑑𝑥)

1/𝑝
0

.

(8)

Let 𝑝0 < 𝑝 < 𝑞0 and𝑤 ∈ 𝐴𝑝/𝑝
0

∩𝑅𝐻
(𝑞
0
/𝑝)
 (for the defini-

tions of 𝐴𝑝/𝑝
0

and 𝑅𝐻
(𝑞
0
/𝑝)
 see Section 2). Under conditions

(7) and (8), if ∑∞

𝑗=1
𝛼𝑗 𝑗 < ∞, then the commutator [𝑏, 𝑇] is

bounded on 𝐿
𝑝
(𝑤); that is, ‖[𝑏, 𝑇]𝑓‖

𝐿𝑝(𝑤)
≤ 𝐶‖𝑏‖∗‖𝑓‖𝐿𝑝(𝑤)

for all 𝑓 ∈ 𝐿
∞

𝑐
(R𝑛

).
The main object of this paper is the commutators of

nonintegral operators [𝑏, 𝑇]. Compared to the result in [7],
we can obtain a more general result for 𝑏 belongs to the
Lipschitz spaces Λ̇ 𝛽

𝑖

(𝑋). To be more specific, we can obtain
the following.

Theorem 1. Let 0 ≤ 𝛼 < 1, 1 ≤ 𝑝0 ≤ 𝑠0 < 𝑞0 ≤ ∞ such
that 1/𝑠0 = 1/𝑝0 − 𝛼/𝑛. Suppose that 𝑇 is a sublinear operator

bounded from 𝐿
𝑝
0(R𝑛

) to 𝐿𝑠0(R𝑛
) and that {𝐴𝑟}𝑟>0 is a family

of operators acting from 𝐿
∞

𝑐
(R𝑛

) into 𝐿𝑝0(R𝑛
). Assume that

(
1

|𝐵|
∫
𝐵

𝑇 (𝐼 − 𝐴𝑟(𝐵)) 𝑓


𝑠
0

𝑑𝑥)

1/𝑠
0

≤ 𝐶

∞

∑

𝑗=1

𝛼𝑗


2
𝑗+1

𝐵


𝛼/𝑛

(
1

2
𝑗+1𝐵



∫
2𝑗+1𝐵

𝑓


𝑝
0

𝑑𝑥)

1/𝑝
0

,

(9)

(
1

|𝐵|
∫
𝐵

𝑇𝐴𝑟(𝐵)𝑓


𝑞
0

𝑑𝑥)

1/𝑞
0

≤ 𝐶

∞

∑

𝑗=1

𝛼𝑗(
1

2
𝑗+1𝐵



∫
2𝑗+1𝐵

𝑇𝑓


𝑠
0

𝑑𝑥)

1/𝑠
0

,

(10)

for all 𝑓 ∈ 𝐿
∞

𝑐
(R𝑛

) and all balls 𝐵, where 𝑟(𝐵) denotes its
radius. Let 0 < 𝛽 < 1 such that 𝛼 + 𝛽 < 1. Let 𝑝0 < 𝑝 < 𝑞 < 𝑞0

and 1/𝑞 = 1/𝑝 − (𝛼 + 𝛽)/𝑛. If ∑∞

𝑗=1
𝛼𝑗 < ∞, then there is a

constant 𝐶 such that
[𝑏, 𝑇]𝑓

𝐿𝑞 ≤ 𝐶‖𝑏‖Λ̇
𝛽

𝑓
𝐿𝑝 , (11)

for all 𝑓 ∈ 𝐿
∞

𝑐
(R𝑛

) and for all 𝑏 ∈ Λ̇ 𝛽.

The case 𝑞0 = ∞ is understood in the sense that the 𝐿𝑞0-
average in (10) is indeed an essential supremum.

Remark 2. Let 1 ≤ 𝑝0 < 𝑝 < 𝑞 < 𝑞0 be such that 1/𝑞 = 1/𝑝 −

𝛼/𝑛. Under the assumptions above, we know that if∑∞

𝑗=1
𝛼𝑗 <

∞, then 𝑇 is bounded from 𝐿
𝑝 to 𝐿𝑞. See Theorem 2.2 in [9].

In the limiting case 𝛼 = 0, from the assumptions (9) and
(10), we deduce

(
1

|𝐵|
∫
𝐵

𝑇 (𝐼 − 𝐴𝑟(𝐵)) 𝑓


𝑝
0

)

1/𝑝
0

≤ 𝐶𝑀(
𝑓


𝑝
0

)
1/𝑝
0

(𝑥) ,

(
1

|𝐵|
∫
𝐵

𝑇𝐴𝑟(𝐵)𝑓


𝑞
0

)

1/𝑞
0

≤ 𝐶𝑀(
𝑇𝑓



𝑝
0

)
1/𝑝
0

(𝑥) .

(12)

Consequently, from the Theorem 3.7 in [7], we know that if
∑
∞

𝑗=1
𝛼𝑗 < ∞, then ‖𝑇𝑓‖

𝐿𝑝(𝑤)
≤ 𝐶‖𝑓‖

𝐿𝑝(𝑤)
for 𝑝0 < 𝑝 < 𝑞0

and for all 𝑤 ∈ 𝐴𝑝/𝑝
0

∩ 𝑅𝐻
(𝑞
0
/𝑝)
 .

Theorem 3. Let 1 ≤ 𝑝0 < 𝑞0 ≤ ∞. Suppose that 𝑇 is a
sublinear operator bounded on 𝐿

𝑃
0(R𝑛

) and that {𝐴𝑟}𝑟>0 is a
family of operators acting from 𝐿

∞

𝑐
(R𝑛

) to 𝐿
𝑃
0(R𝑛

). Assume
that 𝑇 satisfy (9) and (10) with 𝛼 = 0. Let 0 < 𝛽 <

min{1, 𝑛/𝑝0}, 𝑝0 < 𝑝 < 𝑞 < 𝑞0, 𝑏 ∈ Λ̇ 𝛽 and 𝑤, V ∈

𝐴𝑝/𝑝
0

∩ 𝑅𝐻
(𝑞
0
/𝑝)
 . Assume that there exists a constant 1 < 𝑠 <

min{𝑛/𝛽𝑝0, 𝑝/𝑝0} such that (𝑤, V) ∈ 𝐴(𝑝/𝑝0𝑠, 𝑞/𝑝0𝑠, 𝛽𝑝0𝑠/𝑛).
If ∑∞

𝑗=1
𝛼𝑗 < ∞, then there is a constant 𝐶 such that

[𝑏, 𝑇]𝑓
𝐿𝑞(V) ≤ 𝐶‖𝑏‖Λ̇

𝛽

𝑓
𝐿𝑝(𝑤), (13)

for all 𝑓 ∈ 𝐿
∞

𝑐
.

The class 𝐴(𝑝, 𝑞, 𝑠) is defined in Section 2.
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2. Definitions and Preliminary Results

We use the notation

⨏
𝐸

𝑓 =
1

|𝐸|
∫
𝐸

𝑓 (𝑥) 𝑑𝑥, (14)

and we often ignore the Lebesgue measure and the variable
of the integrand in writing integrals, unless this is needed to
avoid confusions.

A weight 𝑤 is a nonnegative locally integrable function.
We say that 𝑤 ∈ 𝐴𝑝, 1 < 𝑝 < ∞, if there exists a constant 𝐶
such that for every ball 𝐵 ⊂ 𝑋

(⨏
𝐵

𝑤)(⨏
𝐵

𝑤
1−𝑝


)

𝑝−1

≤ 𝐶. (15)

For 𝑝 = 1, we say that 𝑤 ∈ 𝐴1 if there is a constant 𝐶
such that for every ball 𝐵 ⊂ R𝑛, ⨏

𝐵
𝑤 ≤ 𝐶𝑤(𝑥), for a.e. 𝑥 ∈

𝐵, or, equivalently, 𝑀(𝑤) ≤ 𝐶𝑤 a.e., where 𝑀(𝑤) denotes
the classical Hardy-Littlewood maximal function of 𝑤. The
reverse Hölder classes are defined in the following way: 𝑤 ∈

𝑅𝐻𝑞, 1 < 𝑞 < ∞, if there is a constant 𝐶 such that for every
ball 𝐵 ⊂ R𝑛

(⨏
𝐵

𝑤
𝑞
)

1/𝑞

≤ ⨏
𝐵

𝑤. (16)

The endpoint 𝑞 = ∞ is given by the condition: 𝑤 ∈ 𝑅𝐻∞

whenever, for any ball 𝐵,

𝑤 (𝑥) ≤ ⨏
𝐵

𝑤, for a.e. 𝑥 ∈ 𝐵. (17)

The homogenous Lipschitz function space Λ̇ 𝛽(R
𝑛
) is the

space of functions 𝑓 such that

𝑓
Λ̇
𝛽

= sup
𝑥,ℎ∈R𝑛,ℎ ̸= 0


Δ
[𝛽]+1

ℎ
𝑓 (𝑥)



|ℎ|
𝛽

< ∞, (18)

where Δ𝑘

ℎ
denotes the 𝑘th difference operator (see [10]). That

is,Δ1

ℎ
𝑓(𝑥) = Δ ℎ𝑓(𝑥) = 𝑓(𝑥+ℎ)−𝑓(𝑥), Δ𝑘+1

ℎ
𝑓(𝑥) = Δ

𝑘

ℎ
𝑓(𝑥+

ℎ) − Δ
𝑘

ℎ
𝑓(𝑥), 𝑘 ≥ 1.

We have the following lemmas.

Lemma 4 (see [10]). For 0 < 𝛽 < 1, 1 ≤ 𝑞 < ∞, one has

𝑓
Λ̇
𝛽
(R𝑛)

≈ sup
𝐵

1

|𝐵|
1+𝛽/𝑛

∫
𝐵

𝑓 − 𝑓𝐵
 𝑑𝑥

≈ sup
𝐵

1

|𝐵|
𝛽/𝑛

(
1

|𝐵|
∫
𝐵

𝑓 − 𝑓𝐵


𝑞
)

1/𝑞

𝑑𝑥.

(19)

For 𝑞 = ∞, the last formula should be modified appropriately.

Lemma 5 (see [10]). Let 𝐵∗ ⊂ 𝐵 ⊂ R𝑛, and then |𝑓𝐵∗ − 𝑓𝐵| ≤

𝐶‖𝑓‖
Λ̇
𝛽
(R𝑛)|𝐵|

𝛽/𝑛.

Lemma 6 (see [11]). For 1 ≤ 𝛾 < ∞ and 𝛽 > 0, let

𝑀𝛽,𝛾 (𝑓) (𝑥) = sup
𝐵∋𝑥

(
1

|𝐵|
1−𝛽𝛾/𝑛

∫
𝐵

𝑓 (𝑦)


𝛾
𝑑𝑦)

1/𝛾

. (20)

Suppose that 𝛾 < 𝑝 < 𝑛/𝛽 and 1/𝑞 = 1/𝑝 − 𝛽/𝑛, and then


𝑀𝛽,𝛾(𝑓)

𝐿𝑞(R𝑛)
≤ 𝐶

𝑓
𝐿𝑝(R𝑛). (21)

Theorem A (see [7]). Fix 1 < 𝑞 ≤ ∞, 𝑎 ≥ 1, and 𝜔 ∈ 𝑅𝐻𝑠 ,
1 ≤ 𝑠 < ∞. Then, there exist 𝐶 = 𝐶(𝑞, 𝑛, 𝑎, 𝜔, 𝑠) and 𝐾0 =

𝐾0(𝑛, 𝑎) ≥ 1 with the following property: assume that 𝐹, 𝐺,
𝐻1, and𝐻2 are nonnegative measurable functions on R𝑛 such
that for any cube 𝑄 there exist nonnegative functions 𝐺𝑄 and
𝐻𝑄 with 𝐹(𝑥) ≤ 𝐺𝑄(𝑥) + 𝐻𝑄(𝑥) for a.e. 𝑥 ∈ 𝑄 and

(⨏
𝑄

𝐻
𝑞

𝑄
)

1/𝑞

≤ 𝑎 (𝑀𝐹 (𝑥) +𝑀𝐻1 (𝑥) + 𝐻2 (𝑥)) ,

∀𝑥, 𝑥 ∈ 𝑄,

⨏
𝑄

𝐺𝑄 ≤ 𝐺 (𝑥) , ∀𝑥 ∈ 𝑄.

(22)

Then for all 𝜆 > 0, 𝐾 ≥ 𝐾0 and 0 < 𝛾 < 1

𝜔 {𝑀𝐹 > 𝐾𝜆, 𝐺 + 𝐻2 ≤ 𝛾𝜆}

≤ 𝐶(
𝑎
𝑞

𝐾𝑞
+

𝛾

𝐾
)

1/𝑠

𝜔 {𝑀𝐹 +𝑀𝐻1 > 𝜆} .

(23)

As a consequence, for all 0 < 𝑝 < 1/𝑠, one has

‖𝑀𝐹‖𝐿𝑝(𝜔)

≤ 𝐶 (‖𝐺‖𝐿𝑝(𝜔) +
𝑀𝐻1

𝐿𝑝(𝜔)
+
𝐻2

𝐿𝑝(𝜔)
) ,

(24)

provided ‖𝑀𝐹‖𝐿𝑝(𝜔) < ∞, and

‖𝑀𝐹‖𝐿𝑝,∞(𝜔)

≤ 𝐶 (‖𝐺‖𝐿𝑝,∞(𝜔) +
𝑀𝐻1

𝐿𝑝,∞(𝜔)
+
𝐻2

𝐿𝑝,∞(𝜔)
) ,

(25)

provided ‖𝑀𝐹‖𝐿𝑝,∞(𝜔) < ∞. Furthermore, if 𝑝 ≥ 1, then (24)
and (25) hold, provided 𝐹 ∈ 𝐿

1(whether or not𝑀𝐹 ∈ 𝐿
𝑝
(𝜔)).

For 0 < 𝑠 < 1 and 1 ≤ 𝛾 < ∞, we denote

M𝑠,𝛾 (𝑓) (𝑥) = sup
𝐵∋𝑥

(
1

|𝐵|
1−𝑠

∫
𝐵

𝑓 (𝑦)


𝛾
𝑑𝑦)

1/𝛾

, (26)

where the supremum is taken with respect to all balls 𝐵 of
positive measure containing the point 𝑥.

Theorem B. Let 1 < 𝑝 < 𝑞 < ∞, 0 < 𝑠 < 1, and let V and 𝑤

be the weight functions. For a constant 𝐶 > 0 to exist so that
the inequality

(∫
R𝑛

(M𝑠,1 (𝑓) (𝑥))
𝑞
V (𝑥) 𝑑𝑥)

1/𝑞

≤ 𝐶(∫
R𝑛

𝑓 (𝑥)


𝑝
𝑤 (𝑥) 𝑑𝑥)

1/𝑝

(27)
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would hold, it is necessary and sufficient that the condition

sup
𝑥∈R𝑛,𝑟>0

(𝑤
1−𝑝


𝐵 (𝑥, 6𝑟))

1/𝑝


× (∫
R𝑛\𝐵(𝑥,𝑟)

V (𝑦)
𝑥 − 𝑦



(𝑠−1)𝑞𝑛
𝑑𝑦)

1/𝑞

< ∞,

(28)

where 1/𝑝 + 1/𝑝

= 1, be fulfilled.

For the proof of this theorem, see [12].

Definition 7. (𝑤, V) is said to belong to𝐴(𝑝, 𝑞, 𝑠) (1 < 𝑝 < 𝑞 <

∞, 0 < 𝑠 < 1) if (28) holds.

Lemma 8. Let 1 ≤ 𝛾 < 𝑝 < 𝑞 < ∞, 0 < 𝑠 < 1. If (𝑤, V) ∈

𝐴(𝑝/𝛾, 𝑞/𝛾, 𝑠), then

M𝑠,𝛾𝑓

𝐿𝑞(V)
≤ 𝐶

𝑓
𝐿𝑝(𝑤). (29)

Proof. SinceM𝑠,𝛾(𝑓)(𝑥) = (M𝑠,1(|𝑓|
𝛾
)(𝑥))

1/𝛾, we have


M𝑠,𝛾𝑓

𝐿𝑞(V)
=


(M𝑠,1 (

𝑓


𝛾
))

1/𝛾𝐿𝑞(V)

=
M𝑠,1(|𝑓|

𝛾
)


1/𝛾

𝐿𝑞/𝛾(V)
.

(30)

ByTheorem B, we have
M𝑠,1(|𝑓|

𝛾
)
𝐿𝑞/𝛾(V)

≤ 𝐶


𝑓


𝛾𝐿𝑝/𝛾(𝑤)

= 𝐶
𝑓



𝛾

𝐿𝑝(𝑤)
.

(31)

Thus,

M𝑠,𝛾𝑓

𝐿𝑞(V)
≤ 𝐶

𝑓
𝐿𝑝(𝑤). (32)

3. The Proof of the Main Theorems

In order to proveTheorem 1, we need the following lemma.

Lemma 9. Let 1 ≤ 𝑝0 ≤ 𝑠0, 𝑝0 < 𝑝 < 𝑞 < ∞, and 𝑤, V ∈ 𝐴∞.
Let 𝑇 be a sublinear operator bounded from 𝐿

𝑝
0 to 𝐿𝑠0 .

(i) If 𝑏 ∈ Λ̇ 𝛽 ∩ 𝐿
∞ and 𝑓 ∈ 𝐿

∞

𝑐
, then [𝑏, 𝑇]𝑓 ∈ 𝐿

𝑠
0 .

(ii) Assume that for any 𝑏 ∈ Λ̇ 𝛽 ∩ 𝐿
∞ and for any 𝑓 ∈ 𝐿

∞

𝑐

one has that
[𝑏, 𝑇]𝑓

𝐿𝑞(V) ≤ 𝐶‖𝑏‖Λ̇
𝛽

𝑓
𝐿𝑝(𝑤), (33)

where 𝐶 does not depend on 𝑏 and 𝑓. Then for all 𝑏 ∈ Λ̇ 𝛽, (33)
holds.

Proof. Theideas of the following argument are taken from [7].
Fix 𝑓 ∈ 𝐿

∞

𝑐
. Note that (i) follows easily observing that

[𝑏, 𝑇] 𝑓 (𝑥) ≤ |𝑏 (𝑥)|
𝑇𝑓 (𝑥)

 +
𝑇 (𝑏𝑓) (𝑥)



≤ ‖𝑏‖𝐿∞
𝑇𝑓 (𝑥)

 +
𝑇 (𝑏𝑓) (𝑥)

 ∈ 𝐿
𝑠
0

(34)

since 𝑏 ∈ 𝐿
∞,𝑓 ∈ 𝐿

∞

𝑐
imply that𝑓, 𝑏𝑓 ∈ 𝐿

∞

𝑐
⊂ 𝐿

𝑝
0 and hence,

by assumption, 𝑇(𝑓), 𝑇(𝑏𝑓) ∈ 𝐿
𝑠
0 .

To obtain (ii), we fix 𝑏 ∈ Λ̇ 𝛽 and 𝑓 ∈ 𝐿
∞

𝑐
. Let 𝑄0 be a

cube such that supp𝑓 ⊂ 𝑄0. We may assume that 𝑏𝑄
0

= 0

since otherwise we can work with 𝑏 = 𝑏 − 𝑏𝑄
0

and observe
that

[𝑏, 𝑇] = [𝑏, 𝑇] , ‖𝑏‖Λ̇
𝛽

=

𝑏
Λ̇
𝛽

. (35)

Note that for 𝑚 = 0, 1, we have that |𝑏𝑚𝑓| and |𝑇(𝑏
𝑚
𝑓)| are

finite almost everywhere since they belong to 𝐿𝑝0 .
Let𝑁 > 0 and define 𝑏𝑁 as follows:

𝑏𝑁 (𝑥) =

{{

{{

{

−𝑁, 𝑏 (𝑥) < −𝑁,

𝑏 (𝑥) , −𝑁 ≤ 𝑏 (𝑥) ≤ 𝑁,

𝑁, 𝑏 (𝑥) > 𝑁.

(36)

Then, it is immediate to see that |𝑏𝑁(𝑥)−𝑏𝑁(𝑦)| ≤ |𝑏(𝑥)−𝑏(𝑦)|

for all 𝑥, 𝑦. Thus, ‖𝑏𝑁‖Λ̇
𝛽

≤ ‖𝑏‖Λ̇
𝛽

. As 𝑏𝑁 ∈ 𝐿
∞, we can use

(33) and
[𝑏𝑁, 𝑇]𝑓

𝐿𝑞(V) ≤ 𝐶
𝑏𝑁

Λ̇
𝛽

𝑓
𝐿𝑝(𝑤)

≤ 𝐶‖𝑏‖Λ̇
𝛽

𝑓
𝐿𝑝(𝑤) < ∞.

(37)

To conclude, by Fatou’s lemma, it suffices to show that
|[𝑏𝑁
𝑗

, 𝑇]𝑓(𝑥)| → |[𝑏, 𝑇]𝑓(𝑥)| for a.e. 𝑥 ∈ R𝑛 and for some
subsequence {𝑁𝑗}𝑗 such that𝑁𝑗 → ∞.

As |𝑏𝑁| ≤ |𝑏| ∈ 𝐿
𝑝
(𝑄0), for any 1 ≤ 𝑝 < ∞, the dominated

convergence theorem yields that 𝑏𝑁𝑓 → 𝑏𝑓 in 𝐿
𝑝
0 as 𝑁 →

∞. Therefore, 𝑇 is bounded from 𝐿
𝑝
0 to 𝐿

𝑠
0 . It follows that

𝑇(𝑏𝑁𝑓 − 𝑏𝑓) → 0 in 𝐿
𝑠
0 . Thus, there exists a subsequence

𝑁𝑗 → ∞ such that 𝑇(𝑏𝑁
𝑗

𝑓 − 𝑏𝑓) → 0 for a.e. 𝑥 ∈ R𝑛. In
this way we obtain



[𝑏𝑁
𝑗

, 𝑇] 𝑓 (𝑥)

−
[𝑏, 𝑇] 𝑓 (𝑥)





≤

[𝑏𝑁
𝑗

, 𝑇] 𝑓 (𝑥) − [𝑏, 𝑇] 𝑓 (𝑥)


≤

𝑇 (𝑏𝑁

𝑗

𝑓 − 𝑏𝑓) (𝑥)

+

𝑏𝑁
𝑗
(𝑥) − 𝑏 (𝑥)



𝑇𝑓 (𝑥)


(38)

as desired, and we get that |[𝑏𝑁
𝑗

, 𝑇]𝑓(𝑥)| → |[𝑏, 𝑇]𝑓(𝑥)| for
a.e 𝑥 ∈ R𝑛.

Proof of Theorem 1. We assume that 𝑞0 < ∞, for 𝑞0 = ∞,
and the main ideas are the same and details are left to the
interested reader. Lemma 9 ensures that it suffices to consider
the case 𝑏 ∈ Λ̇ 𝛽 ∩ 𝐿

∞. Let 𝑓 ∈ 𝐿
∞

𝑐
and set 𝐹 = |[𝑏, 𝑇]𝑓|

𝑠
0 .

Note that 𝐹 ∈ 𝐿
1 by (i) of Lemma 9. Given a ball 𝐵, we set

𝑓𝐵,𝑏 = (𝑏4𝐵 − 𝑏)𝑓 and decompose [𝑏, 𝑇]𝑓 as follows:
[𝑏, 𝑇] 𝑓 (𝑥)



=
𝑇 ((𝑏 (𝑥) − 𝑏) 𝑓) (𝑥)



≤
𝑏 (𝑥) − 𝑏4𝐵


𝑇𝑓 (𝑥)

 +
𝑇 ((𝑏4𝐵 − 𝑏) 𝑓) (𝑥)



≤
𝑏 (𝑥) − 𝑏4𝐵


𝑇𝑓 (𝑥)

 +
𝑇 (𝐼 − 𝐴𝑟(𝐵)) 𝑓𝐵,𝑏 (𝑥)



+
𝑇𝐴𝑟(𝐵)𝑓𝐵,𝑏 (𝑥)

 .

(39)
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We observe that 𝐹 ≤ 𝐺𝐵 + 𝐻𝐵, where

𝐺𝐵 = 4
𝑠
0
−1
(𝐺𝐵,1 + 𝐺𝐵,2)

= 4
𝑠
0
−1
(
𝑏 − 𝑏4𝐵



𝑠
0 𝑇𝑓



𝑠
0

+
𝑇 (𝐼 − 𝐴𝑟(𝐵)) 𝑓𝐵,𝑏



𝑠
0

)

(40)

and𝐻𝐵 = 2
𝑠
0
−1
|𝑇𝐴𝑟(𝐵)𝑓𝐵,𝑏|

𝑠
0 .

We first estimate the average of 𝐺𝐵 on 𝐵. Fix any 𝑥 ∈ 𝐵.
Let 1 < 𝑠 < ∞. Using Lemma 4,

(⨏
𝐵

𝐺𝐵,1)

1/𝑠
0

= (
1

|𝐵|
∫
𝐵

𝑏 − 𝑏4𝐵


𝑠
0 𝑇𝑓



𝑠
0

)

1/𝑠
0

≤ (
1

|𝐵|
∫
𝐵

𝑏 − 𝑏4𝐵


𝑠
0
𝑠


)

1/(𝑠
0
𝑠

)

× (
1

|𝐵|
∫
𝐵

𝑇𝑓


𝑠
0
𝑠
)

1/(𝑠
0
𝑠)

=
1

|𝐵|
𝛽/𝑛

(
1

|𝐵|
∫
𝐵

𝑏 − 𝑏4𝐵


𝑠
0
𝑠


)

1/(𝑠
0
𝑠

)

× (
1

|𝐵|
1−𝑠
0
𝑠𝛽/𝑛

∫
𝐵

𝑇𝑓


𝑠
0
𝑠
)

1/(𝑠
0
𝑠)

≤ 𝐶‖𝑏‖Λ̇
𝛽

𝑀𝛽,𝑠
0
𝑠 (𝑇𝑓) (𝑥) .

(41)

Using (9) and Lemmas 4 and 5,

(⨏
𝐵

𝐺𝐵,2)

1/𝑠
0

= (⨏
𝐵

𝑇 (𝐼 − 𝐴𝑟(𝐵)) 𝑓𝐵,𝑏


𝑠
0

)

1/𝑠
0

≤ 𝐶

∞

∑

𝑗=1

𝛼𝑗


2
𝑗+1

𝐵


𝛼/𝑛

(⨏
2𝑗+1𝐵

𝑓𝐵,𝑏


𝑝
0

)

1/𝑝
0

≤ 𝐶

∞

∑

𝑗=1

𝛼𝑗


2
𝑗+1

𝐵


𝛼/𝑛

× (
1

2
𝑗+1𝐵



∫
2𝑗+1𝐵

𝑏 − 𝑏2𝑗+1𝐵


𝑝
0 𝑓



𝑝
0

)

1/𝑝
0

+ 𝐶

∞

∑

𝑗=1

𝛼𝑗


2
𝑗+1

𝐵


𝛼/𝑛

× (
1

2
𝑗+1𝐵



𝑏2𝑗+1𝐵 − 𝑏4𝐵


𝑝
0

∫
2𝑗+1𝐵

𝑓


𝑝
0

)

1/𝑝
0

≤ 𝐶

∞

∑

𝑗=1

𝛼𝑗‖𝑏‖Λ̇
𝛽

𝑀𝛼+𝛽,𝑝
0
𝑠 (𝑓) (𝑥)

+ 𝐶

∞

∑

𝑗=1

𝛼𝑗‖𝑏‖Λ̇
𝛽


2
𝑗+1

𝐵


(𝛼+𝛽)/𝑛

× (
1

2
𝑗+1𝐵



∫
2𝑗+1𝐵

𝑓


𝑝
0
𝑠
)

1/(𝑝
0
𝑠)

≤ 𝐶‖𝑏‖Λ̇
𝛽

𝑀𝛼+𝛽,𝑝
0
𝑠 (𝑓) (𝑥)

(42)

since ∑∞

𝑗=1
𝛼𝑗 < ∞. Hence, for any 𝑥 ∈ 𝐵,

⨏
𝐵

𝐺𝐵 ≤ 𝐶(‖𝑏‖
𝑠
0

Λ̇
𝛽

𝑀𝛽,𝑠
0
𝑠(𝑇𝑓)

𝑠
0

(𝑥)

+‖𝑏‖
𝑠
0

Λ̇
𝛽

𝑀𝛼+𝛽,𝑝
0
𝑠(𝑓)

𝑠
0

(𝑥)) ≡ 𝐺 (𝑥) .

(43)

We next estimate the average of 𝐻𝑞


𝐵
on 𝐵 with 𝑞


= 𝑞0/𝑠0.

Using (10) and proceeding as before, we see that

(⨏
𝐵

𝐻
𝑞


𝐵
)

1/𝑞
0

= 2
(𝑠
0
−1)/𝑠
0(⨏

𝐵

𝑇𝐴𝑟(𝐵)𝑓𝐵,𝑏


𝑞
0

)

1/𝑞
0

≤ 𝐶

∞

∑

𝑗=1

𝛼𝑗(⨏
2𝑗+1𝐵

𝑇𝑓𝐵,𝑏


𝑠
0

)

1/𝑠
0

≤ 𝐶

∞

∑

𝑗=1

𝛼𝑗(⨏
2𝑗+1𝐵

𝑇𝑏𝑓


𝑠
0

)

1/𝑠
0

+ 𝐶

∞

∑

𝑗=1

𝛼𝑗(⨏
2𝑗+1𝐵

𝑏 − 𝑏4𝐵


𝑠
0 𝑇𝑓



𝑠
0

)

1/𝑠
0

≤ 𝐶(𝑀𝐹)
1/𝑠
0 (𝑥) + 𝐶‖𝑏‖Λ̇

𝛽

𝑀𝛽,𝑠
0
𝑠 (𝑇𝑓) (𝑥) ,

(44)

for any 𝑥, 𝑥 ∈ 𝐵. Thus we have obtained

(⨏
𝐵

𝐻
𝑞


𝐵
)

1/𝑞


≤ 𝐶(𝑀𝐹 (𝑥) + ‖𝑏‖
𝑠
0

Λ̇
𝛽

𝑀𝛽,𝑠
0
𝑠(𝑇𝑓)

𝑠
0

(𝑥))

≡ 𝐶 (𝑀𝐹 (𝑥) + 𝐻2 (𝑥)) .

(45)

For 𝑝0 < 𝑝 < 𝑞 < 𝑞0 and 1/𝑞 = 1/𝑝 − (𝛼 + 𝛽)/𝑛, we
can find a 1 < 𝑠 < ∞ such that 𝑠0𝑠 < 1/(1/𝑝 − 𝛼/𝑛) and
𝑝0𝑠 < 𝑝. As mentioned before 𝐹 ∈ 𝐿

1. Applying Theorem A
and Remark 2 with 𝑞/𝑠0 in place of 𝑝, we obtain

[𝑏, 𝑇]𝑓


𝑠
0

𝑞

≤ ‖𝑀𝐹‖𝑞/𝑠
0

≤ 𝐶 (‖𝐺‖𝑞/𝑠
0

+
𝐻2

𝑞/𝑠
0

)

≤ 𝐶‖𝑏‖
𝑠
0

Λ̇
𝛽

(

𝑀𝛽,𝑠

0
𝑠 (𝑇𝑓)



𝑠
0

𝑞
+

𝑀𝛼+𝛽,𝑝

0
𝑠 (𝑓)



𝑠
0

𝑞
)

≤ 𝐶‖𝑏‖
𝑠
0

Λ̇
𝛽

(
𝑇𝑓



𝑠
0

1/(1/𝑝−𝛼/𝑛)
+
𝑓



𝑠
0

𝑝
)

≤ 𝐶‖𝑏‖
𝑠
0

Λ̇
𝛽

𝑓


𝑠
0

𝑝
,

(46)
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where we have used Lemma 6. This implies that
[𝑏, 𝑇]𝑓

𝑞 ≤ 𝐶‖𝑏‖Λ̇
𝛽

𝑓
𝑝. (47)

Proof of Theorem 3. Let 𝐹, 𝐺, and 𝐻2 be the same as those
used in the proof of Theorem 1. As mentioned before 𝐹 ∈ 𝐿

1.
Since V ∈ 𝐴𝑝/𝑝

0

∩ 𝑅𝐻
(𝑞
0
/𝑝)
 , applying Theorem A with 𝑝/𝑝0

in place of 𝑝 and 𝑠 = 𝑞0/𝑝, we obtain
[𝑏, 𝑇]𝑓



𝑝
0

𝐿𝑞(V)

≤ ‖𝑀𝐹‖𝐿𝑞/𝑝0 (V) ≤ 𝐶 (‖𝐺‖𝐿𝑞/𝑝0 (V) +
𝐻2

𝐿𝑞/𝑝0 (V))

≤ 𝐶‖𝑏‖
𝑝
0

Λ̇
𝛽

(

𝑀𝛽,𝑝

0
𝑠(𝑇𝑓)



𝑝
0

𝐿𝑞(V)
+

𝑀𝛽,𝑝

0
𝑠(𝑓)



𝑝
0

𝐿𝑞(V)
)

= 𝐶‖𝑏‖
𝑝
0

Λ̇
𝛽

(

M𝛽𝑝

0
𝑠/𝑛,𝑝
0
𝑠(𝑇𝑓)



𝑝
0

𝐿𝑞(V)

+

M𝛽𝑝

0
𝑠/𝑛,𝑝
0
𝑠(𝑓)



𝑝
0

𝐿𝑞(V)
) .

(48)

Noting that (𝑤, V) ∈ 𝐴(𝑝/𝑝0𝑠, 𝑞/𝑝0𝑠, 𝛽𝑝0𝑠/𝑛), Lemma 8 and
Remark 2 give us that


M𝛽𝑝

0
𝑠/𝑛,𝑝
0
𝑠(𝑇𝑓)

𝐿𝑞(V)
≤ 𝐶

𝑇𝑓
𝐿𝑝(𝑤)

≤ 𝐶
𝑓

𝐿𝑝(𝑤).

(49)

This implies that
[𝑏, 𝑇]𝑓

𝐿𝑞(V) ≤ 𝐶‖𝑏‖Λ̇
𝛽

𝑓
𝐿𝑝(𝑤). (50)

4. Applications

4.1. Spectral Multipliers: Off-Diagonal Estimates. Suppose
that 𝐿 is a self-adjoint nonnegative definite operator on
𝐿
2
(R𝑛

). Let 𝐸(𝜆) be the spectral resolution of 𝐿. For any
bounded Borel function 𝑚 : [0,∞) → C, by using the
spectral theorem, we can define the operator

𝑚(𝐿) = ∫

∞

0

𝑚(𝜆) 𝑑𝐸 (𝜆) . (51)

This is of course bounded on 𝐿
2
(R𝑛

).
The following will be assumed throughout this subsec-

tion.
(H1) 𝐿 is a nonnegative self-adjoint operator on 𝐿

2
(R𝑛

).
(H2) The operator 𝐿 generates an analytic semigroup

{𝑒
−𝑡𝐿

}𝑡>0which satisfies theDavies-Gaffney condition.
That is, there exist constants𝐶, 𝑐 > 0 such that for any
open subsets 𝑈1, 𝑈2 ⊂ R𝑛,


⟨𝑒

−𝑡𝐿
𝑓1, 𝑓2⟩



≤ 𝐶 exp(−
dist (𝑈1, 𝑈2)

2

𝑐𝑡
)

×
𝑓1

𝐿2(R𝑛)

𝑓2
𝐿2(R𝑛), ∀𝑡 > 0,

(52)

for every 𝑓𝑖 ∈ 𝐿
2
(R𝑛

) with supp 𝑓𝑖 ⊂ 𝑈𝑖, 𝑖 = 1, 2,
where dist(𝑈1, 𝑈2) := inf𝑥∈𝑈

1
,𝑦∈𝑈
2

𝑑(𝑥, 𝑦).
(H3) Suppose 2 < 𝑞0 ≤ ∞. Assume that the analytic

semigroup 𝑒
−𝑡𝐿 generated by 𝐿 satisfies “𝐿2 − 𝐿

𝑞
0

off-diagonal” estimates: there exist coefficients {𝑎𝑗}𝑗≥0
satisfying∑∞

𝑗=0
𝑎𝑗 < ∞ such that for all balls 𝐵 and for

all functions 𝑓 ∈ 𝐿
2
(R𝑛

)

(
1

|𝐵|
∫
𝐵


𝑒
−𝑟
2

𝐵
𝐿
𝑓


𝑞
0

𝑑𝑥)

1/𝑞
0

≤

∞

∑

𝑗=0

𝑎𝑗(
1

2
𝑗𝐵


∫
2𝑗𝐵

𝑓


2
𝑑𝑥)

1/2

.

(53)

Let 𝜙 be a nonnegative 𝐶∞

0
function such that

supp𝜙 ⊂ (
1

4
, 1) , ∑

𝑙∈Z

𝜙 (2
−𝑙
𝜆) = 1, ∀𝜆 > 0. (54)

For 𝑠 ≥ 0, let [𝑠] denote the integer part of 𝑠. Recall that 𝐶𝑠 is
the space of functions𝑚 on R for which

‖𝑚‖𝐶𝑠

=

{{{{{

{{{{{

{

𝑠

∑

𝑘=0

sup
𝜆∈R


𝑚
(𝑘)

(𝜆)


if 𝑠 ∈ Z,


𝑚
([𝑠])Lip(𝑠−[𝑠]) +

[𝑠]

∑

𝑘=0

sup
𝜆∈R


𝑚
(𝑘)

(𝜆)


if 𝑠 ∉ Z

(55)

is finite.
Then the following result holds.

Theorem 10. Let 𝐿 satisfy assumptions (H1)–(H3). Let 𝜙 be a
nonnegative 𝐶∞

0
function satisfying (54), and suppose that the

bounded measurable function𝑚 : [0,∞) → C satisfies

𝐶𝜙,𝑠 = sup
𝑡>0

𝜙(⋅)𝑚(𝑡⋅)
𝐶𝑠 + |𝑚 (0)| < ∞ (56)

for some 𝑠 > 𝑛/2. Then

(i) let 0 < 𝛽 < 1. If 2 < 𝑝 < 1/(1/𝑞0 + 𝛽/𝑛) and 1/𝑞 =

1/𝑝 − 𝛽/𝑛, then there is a constant 𝐶 such that
[𝑏,𝑚(𝐿)]𝑓

𝐿𝑞 ≤ 𝐶‖𝑏‖Λ̇
𝛽

𝑓
𝐿𝑝 , (57)

for all 𝑓 ∈ 𝐿
∞

𝑐
and for all 𝑏 ∈ Λ̇ 𝛽.

(ii) Let 0 < 𝛽 < min{1, 𝑛/2}, 2 < 𝑝 < 𝑞 < 𝑞0,
and 𝑤, V ∈ 𝐴𝑝/𝑝

0

∩ 𝑅𝐻
(𝑞
0
/𝑝)
 . If there exists a

constant 1 < 𝑠 < min{𝑛/𝛽2, 𝑝/2} such that (𝑤, V) ∈

𝐴(𝑝/2𝑠, 𝑞/2𝑠, 𝛽2𝑠/𝑛), then there is a constant 𝐶 such
that

[𝑏, 𝑚(𝐿)]𝑓
𝐿𝑞(V) ≤ 𝐶‖𝑏‖Λ̇

𝛽

𝑓
𝐿𝑝(𝑤), (58)

for all 𝑓 ∈ 𝐿
∞

𝑐
and for all 𝑏 ∈ Λ̇ 𝛽.
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Proof. Estimate (57) follows fromTheorem 1 with 𝛼 = 0 and
estimate (58) follows fromTheorem 3, applied to𝑇𝑓 = 𝑚(𝐿)𝑓

and 𝐴𝑟 = 𝐼 − (𝐼 − 𝑒
−𝑟
2
𝐿
)
𝑀 with 𝑀 ∈ N and 𝑀 > 𝑠/2. It

suffices to show that there exist coefficients {𝑎𝑗}𝑗≥0 satisfying
∑
∞

𝑗=1
𝑎𝑗 < ∞ such that (9) and (10) hold for all 𝑓 ∈ 𝐿

∞

𝑐
(R𝑛

).
Fix 1 ≤ 𝑘 ≤ 𝑀. From (53), we deduce that

(
1

|𝐵|
∫
𝐵


𝑒
−𝑘𝑟
2

𝐵
𝐿
𝑓


𝑞
0

𝑑𝑥)

1/𝑞
0

≤

∞

∑

𝑗=0

𝐶𝑎𝑗(
1

2
𝑗𝐵


∫
2𝑗𝐵

𝑓


2
𝑑𝑥)

1/2

.

(59)

This estimate with 𝑚(𝐿)𝑓 in place of 𝑓 yields (10). Since, by
functional calculus, 𝑚(𝐿)𝑒

−𝑘𝑟
2
𝐿
𝑓 = 𝑒

−𝑘𝑟
2
𝐿
𝑚(𝐿)𝑓, (9) was

proved in [13].

4.2. Riesz Transforms. Let 𝐴 be an 𝑛 × 𝑛 matrix of complex
and𝐿∞-valued coefficients onR𝑛.We assume that thismatrix
satisfies the following ellipticity (or “accretivity”) condition:
there exist 0 < 𝜆 ≤ Λ < ∞ such that

𝜆
𝜉


2
≤ Re𝐴 (𝑥) 𝜉 ⋅ 𝜉,


𝐴 (𝑥) 𝜉 ⋅ 𝜁


≤ Λ

𝜉

𝜁
 ,

(60)

for all 𝜉, 𝜁 ∈ C𝑛 and almost every 𝑥 ∈ R𝑛. Associatedwith this
matrix we define the second-order divergence form operator

𝐿 = − div (𝐴∇) . (61)

The Riesz transforms associated to 𝐿 are 𝜕𝑗𝐿
−1/2, 1 ≤

𝑗 ≤ 𝑛. Set ∇𝐿−1/2 = (𝜕1𝐿
−1/2

, . . . , 𝜕𝑛𝐿
−1/2

). The solution of
the Kato conjecture [14] implies that this operator extends
boundedly to 𝐿2. This allows the representation

∇𝐿
−1/2

𝑓 =
1

√𝜋
∫

∞

0

∇𝑒
−𝑡𝐿

𝑓
𝑑𝑡

√𝑡
(62)

in which the integral converges strongly in 𝐿
2 both at 0 and

∞ when 𝑓 ∈ 𝐿
2.

Define 𝜗 ∈ [0, 𝜋/2) by

𝜗 = sup {arg ⟨𝐿𝑓, 𝑓⟩
 : 𝑓 ∈ D (𝐿)} . (63)

We write for 0 < 𝜃 < ∞, Σ𝜃 = {𝑧 ∈ C \ {0} : | arg 𝑧| < 𝜃}.
We extract from [15] some definitions and results on

unweighted off-diagonal estimates.

Definition 11. Let 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞. One says that a family
{𝑇𝑡}𝑡>0 of sublinear operators satisfies 𝐿

𝑝
−𝐿

𝑞 full off-diagonal
estimates, in short 𝑇𝑡 ∈ F(𝐿

𝑝
− 𝐿

𝑞
), if for some 𝑐 > 0, for all

closed sets 𝐸 and 𝐹, all 𝑓, and all 𝑡 > 0, we have

(∫
𝐹

𝑇𝑡 (𝜒𝐸𝑓)


𝑞
𝑑𝑥)

1/𝑞

≤ 𝐶𝑡
−(1/2)(𝑛/𝑝−𝑛/𝑞)

𝑒
−𝑐𝑑
2
(𝐸,𝐹)/2

(∫
𝐸

𝑓


𝑝
𝑑𝑥)

1/𝑝

.

(64)

If 𝐼 is a subinterval of [1,∞], Int 𝐼 denotes the interior in
R of 𝐼 ∩R.

Proposition 12 (see [15]). Fix𝑚 ∈ N and 0 < 𝜇 < 𝜋/2 − 𝜗.

(a) There exists a nonempty maximal interval in [1,∞],
denoted by J(𝐿), such that if 𝑝, 𝑞 ∈ J(𝐿) with 𝑝 ≤ 𝑞,
then {(𝑧𝐿)

𝑚
𝑒
−𝑧𝐿

}𝑧∈Σ
𝜇

satisfies 𝐿𝑝 − 𝐿
𝑞 full off-diagonal

estimates and is a bounded set inL(𝐿
𝑝
).

(b) There exists a nonempty maximal interval in [1,∞],
denoted by K(𝐿), such that if 𝑝, 𝑞 ∈ K(𝐿) with 𝑝 ≤

𝑞, then {√𝑧∇(𝑧𝐿)
𝑚
𝑒
−𝑧𝐿

}𝑧∈Σ
𝜇

satisfies 𝐿𝑝 − 𝐿
𝑞 full off-

diagonal estimates and is a bounded set inL(𝐿
𝑝
).

(c) K(𝐿) ⊂ J(𝐿) and, for 𝑝 < 2, we have 𝑝 ∈ K(𝐿) if and
only if 𝑝 ∈ J(𝐿).

(d) Denote by 𝑝−(𝐿), 𝑝+(𝐿) the lower and upper bounds
of J(𝐿) and by 𝑞−(𝐿), 𝑞+(𝐿) those of K(𝐿). We have
𝑝−(𝐿) = 𝑞−(𝐿) and (𝑞−(𝐿))

∗
≤ 𝑝+(𝐿). (We have set

𝑞
∗
= (𝑞𝑛/(𝑛−𝑞)), the Sobolev exponent of 𝑞when 𝑞 < 𝑛

and 𝑞∗ = ∞, otherwise.)

(e) If 𝑛 = 1, J(𝐿) = K(𝐿) = [1,∞]. If 𝑛 = 2, J(𝐿) =

[1,∞] andK(𝐿) ⊃ [1, 𝑞+(𝐿)) with 𝑞+(𝐿) > 2.

(f) If 𝑛 ≥ 3, 𝑝−(𝐿) < 2𝑛/(𝑛 + 2), 𝑝+(𝐿) > 2𝑛/(𝑛 − 2), and
𝑞+(𝐿) > 2.

Then for 𝑞− < 𝑝0 < 𝑞0 < 𝑞+, 𝑇 = ∇𝐿
−1/2 satisfy (9) and

(10) with 𝛼 = 0 and 𝐴𝑟 = 𝐼 − (𝐼 − 𝑒
−𝑟
2
𝐿
)
𝑀, where 𝑀 is a

large enough integer. For the proof of this argument, see [15].
So Theorem 1 with 𝛼 = 0 and Theorem 3 can be applied to
𝑇 = ∇𝐿

−1/2.

4.3. Fractional Operators. Let 𝐿 = − div(𝐴∇). The fractional
power of an elliptic operator 𝐿 on 𝑅

𝑛 is given formally by

𝐿
−𝛼/2

=
1

Γ (𝛼/2)
∫

∞

0

𝑡
𝛼/2

𝑒
−𝑡𝐿𝑑𝑡

𝑡
, (65)

with 𝛼 > 0. There exist 𝑝− = 𝑝−(𝐿) and 𝑝+ = 𝑝+(𝐿), 1 ≤ 𝑝− <

2 < 𝑝+ ≤ ∞ such that the semigroup {𝑒
−𝑡𝐿

}𝑡>0 is uniformly
bounded on 𝐿

𝑝 for every 𝑝− < 𝑝 < 𝑝+ (see Proposition 12).
We have the following results.

Lemma 13 (see [9]). Let 𝑝− < 𝑝0 < 𝑠0 < 𝑞0 < 𝑝+ so that
1/𝑝0 − 1/𝑠0 = 𝛼/𝑛. Fix a ball 𝐵 with radius 𝑟. For 𝑓 ∈ 𝐿

∞

𝑐
and

𝑀 large enough, one has

(⨏
𝐵


𝐿
−𝛼/2

(𝐼 − 𝑒
−𝑟
2
𝐿
)

𝑀

𝑓



𝑠
0

)

1/𝑠
0

≤ 𝐶

∞

∑

𝑗=1

𝑔1 (𝑗)

2
𝑗+1

𝐵


𝛼/𝑛

(⨏
2𝑗+1𝐵

𝑓


𝑝
0

)

1/𝑝
0

,

(66)
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and for 1 ≤ 𝑙 ≤ 𝑀

(⨏
𝐵


𝐿
−𝛼/2

𝑒
−𝑙𝑟
2
𝐿
𝑓


𝑞
0

)

1/𝑞
0

≤ 𝐶

∞

∑

𝑗=1

𝑔2 (𝑗) (⨏
2𝑗+1𝐵


𝐿
−𝛼/2

𝑓


𝑠
0

)

1/𝑠
0

,

(67)

where 𝑔𝑗 = 𝐶2
−𝑗(2𝑀−𝑛/𝑠

0
) and 𝑔2(𝑗) = 𝐶𝑒

−𝑐4
𝑗

.

Theorem 14. Let 𝑝− < 𝑝 < 𝑞 < 𝑝+, 0 < 𝛼, 𝛽, 𝛼 + 𝛽 < 1, and
1/𝑞 = 1/𝑝 − (𝛼 + 𝛽)/𝑛. Given 𝑏 ∈ Λ̇ 𝛽, one has


[𝑏, 𝐿

−𝛼/2
]𝑓
𝑞

≤ 𝐶‖𝑏‖Λ̇
𝛽

𝑓
𝑝. (68)

Proof. We are going to applyTheorem 1 to the linear operator
𝑇 = 𝐿

−𝛼/2. We fix 𝑝− < 𝑝 < 𝑞 < 𝑝+, 𝛼, and 𝛽 so that 1/𝑞 =

1/𝑝 − (𝛼 + 𝛽)/𝑛. Then we can find 𝑝0, 𝑞0, 𝑠0 such that 1/𝑝0 −
1/𝑠0 = 𝛼/𝑛, 𝑝− < 𝑝0 < 𝑠0 < 𝑞0 < 𝑝+, and 𝑝0 < 𝑝 < 𝑞 < 𝑞0.
Notice that as 1 ≤ 𝑝− < 𝑝+ ≤ ∞, we have that 1 < 𝑝0 < 𝑠0 <

𝑞0 < ∞. By Theorem 1.2 in [9], we know that 𝑇 = 𝐿
−𝛼/2 is

bounded from 𝐿
𝑝
0 to 𝐿𝑠0 .

We take 𝐴𝑟 = 𝐼 − (𝐼 − 𝑒
−𝑟
2
𝐿
)
𝑚, where𝑚 ≥ 1 is an integer

to be chosen. We apply Lemma 13. Note that (66) is (9). Also,
(10) follows from (67) after expanding 𝐴𝑟 = 𝐼 − (𝐼 − 𝑒

−𝑟
2
𝐿
)
𝑚.

Then, we have that ∑𝑗≤1 𝑔𝑖(𝑗) for 𝑖 = 1, 2 by choosing 2𝑚 >

𝑛/𝑠0. Consequently applying Theorem 1, we conclude that
‖[𝑏, 𝐿

−𝛼/2
]𝑓‖

𝑞
≤ 𝐶‖𝑏‖Λ̇

𝛽

‖𝑓‖
𝑝
.
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