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Correspondence should be addressed to Oktay Duman; oduman@etu.edu.tr

Received 18 March 2013; Accepted 21 May 2013

Academic Editor: Juan Manuel Peña

Copyright © 2013 A. A. Ergur and O. Duman. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We generalize and develop the Korovkin-type approximation theory by using an appropriate abstract space. We show that our
approximation is more applicable than the classical one. At the end, we display some applications.

1. Introduction

The classical Korovkin theory enables us to approximate a
function by means of positive linear operators (see, e.g., [1–
3]). In recent years, this theory has been quite improved by
some efficient tools inmathematics such as the concept of sta-
tistical convergence from summability theory, the fuzzy logic
theory, the complex functions theory, the theory of 𝑞-cal-
culus, and the theory of fractional analysis.Themain purpose
of this paper is to generalize and develop this Korovkin theory
by using an appropriate abstract space. Actually, the most
important motivation of this study has its roots from the
paper by Yoshinaga and Tamura [4]. In the present paper, we
show that our new approximation is more general and also
more applicable than that of [4].

Throughout the paper the following assumptions are
imposed:

(i) (𝑋,U) is a Hausdorff uniform space provided with
the uniform structure (𝑋,U);

(ii) U is the filter of the surroundings containing the diag-
onal Δ = {(𝑥, 𝑥) : 𝑥 ∈ 𝑋} in 𝑋 × 𝑋;

(iii) F is a vector space of real-valued functions defined
on 𝑋 including the constant-valued function 𝑒

0
(𝑥) =

1;
(iv) 𝑌 is a compact subspace of 𝑋;
(v) 𝐿
𝑛
is a positive linear operator ofF into R𝑌 for each

𝑛 ∈ N;
(vi) 𝐴 := [𝑎

𝑗𝑛
] is a nonnegative regular summable matrix.

Assume further that there exists a certain real-valued
function 𝐹(𝑥, 𝑦) satisfying the following conditions:

(i) 𝐹(𝑥, 𝑦) ≥ 0 on 𝑋 × 𝑌 and 𝐹(𝑦, 𝑦) = 0 for each 𝑦 ∈ 𝑌;
(ii) 𝐹
𝑦

∈ F for each 𝑦 ∈ 𝑌, where 𝐹
𝑦
is the function on 𝑋

defined by 𝐹
𝑦
(𝑥) := 𝐹(𝑥, 𝑦);

(iii) for each 𝑦 ∈ 𝑌, 𝐹
𝑦
(𝑥) is continuous with respect to 𝑥

at each point in 𝑌;
(iv) 𝜌(𝑈) = inf 𝐹(𝑥, 𝑦) > 0 for each𝑈 ∈ U, where the infi-

mum is taken over (𝑋 × 𝑌) − 𝑈;
(v) there exist 𝑦

1
, 𝑦
2

∈ 𝑌, 𝑦
1

̸= 𝑦
2
, such that 𝐹

𝑦
1

(𝑥) and
𝐹
𝑦
2

(𝑥) are bounded functions of 𝑥, and it holds that

st
𝐴

− lim
𝑛


𝐿
𝑛

(𝐹
𝑦
1

) − 𝐹
𝑦
1


= 0,

st
𝐴

− lim
𝑛


𝐿
𝑛

(𝐹
𝑦
2

) − 𝐹
𝑦
2


= 0,

st
𝐴

− lim
𝑛

(sup
𝑦∈𝑌

𝐿
𝑛

(𝐹
𝑦
; 𝑦)) = 0,

(1)

where the symbol ‖ ⋅ ‖ denotes the classical sup-norm on the
compact set 𝑌. Here, we use the concept of 𝐴-statistical con-
vergence, where𝐴 is a nonnegative regular summablematrix.
Recall that, for a given subset 𝐾 of N, the 𝐴-density of 𝐾,
denoted by 𝛿

𝐴
(𝐾), is defined to be 𝛿

𝐴
(𝐾) = lim

𝑗→∞
∑
𝑛∈𝐾

𝑎
𝑗𝑛

provided that the limit exists. Using this𝐴-density, we say that
a sequence 𝑥 = (𝑥

𝑛
) is 𝐴-statistically convergent to 𝐿 if and

only if 𝛿
𝐴

(𝐾(𝜀)) = 0 for every 𝜀 > 0, where 𝐾(𝜀) := {𝑛 ∈ N :

|𝑥
𝑛
−𝐿| ≥ 𝜀} (see [5]). In the case of𝐴 = 𝐶

1
, theCesàromatrix,
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it reduces to the concept of statistical convergence introduced
by Fast [6]. Of course, if we take 𝐴 = 𝐼, the identity matrix,
then we get the ordinary convergence.

We should note that if, for each 𝑦 ∈ 𝑌, 𝐹
𝑦
(𝑥) is a bounded

function of 𝑥 for which

st
𝐴

− lim
𝑛

( sup
𝑥,𝑦∈𝑌


𝐿
𝑛

(𝐹
𝑦
; 𝑥) − 𝐹

𝑦
(𝑥)


) = 0 (2)

holds, then we get the conditions in (V).
Then, with the above terminology, Yoshinaga andTamura

[4] proved the following approximation result (in the case of
𝐴 = 𝐼).

TheoremA (see [4]). Let𝑓 be a bounded real-valued function
on 𝑋 and continuous at each point in 𝑌. Then, if 𝑓 ∈ F, the
sequence {𝐿

𝑛
(𝑓)} is uniformly convergent to 𝑓 on 𝑌.

2. Statistical Approximation Theorem

In this section, we obtain the statistical analog of Theorem A
in order to get a more applicable approximation theorem.

We first need the following three lemmas.

Lemma 1 (see [4]). Let 𝑉 be an open subset of 𝑋 × 𝑌

containing Δ
𝑌

:= Δ ∩ (𝑋 × 𝑌). Then, it is possible to see that
𝑈 ∩ (𝑋 × 𝑌) ⊂ 𝑉 for some 𝑈 ∈ U.

Lemma 2. The sequence {‖𝐿
𝑛
(𝑒
0
)‖} is 𝐴-statistically bounded;

that is; there exist a positive real number𝑀 and a subset𝐾 ⊂ N

having 𝐴-density 1 such that
𝐿
𝑛

(𝑒
0
)
 ≤ 𝑀 for every 𝑛 ∈ 𝐾. (3)

Proof. For the points 𝑦
1
, 𝑦
2
given in (V), we can take 𝑈

0
∈ U

so that (𝑦
1
, 𝑦
2
) ∉ 𝑈
0
. Now, choose 𝑈 ∈ U such that 𝑈 = 𝑈

−1

and 𝑈 ∘ 𝑈 ⊂ 𝑈
0
. Then, we observe, for every 𝑥 ∈ 𝑋, that

𝐹
𝑦
1
(𝑥) + 𝐹

𝑦
2
(𝑥) ≥ 𝜌 (𝑈) . (4)

Hence, we get, for each 𝑦 ∈ 𝑌 and for every 𝑛 ∈ N, that

𝐿
𝑛

(𝐹
𝑦
1

; 𝑦) + 𝐿
𝑛

(𝐹
𝑦
2

; 𝑦) ≥ 𝜌 (𝑈) 𝐿
𝑛

(𝑒
0
; 𝑦) ≥ 0, (5)

which implies that

𝜌 (𝑈) 𝐿
𝑛

(𝑒
0
; 𝑦) ≤


𝐿
𝑛

(𝐹
𝑦
1

; 𝑦) − 𝐹
𝑦
1

(𝑦)


+

𝐿
𝑛

(𝐹
𝑦
2

; 𝑦) − 𝐹
𝑦
2

(𝑦)


+ {𝐹
𝑦
1

(𝑦) + 𝐹
𝑦
2

(𝑦)} .

(6)

Taking supremum over 𝑦 ∈ 𝑌 and also letting

𝑀
1

:=
1

𝜌 (𝑈)


𝐹
𝑦
1

+ 𝐹
𝑦
2


, (7)

we obtain, for every 𝑛 ∈ N, that

𝐿
𝑛

(𝑒
0
)
 ≤

1

𝜌 (𝑈)


𝐿
𝑛

(𝐹
𝑦
1

) − 𝐹
𝑦
1



+
1

𝜌 (𝑈)


𝐿
𝑛

(𝐹
𝑦
2

) − 𝐹
𝑦
2


+ 𝑀
1
.

(8)

Now, for a given 𝜀 > 0, define the following sets:

𝐾
1

:= {𝑛 ∈ N :

𝐿
𝑛

(𝐹
𝑦
1

) − 𝐹
𝑦
1


≥

𝜀𝜌 (𝑈)

2
} ,

𝐾
2

:= {𝑛 ∈ N :

𝐿
𝑛

(𝐹
𝑦
2

) − 𝐹
𝑦
2


≥

𝜀𝜌 (𝑈)

2
} .

(9)

Then, from the conditions in (V), we may write that

𝛿
𝐴

(𝐾
1
) = 𝛿
𝐴

(𝐾
2
) = 0. (10)

Now setting

𝐾 := N − (𝐾
1

∪ 𝐾
2
) , (11)

we immediately get that

𝛿
𝐴

(𝐾) = 1. (12)

Furthermore, it follows from (8) that, for every 𝑛 ∈ 𝐾, that is,
𝑛 ∉ 𝐾

1
and 𝑛 ∉ 𝐾

2
,
𝐿
𝑛

(𝑒
0
)
 ≤ 𝜀 + 𝑀

1
=: 𝑀, (13)

which completes the proof.

Lemma 3. Let 𝑔(𝑥, 𝑦) be a real-valued and bounded function
on 𝑋 × 𝑌, and let 𝑔 be continuous at each diagonal point
(𝑦, 𝑦) ∈ Δ

𝑌
. For each 𝑦 ∈ 𝑌, define the function 𝑔

𝑦
on 𝑋 by

𝑔
𝑦
(𝑥) := 𝑔(𝑥, 𝑦). Assume further that 𝑔

𝑦
∈ F and 𝑔

𝑦
(𝑦) = 0

for each 𝑦 ∈ 𝑌. Then, one has

𝑠𝑡
𝐴

− lim
𝑛

(sup
𝑦∈𝑌


𝐿
𝑛

(𝑔
𝑦
; 𝑦)


) = 0. (14)

Proof. Since 𝑔 is continuous at any diagonal point (𝑦, 𝑦) ∈

Δ
𝑌
, for every 𝜀 > 0, there exists an open neighborhood 𝑉(𝑦)

of 𝑦 in 𝑋 such that
𝑔 (𝑥, 𝑦)

 =
𝑔 (𝑥, 𝑦) − 𝑔 (𝑦, 𝑦)

 < 𝜀 (15)

for every (𝑥, 𝑦) ∈ 𝑉(𝑦) × (𝑉(𝑦) ∩ 𝑌). Now, if we define the set
𝑉 by

𝑉 := ⋃

𝑦∈𝑌

{𝑉 (𝑦) × (𝑉 (𝑦) ∩ 𝑌)} , (16)

thenwe easily see that𝑉 is an open subset of𝑋 × 𝑌 containing
the diagonal Δ

𝑌
. Also, it follows from Lemma 1 that 𝑈∩(𝑋 ×

𝑌) ⊂ 𝑉 for some 𝑈 ∈ U. Now, setting

𝐶 := sup
(𝑥,𝑦)∈𝑋×𝑌

𝑔 (𝑥, 𝑦)
 , (17)

we get, for every (𝑥, 𝑦) ∈ 𝑋 × 𝑌, that

𝑔 (𝑥, 𝑦)
 ≤ 𝜀 +

𝐶

𝜌 (𝑈)
𝐹
𝑦

(𝑥) , (18)

which in turn implies that

𝐿
𝑛

(𝑔
𝑦
; 𝑦)


≤ 𝐿
𝑛

(

𝑔
𝑦


; 𝑦)

≤ 𝜀𝐿
𝑛

(𝑒
0
; 𝑦) +

𝐶

𝜌 (𝑈)
𝐿
𝑛

(𝐹
𝑦
; 𝑦) .

(19)
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Thus we conclude that, for every 𝑛 ∈ N, the inequality

sup
𝑦∈𝑌


𝐿
𝑛

(𝑔
𝑦
; 𝑦)


≤ 𝜀

𝐿
𝑛

(𝑒
0
)
 +

𝐶

𝜌 (𝑈)
sup
𝑦∈𝑌

𝐿
𝑛

(𝐹
𝑦
; 𝑦) (20)

holds. By Lemma 2, there exists a positive real number𝑀 and
a subset 𝐾 of N having 𝐴-density 1 such that

sup
𝑦∈𝑌


𝐿
𝑛

(𝑔
𝑦
; 𝑦)


≤ 𝑀𝜀 +

𝐶

𝜌 (𝑈)
sup
𝑦∈𝑌

𝐿
𝑛

(𝐹
𝑦
; 𝑦) (21)

holds for every 𝑛 ∈ 𝐾. Now, for a given 𝑟 > 0, choose an 𝜀 > 0

such that 𝑟 > 𝑀𝜀. Then, considering the following subsets of
N:

𝐷 := {𝑛 ∈ N : sup
𝑦∈𝑌


𝐿
𝑛

(𝑔
𝑦
; 𝑦)


≥ 𝑟} ,

𝐷


:= {𝑛 ∈ N : sup
𝑦∈𝑌

𝐿
𝑛

(𝐹
𝑦
; 𝑦) ≥

(𝑟 − 𝜀𝑀) 𝜌 (𝑈)

𝐶
}

(22)

and also using (21), we have 𝐷 ∩ 𝐾 ⊂ 𝐷


∩ 𝐾 ⊂ 𝐷
, which

gives, for every 𝑗 ∈ N, that

0 ≤ ∑

𝑛∈𝐷∩𝐾

𝑎
𝑗𝑛

≤ ∑

𝑛∈𝐷

∩𝐾

𝑎
𝑗𝑛

≤ ∑

𝑛∈𝐷


𝑎
𝑗𝑛

. (23)

Taking limit as 𝑗 → ∞ in both sides of the last inequality
and also using (V), we obtain that

lim
𝑗

∑

𝑛∈𝐷∩𝐾

𝑎
𝑗𝑛

= 0. (24)

Furthermore, we may write that

∑

𝑛∈𝐷

𝑎
𝑗𝑛

= ∑

𝑛∈𝐷∩𝐾

𝑎
𝑗𝑛

+ ∑

𝑛∈𝐷∩(N−𝐾)

𝑎
𝑗𝑛

≤ ∑

𝑛∈𝐷∩𝐾

𝑎
𝑗𝑛

+ ∑

𝑛∈(N−𝐾)

𝑎
𝑗𝑛

.

(25)

Since 𝛿
𝐴

(𝐾) = 1, we get 𝛿
𝐴

(N − 𝐾) = 0. Thus, by (24) and
(25), we obtain that

lim
𝑗

∑

𝑛∈𝐷

𝑎
𝑗𝑛

= 0, (26)

which means

st
𝐴

− lim
𝑛

(sup
𝑦∈𝑌


𝐿
𝑛

(𝑔
𝑦
; 𝑦)


) = 0. (27)

Therefore, the proof is completed.

Now we are ready to give our main approximation result
in statistical sense.

Theorem4. Let𝑓 be a bounded real-valued function on𝑋 and
continuous at each point in 𝑌. Then, if 𝑓 ∈ F, one has

𝑠𝑡
𝐴

− lim
𝑛

𝐿
𝑛

(𝑓) − 𝑓
 = 0. (28)

Proof. As in the proof of Lemma 2, we take 𝑈
0
, 𝑈 ∈ U such

that 𝑈 = 𝑈
−1, (𝑦

1
, 𝑦
2
) ∉ 𝑈
0
, and 𝑈 ∘ 𝑈 ⊂ 𝑈

0
, where 𝑦

1
, 𝑦
2
are

given in (V). Let

𝐺 (𝑥) := 𝐹 (𝑥, 𝑦
1
) + 𝐹 (𝑥, 𝑦

2
) ,

𝑔 (𝑥, 𝑦) := 𝑓 (𝑥) −
𝑓 (𝑦)

𝐺 (𝑦)
𝐺 (𝑥)

(29)

for (𝑥, 𝑦) ∈ 𝑋 × 𝑌. Then, we see that 𝐺 ∈ F, and so 0 <

𝜌(𝑈) ≤ 𝐺(𝑥) ≤ 𝐶 for some 𝐶 > 0 due to the boundedness
of the functions 𝐹

𝑦
1

and 𝐹
𝑦
2

on 𝑋. Also, observe that 𝑔
𝑦

∈ F
and 𝑔

𝑦
(𝑦) = 0 for each 𝑦 ∈ 𝑌. Since 𝑓 and 𝐺 are continuous

at any point 𝑦 ∈ 𝑌 and also 𝐺(𝑦) ≥ 𝜌(𝑈) > 0, we easily
check that the function 𝑔(𝑥, 𝑦) is continuous at each point
(𝑦, 𝑦) ∈ Δ

𝑦
. Since 𝑓 is bounded on 𝑋, we may write that

𝑀 := sup
𝑥∈𝑋

|𝑓(𝑥)| < ∞. Then, it is not hard to see that

𝑔 (𝑥, 𝑦)
 ≤ 𝑀 +

𝑀

𝜌 (𝑈)
𝐶 (30)

for every (𝑥, 𝑦) ∈ 𝑋 × 𝑌. From Lemma 3, one can get that

st
𝐴

− lim
𝑛

(sup
𝑦∈𝑌


𝐿
𝑛

(𝑔
𝑦
; 𝑦)


) = 0. (31)

On the other hand, by (29), we have

𝑔
𝑦 (𝑥) = 𝑓 (𝑥) −

𝑓 (𝑦)

𝐹
𝑦
1

(𝑦) + 𝐹
𝑦
2

(𝑦)
(𝐹
𝑦
1
(𝑥) + 𝐹

𝑦
2
(𝑥)) , (32)

which yields that

𝐿
𝑛

(𝑔
𝑦
; 𝑦) = 𝐿

𝑛
(𝑓; 𝑦)

−
𝑓 (𝑦)

𝐹
𝑦
1

(𝑦) + 𝐹
𝑦
2

(𝑦)
(𝐿
𝑛

(𝐹
𝑦
1

; 𝑦) + 𝐿
𝑛

(𝐹
𝑦
2

; 𝑦)) .

(33)

Hence we get

𝐿
𝑛

(𝑓; 𝑦) − 𝑓 (𝑦)

= 𝐿
𝑛

(𝑔
𝑦
; 𝑦) +

𝑓 (𝑦)

𝐹
𝑦
1

(𝑦) + 𝐹
𝑦
2

(𝑦)

× {(𝐿
𝑛

(𝐹
𝑦
1

; 𝑦) − 𝐹
𝑦
1

(𝑦))

+ (𝐿
𝑛

(𝐹
𝑦
2

; 𝑦) − 𝐹
𝑦
2

(𝑦))} .

(34)

Taking supremum over 𝑦 ∈ 𝑌, we immediately obtain that

𝐿
𝑛

(𝑓) − 𝑓
 ≤ sup
𝑦∈𝑌


𝐿
𝑛

(𝑔
𝑦
; 𝑦)



+
𝑀

𝜌 (𝑈)
{

𝐿
𝑛

(𝐹
𝑦
1

) − 𝐹
𝑦
1



+

𝐿
𝑛

(𝐹
𝑦
2

) − 𝐹
𝑦
2


} .

(35)
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Now, for a given 𝜀 > 0, define the following sets:

𝐸 := {𝑛 ∈ N :
𝐿
𝑛

(𝑓) − 𝑓
 ≥ 𝜀} ,

𝐸
1

:= {𝑛 ∈ N : sup
𝑦∈𝑌


𝐿
𝑛

(𝑔
𝑦
; 𝑦)


≥

𝜀

3
} ,

𝐸
2

:= {𝑛 ∈ N :

𝐿
𝑛

(𝐹
𝑦
1

) − 𝐹
𝑦
1


≥

𝜀𝜌 (𝑈)

3𝑀
} ,

𝐸
3

:= {𝑛 ∈ N :

𝐿
𝑛

(𝐹
𝑦
2

) − 𝐹
𝑦
2


≥

𝜀𝜌 (𝑈)

3𝑀
} .

(36)

Then, it follows from (35) that

𝐸 ⊂ 𝐸
1

∪ 𝐸
2

∪ 𝐸
3
, (37)

which guarantees that, for any 𝑗 ∈ N,

∑

𝑛∈𝐸

𝑎
𝑗𝑛

≤ ∑

𝑛∈𝐸
1

𝑎
𝑗𝑛

+ ∑

𝑛∈𝐸
2

𝑎
𝑗𝑛

+ ∑

𝑛∈𝐸
3

𝑎
𝑗𝑛

. (38)

Now letting 𝑗 → ∞ and also using (V) and (31), we conclude
that

lim
𝑗

∑

𝑛∈𝐸

𝑎
𝑗𝑛

= 0, (39)

which is the desired result.

3. Concluding Remarks

If we take 𝐴 = 𝐼, the identity matrix, in Theorem 4, then we
easily getTheoremA.Hence, one can say thatTheorem 4 cov-
ers Theorem A. However, if we take 𝐴 = 𝐶

1
, the Cesàro mat-

rix, and also define the sequence (𝑢
𝑛
) by

𝑢
𝑛

:= {
1, 𝑛 = 𝑚

2
, 𝑚 ∈ N,

0, otherwise,
(40)

then we observe that

st
𝐶
1

− lim
𝑛

𝑢
𝑛

= st − lim
𝑛

𝑢
𝑛

= 0 (41)

although it is nonconvergent in the usual sense. Now, assume
that {𝐿

𝑛
} is a sequence of positive linear operators satisfying

all conditions of Theorem A. Then, using (𝑢
𝑛
) and (𝐿

𝑛
), we

construct new operators 𝑇
𝑛
as follows:

𝑇
𝑛

(𝑓) := (1 + 𝑢
𝑛
) 𝐿
𝑛

(𝑓) for every 𝑓 ∈ F. (42)

In this case, we verify that our operators 𝑇
𝑛
satisfy all condi-

tions of Theorem 4 due to property (41). Thus, we may write
that, for every 𝑓 ∈ F,

st − lim
𝑛

𝑇
𝑛

(𝑓) − 𝑓
 = 0. (43)

However, since the sequence (𝑢
𝑛
) given by (40) is noncon-

vergent, approximating a function 𝑓 ∈ F by the operators 𝑇
𝑛

is impossible. This example clearly shows thatTheorem 4 is a
nontrivial generalization of Theorem A.

Now we give some significant applications of Theorem 4.
As usual, by 𝐶(𝑋) we denote the space of all real-valued con-
tinuous functions on 𝑋.

Corollary 5 (see Theorem 3.5 of [7]). Let 𝑋 be a compact
Hausdorff space, and let 𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑚
∈ 𝐶(𝑋) satisfy the con-

dition that there exist 𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑚
∈ 𝐶(𝑋) such that defining

𝑃(𝑥, 𝑦) := ∑
𝑚

𝑖=1
𝑔
𝑖
(𝑦)𝑓
𝑖
(𝑥) for every 𝑥, 𝑦 ∈ 𝑋, it holds that

𝑃(𝑥, 𝑦) ≥ 0 and 𝑃(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦. Assume that
{𝐿
𝑛
} is a sequence of positive linear operators from 𝐶(𝑋) into

itself. Assume further that, for a given nonnegative regular sum-
mable matrix 𝐴 = [𝑎

𝑗𝑛
],

𝑠𝑡
𝐴

− lim
𝑛

𝐿
𝑛

(𝑓
𝑖
) − 𝑓
𝑖

 = 0 for each 𝑖 = 1, 2, . . . , 𝑚. (44)

Then, for every 𝑓 ∈ 𝐶(𝑋), one has 𝑠𝑡
𝐴

− lim
𝑛
‖𝐿
𝑛
(𝑓)−𝑓‖ = 0.

Proof. TakeF = 𝐶(𝑋), 𝑋 = 𝑌, and 𝐹(𝑥, 𝑦) = 𝑃(𝑥, 𝑦). Then,
since

𝐿
𝑛

(𝑃
𝑦
; 𝑥) − 𝑃

𝑦 (𝑥) =

𝑚

∑

𝑖=1

𝑔
𝑖
(𝑦) {𝐿

𝑛
(𝑓
𝑖
; 𝑥) − 𝑓

𝑖 (𝑥)} , (45)

we observe that

sup
𝑥,𝑦∈𝑋


𝐿
𝑛

(𝑃
𝑦
; 𝑥) − 𝑃

𝑦
(𝑥)


≤ 𝐶

𝑚

∑

𝑖=1

𝐿
𝑛

(𝑓
𝑖
) − 𝑓
𝑖

 , (46)

where 𝐶 := max
1≤𝑖≤𝑚

‖𝑔
𝑖
‖. Now, for a given 𝜀 > 0, consider

the following sets:

𝐵 := {𝑛 ∈ N : sup
𝑥,𝑦∈𝑋


𝐿
𝑛

(𝑃
𝑦
; 𝑥) − 𝑃

𝑦
(𝑥)


≥ 𝜀} ,

𝐵
𝑖
:= {𝑛 ∈ N :

𝐿
𝑛

(𝑓
𝑖
) − 𝑓
𝑖

 ≥
𝜀

𝑚𝐶
} , 𝑖 = 1, 2, . . . , 𝑚.

(47)

Hence, inequality (46) implies that

𝐵 ⊂

𝑚

⋃

𝑖=1

𝐵
𝑖
, (48)

which gives, for every 𝑗 ∈ N, that

∑

𝑛∈𝐵

𝑎
𝑗𝑛

≤

𝑚

∑

𝑖=1

∑

𝑛∈𝐵
𝑖

𝑎
𝑗𝑛

. (49)

By (44), we obtain that

st
𝐴

− lim
𝑛

∑

𝑛∈𝐵

𝑎
𝑗𝑛

= 0, (50)

which gives

st
𝐴

− lim
𝑛

( sup
𝑥,𝑦∈𝑋


𝐿
𝑛

(𝑃
𝑦
; 𝑥) − 𝑃

𝑦
(𝑥)


) = 0. (51)

Thus, the last equalitymeans that condition (2) is valid for the
function 𝑃(𝑥, 𝑦). As a result, all hypotheses ofTheorem 4 are
satisfied.

If we take 𝐴 = 𝐼, the identity matrix, in Corollary 5, then
we immediately get the classical result (see, e.g., [3, page 22]).

In algebraic case, we consider the following test functions:
𝑒
𝑖
(𝑥) = 𝑥

𝑖
, 𝑖 = 0, 1, 2. Then we get the next result.
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Corollary 6 (see Corollary 2 of [8]). Let {𝐿
𝑛
} be a sequence of

positive linear operators from 𝐶[𝑎, 𝑏] into itself. If, for a given
nonnegative regular summable matrix 𝐴 = [𝑎

𝑗𝑛
],

𝑠𝑡
𝐴

− lim
𝑛

𝐿
𝑛

(𝑒
𝑖
) − 𝑒
𝑖

 = 0 for each 𝑖 = 0, 1, 2, (52)

then, for every 𝑓 ∈ 𝐶[𝑎, 𝑏], one has 𝑠𝑡
𝐴

− lim
𝑛
‖𝐿
𝑛
(𝑓) − 𝑓‖.

Proof. If we take 𝑋 = R, 𝑌 = [𝑎, 𝑏], F = 𝐶[𝑎, 𝑏], and
𝐹(𝑥, 𝑦) = (𝑦 − 𝑥)

2, then we observe that all conditions of
Theorem 4 are satisfied.

Of course, if 𝐴 = 𝐶
1
, the Cesáro matrix, in Corollary 6,

then one obtainsTheorem 1 of [9]. Furthermore, taking𝐴 = 𝐼

we get the classical theorem (see [2]).
Finally, as in [4],Theorem 4 also contains the trigonomet-

ric version of Corollary 6 introduced in [10].
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