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The aims of this paper are to use a birandom variable to denote the stock return selected by some recurring technical patterns and to
study the effect of exit strategy on optimal portfolio selection with birandom returns. Firstly, we propose a newmethod to estimate
the stock return and use birandom distribution to denote the final stock return which can reflect the features of technical patterns
and investors’ heterogeneity simultaneously; secondly, we build a birandom safety-first model and design a hybrid intelligent
algorithm to help investors make decisions; finally, we innovatively study the effect of exit strategy on the given birandom safety-
first model. The results indicate that (1) the exit strategy affects the proportion of portfolio, (2) the performance of taking the exit
strategy is better than when the exit strategy is not taken, if the stop-loss point and the stop-profit point are appropriately set, and
(3) the investor using the exit strategy become conservative.

1. Introduction

During decades of development of Chinese stock market,
plentiful practice has proved that some technical patterns
occur repeatedly in stock market. Stocks with some tech-
nical patterns are much more likely to profit than those
with other technical patterns. Douglas [1] pointed out that
investors should distinguish the recurring technical patterns,
summarize the laws, and use them to choose stocks, which
can greatly improve the performance of profit. If investors
can consider the features of technical patterns and investors’
heterogeneity in estimating the stock return, then they can
not only enhance the accuracy of estimation but also make it
conform to the actual decision-making process of investors
more. So a natural question is how to reflect the features of
these technical patterns and investors’ heterogeneity in the
stock return? To the best of our knowledge, there has been
no literature in this respect. In this paper, we try to answer
this question for the first time.

Estimating the stock return has always been one of the
theoretical hot issues, and much progress has been made in

this area. The stock return was assumed to follow the normal
distribution [2], which had been verified not to coincide with
the facts by a great deal of afterward researches. In order to
describe the stock return better, the Logistic distribution [3],
Student-𝑡 distribution [4], and stable Paretian distribution
[5] were put forward. Later, fuzzy random distribution [6]
and random fuzzy distribution [7] were used separately via
combining randomness with fuzziness. In [8, 9], the stock
return was assumed to follow birandom distribution. All of
the above distributions have certain theoretical meaning, but
there are two limitations: one is that they do not consider
the stock’s technical patterns, thus hiding the particularity
of technical patterns, and the other is that investors’ hetero-
geneity cannot be reflected from the above distributions. In
this paper, we propose a method to estimate the stock return
and the stock return gained finally can be indicated with a
birandom variable and thus solving the above two limitations
well.

After the stock return being determined, it is important
to choose a portfolio model to help investors make deci-
sions. Roy [10] proposed the safety-first model. The main
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point was investors would try to make the probability of a
disaster smallest when allocating asset. Pyle and Turnovsky
[11] summarized the three forms of the safety-first rule. A
safety-first chance constrained model [12] was proposed by
combining the safety-first rule with chance constraint. Based
on the safety-first rule, a birandom chance constrainedmodel
[8] and a birandom expected value model [9] were put for-
ward when the stock return follows birandom distribution.
However, the model in [8] just takes the budget constraint
into considerationwithout considering the effect of a disaster.
The model in [9] uses the expected value to describe the
profit, but the expected value model is only applied to risk
neutral investors not to risk aversion and risk loving ones.
In this paper, a birandom safety-first model is acquired by
combining the two models in [8, 9]. In fact, the new model
not only considers the effect of disaster, but also can apply to
all investors through parameters adjustment.

As we all know, there are two important parts in invest-
ment process: how to buy and how to sell. The theory of
portfolio selection is widely used to help us decide the
proportion of portfolio, which to solve the problem of how
to buy. However, to the best of our knowledge, there is no
research on the effect of selling strategy on portfolio selection.
Exit strategy proposed in behavioral finance has been proved
to be an effective selling strategy, andwe try to study the effect
of exit strategy on birandom portfolio selection in this paper.

The rest of the paper is organized as follows: in Section 2,
we illustrate how to describe the stock return using a biran-
dom variable. In Section 3, we propose a birandom safety-
first model, a hybrid intelligent algorithm, and a numerical
example. In Section 4, we study the effect of exit strategy on
birandom portfolio selection. Finally, in Section 5, we draw
the conclusion.

2. Estimate the Stock Return

In the following paragraphs, firstly we will introduce the
birandom theory, secondly show how to describe the stock
return using a birandomvariable, and finally give a numerical
example.

2.1. BirandomTheory

Definition 1 (Jin and Bao-Ding [13]). A birandom variable 𝜀 is
a mapping from a probability space (Ω, 𝐴, 𝑃

𝑟
) to a collective

of random variables such that for any 𝐵𝑜𝑟𝑒𝑙 subsets 𝐵 of the
real line 𝑅, the induced function 𝑃

𝑟
(𝜀(𝜔) ∈ 𝐵) is a measure

function with respect to 𝜔.

Example 2. Let Ω = (𝜔
1
, 𝜔
2
), and 𝑃

𝑟
(𝜔
1
) = 𝑎, 𝑃

𝑟
(𝜔
2
) = 𝑏.

Assume that 𝜀 is a function on (Ω, 𝐴, 𝑃
𝑟
) as follows:

𝜀 (𝜔) = {
𝜀
1
, if 𝜔 = 𝜔

1
,

𝜀
2
, if 𝜔 = 𝜔

2
,

(1)

where 𝜀
1
and 𝜀
2
are random variables. Then 𝜀 is a birandom

variable according toDefinition 1. In Example 2,Ω represents
stock, 𝜔

1
represents stock rising, 𝜔

2
represents stock falling,

𝑎 and 𝑏 represent the probabilities of stock rising and

falling, respectively, and 𝜀
1
represents profit distribution, 𝜀

2

represents loss distribution.

Definition 3 (Jin and Bao-Ding [13]). Let 𝜀 = (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
)

be a birandom vector on (Ω, 𝐴, 𝑃
𝑟
) and 𝑓 : 𝑅

𝑛

→ 𝑅
𝑚 be a

vector-valued 𝐵𝑜𝑟𝑒𝑙 measurable function.Then the primitive
chance of birandom event characterized by 𝑓(𝜀) ≤ 0 is a
function from (0,1] to [0, 1], defined as
Ch {𝑓 (𝜀) ≤ 0} (𝛼)

= sup {𝛽 | 𝑃
𝑟
{𝜔 ∈ Ω | 𝑃

𝑟
{𝑓 (𝜀 (𝜔)) ≤ 0} ≥ 𝛽} ≥ 𝛼} .

(2)

2.2. Method to Estimate the Stock Return. Assuming that an
investor selects stock 𝑆 in accordance with technical pattern
𝑇, a new method is proposed to estimate the return distribu-
tion of stock 𝑆. The specific steps are listed as follows.

Step 1. Calculate the probabilities of stock rising and falling
after the appearance of technical pattern 𝑇. The method is
to select 𝑛 representative stocks and inspect the occurrence
number of technical pattern 𝑇 of the 𝑛 stocks during a
certain period, and then figure out the numbers of price
rising and falling separately. When the sample size is large
enough, it is reasonable to substitute the frequencies of
stock rising and falling for the probabilities of stock rising
and falling. Through the comparison of probabilities, the
technical patterns can be divided into three types where the
probability of rising is larger than, equal to, and smaller than
the probability of falling. What we care for is the first type,
and it is named as the advanced technical pattern.

Step 2. Because stock 𝑆 has the features of technical pattern
𝑇, we substitute its probabilities of rising and falling by the
corresponding probabilities in Step 1. Thus 𝑃

𝑟
(𝜔
1
) = 𝑎,

𝑃
𝑟
(𝜔
2
) = 𝑏 in Example 2 are obtained.

Step 3. When stock 𝑆 rises, we estimate the profit distribution
of stock 𝑆.When stock 𝑆 falls, we estimate the loss distribution
of stock 𝑆. Thus 𝜀

1
and 𝜀
2
in Example 2 are obtained. Here the

following two things should be emphasize.
(1) 𝜀
1
and 𝜀
2
can be obtained from the investors’ experi-

ence, the stock historical data, and the existing stock
forecast methods. In this paper, we assume that 𝜀

1
and

𝜀
2
are random variables.

(2) Different investors have different opinions and judg-
ments on the stock market; therefore, different
assumptions of 𝜀

1
and 𝜀
2
can demonstrate the hetero-

geneity of investors.
From the above, the stock return is quantified by the

birandom variable in Example 2. Among them, the formulas
𝑃
𝑟
(𝜔
1
) = 𝑎, 𝑃

𝑟
(𝜔
2
) = 𝑏 demonstrate the features of technical

patterns and the distributions of 𝜀
1
and 𝜀
2
reflect the investors’

heterogeneity.

2.3. ANumerical Example. Because stock 𝑆 follows the biran-
dom distribution in Example 2, we can calculate 𝑎, 𝑏, 𝜀

1
, and

𝜀
2
in the following steps.
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Step 1 (calculate 𝑎 and 𝑏). Suppose that we select fifty rep-
resentative stocks and the appearance numbers of technical
pattern 𝑇 of the fifty stocks are equal to one hundred during
the last year. If price goes up 60 times and down 40 times,
then the probabilities of stock 𝑆 rising and falling are equal to
0.6 and 0.4, respectively, so 𝑎 = 0.6 and 𝑏 = 0.4.

Step 2 (the determination of 𝜀
1
and 𝜀
2
). After selecting stock

𝑆 based on technical pattern 𝑇, the investor concludes, by
various analytical methods such as fundamental analysis
and technical analysis, that the profit of stock 𝑆 should be
distributed uniformly in the interval [0, 7%]. Therefore, the
profit distribution 𝜀

1
can be assumed to follow the uniform

distribution 𝑈 [0, 7%]. Similarly, we can also assume that
the loss distribution 𝜀

2
follows the uniform distribution

𝑈 [−9%, 0].

Remark 4. The detailed statistic process in Step 1 is not in-
cluded in the paper.

Remark 5. 𝜀
1
and 𝜀
2
can be arbitrary random variable and

different distributions of 𝜀
1
and 𝜀

2
have no effect on the

validity of themodel and the algorithm given in the following
paragraphs. Here, the assumption of uniform distribution is
to simplify calculation.

Now we get the distribution of stock 𝑆.The distribution is
given by the following.

Example 6. Ω = (𝜔
1
, 𝜔
2
) (Ω represents stock 𝑆, 𝜔

1
represents

stock 𝑆 rising, and𝜔
2
represents stock 𝑆 falling), and𝑃

𝑟
(𝜔
1
) =

0.6, 𝑃
𝑟
(𝜔
2
) = 0.4,

𝜀 (𝜔) = {
𝜀
1
, if 𝜔 = 𝜔

1
,

𝜀
2
, if 𝜔 = 𝜔

2
,

(3)

where 𝜀
1
follows 𝑈 [0, 7%] and 𝜀

2
follows 𝑈 [−9%, 0].

3. Birandom Safety-First Model

3.1. Assumptions of the Birandom Safety-First Model

(𝐴1) The investor selects 𝑛 stocks based on 𝑛 kinds of
technical patterns. Let 𝑚

𝑖
and 𝑥

𝑖
denote the 𝑖th stock

and the investment proportion of the 𝑖th stock, 𝑖 =

1, 2, . . . , 𝑛, respectively. And the return of stock 𝑚
𝑖

follows the birandom distribution in Example 2.
(𝐴2) Stocks can be infinite subdivision. the market does

not allow shorting and there is no limitation on the
transaction cost.

3.2. Measures of the Profit and Risk. In this paper, the chance
that return of total asset (RTA) is no less than some value is
used to measure the profit which is given by

Ch {𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑚
𝑛

≥ 𝑚} (𝛼
1
) . (4)

The chance that RTA is no less than a disaster level is
regarded to measure the risk which is given by

Ch {𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑚
𝑛

≥ 𝑛} (𝛼
2
) ≥ 𝛽. (5)

3.3. Birandom Safety-First Model. Using the measures of the
profit and risk given above, the birandom safety-first model
is given by

max Ch {𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑚
𝑛

≥ 𝑚} (𝛼
1
) ,

s.t. Ch {𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑚
𝑛

≥ 𝑛} (𝛼
2
) ≥ 𝛽,

𝑛

∑

𝑖=1

𝑥
𝑖
= 1,

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(6)

where 𝑚 represents the profit, 𝑛 represents the disaster level,
𝛼
1
and 𝛼
2
represent the investor’s tolerance, and 𝛽 is the lower

bound of the chance that RTA is not less than some disaster
level when the tolerance is 𝛼

2
.

The economicmeanings ofmodel (6) are listed as follows.

(1) The constraint condition

𝑛

∑

𝑖=1

𝑥
𝑖
= 1 (7)

means that the capital cannot exceed the budget.
(2) The constraint condition

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛 (8)

means that the market does not allow shorting.

Remark 7. Model (6) can be used for all investors as long as
choosing the right parameters 𝑚, 𝑛, 𝛼

1
, 𝛼
2
, 𝛽.

Remark 8. When the values of 𝑛 and 𝛼
2
are fixed, the value

of 𝛽 is in inverse ratio with the risk tolerance ability. (Proof is
described in the appendix.)

Remark 9. In the case that the return distribution of stock 𝑚
𝑖

is a random variable, model (6) is reduced to the special one:

max 𝑃
𝑟
{𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑚
𝑛

≥ 𝑚} ,

s.t. 𝑃
𝑟
{𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑚
𝑛

≥ 𝑛} ≥ 𝛽,

𝑛

∑

𝑖=1

𝑥
𝑖
= 1,

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(9)

3.4. Hybrid Intelligent Algorithm. Because of the uncertainty
of birandomvariable, it is hard to analytically solvemodel (6).
To provide a general solution tomodel (6), we design a hybrid
intelligent algorithm integrating genetic algorithm (GA) and
birandom simulation.

3.4.1. Birandom Simulation. The technique of birandom sim-
ulation is applied to compute (4) and (5). The specific steps
are listed as follows.
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Algorithm 10 (birandom simulation for (4)).

Step 1. Generate 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑁
from Ω according to the

probability measure 𝑃
𝑟
.

Step 2. Compute the probability 𝛽
𝑛

= 𝑃
𝑟
{𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ ⋅ ⋅ ⋅ +

𝑥
𝑛
𝑚
𝑛
} ≥ 𝑚 for 𝑛 = 1, 2, . . . , 𝑁, respectively, by stochastic

simulation.

Step 3. Set 𝑁
 as the integer part of 𝛼

1
𝑁.

Step 4. Return the𝑁
th largest element 𝛽

∗ in (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑁
).

Step 5. 𝛽∗ is the value of (4).

Algorithm 11 (birandom simulation for (5)).

Step 1. Set 𝑙 = 1.

Step 2. Generate 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑀
from Ω according to the

probability measure 𝑃
𝑟
.

Step 3. Compute the probability 𝛽
𝑛

= 𝑃
𝑟
{𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ ⋅ ⋅ ⋅ +

𝑥
𝑛
𝑚
𝑛
} ≥ 𝑛 for 𝑛 = 1, 2, . . . 𝑀, respectively, by stochastic

simulation.

Step 4. Set 𝑀
 as the integer part of 𝛼

2
𝑀.

Step 5. Return the𝑀
th largest element𝛽∗ in (𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑀
).

Step 6. If 𝛽
∗ is larger than 𝛽, then 𝑙 = 𝑙 ∗ 1, else 𝑙 = 𝑙 ∗ 0.

Step 7. If 𝑙 = 1, then return Yes, else return No. Here,
Yes means the investment proportion 𝑥 satisfies (5), and No
means that 𝑥 does not satisfy (5).

3.4.2. Genetic Algorithm. The specific steps of genetic algo-
rithm are described in [8].

3.4.3. Hybrid Intelligent Algorithm

Step 1. Initialize 𝑝𝑜𝑝 𝑠𝑖𝑧𝑒 chromosomes.

Step 2. Calculate the values of (4) for all chromosomes by
birandom simulation.

Step 3. Give the rank order of the chromosomes according
to the values of (4), and define the rank-based evaluation
function of the chromosomes.

Step 4. Compute the value of each chromosome according to
the rank-based evaluation function.

Step 5. Select the chromosomes by spinning the roulette
wheel.

Step 6. Update the chromosomes by crossover and mutation
operations.

Step 7. Repeat the second step to the sixth step for a given
number of cycles.

Table 1: The distributions of stocks 𝑚
1
, 𝑚
2
, and 𝑚

3
.

Parameters 𝑚
1

𝑚
2

𝑚
3

𝑎
𝑖
(𝑖 = 1, 2, 3) 2/3 1/2 1/3

𝑏
𝑖
(𝑖 = 1, 2, 3) 1/3 1/2 2/3

𝜀
𝑖1
(𝑖 = 1, 2, 3) 𝑈[0, 6%] 𝑈[0, 8%] 𝑈[0, 10%]

𝜀
𝑖2
(𝑖 = 1, 2, 3) 𝑈[−8%, 0] 𝑈[−10%, 0] 𝑈[−12%, 0]

Step 8. Take the best chromosome as the solution of portfolio
selection.

3.5. A Numerical Example. According to (𝐴1) in Section 3.1,
an investor picks three stocks based on three kinds of
technical patterns (the probability of rising is larger than,
equal to, and smaller than the probability of falling).The stock
return follows birandom distribution and the corresponding
parameters of each stock are shown in Table 1. Besides, the
investor takes 𝑚 = 0.03, 𝑛 = −0.05, 𝛼

1
= 0.4, 𝛼

2
= 0.8, and

𝛽 = 0.7.

Remark 12. In Table 1, 𝑎
𝑖
, 𝑏
𝑖
, 𝜀
𝑖1
, 𝜀
𝑖2
represent the probability

of stock rising, the probability of falling, profit distribution,
and loss distribution of stock 𝑚

𝑖
, respectively.

So model (6) that satisfies the above investment goals is
given by

max Ch {𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ 𝑥
3
𝑚
3

≥ 0.03} (0.4) ,

s.t. Ch {𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ 𝑥
3
𝑚
3

≥ −0.05} (0.8) ≥ 0.7,

3

∑

𝑖=1

𝑥
𝑖
= 1,

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, 3.

(10)

In order to compare model (6) with the models in [8, 9],
the models in [8, 9] are listed as below:

max 𝐸 [𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ 𝑥
3
𝑚
3
] ,

s.t. Ch {𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ 𝑥
3
𝑚
3

≥ −0.05} (0.8) ≥ 0.7,

3

∑

𝑖=1

𝑥
𝑖
= 1,

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, 3,

(11)

max Ch {𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ 𝑥
3
𝑚
3

≥ 0.03} (0.4) ,

s.t.
3

∑

𝑖=1

𝑥
𝑖
= 1,

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, 3.

(12)

The parameters of the hybrid intelligent algorithm are
taken as 𝑝𝑜𝑝 𝑠𝑖𝑧𝑒 = 30, the crossover probability = 0.3, the
mutation probability = 0.5, the evaluate function based on the
order 𝛼 = 0.05, and the number of cycles is equal to 1000.
After repeating the hybrid intelligent algorithm 10 times and
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Table 2: The results of models (9)–(11).

Model Result Optimal solution Objective function
value

𝑥
1

𝑥
2

𝑥
3

Model (10) Result 1 0.1916 0.6885 0.1199 0.4157
Model (11) Result 2 0.9209 0.0668 0.0123 0.5525
Model (12) Result 3 0.0011 0.0123 0.9866 0.6890

taking the average value of the results, the optimal solutions
of models (9)–(11) are shown in Table 2.

From result 1 in Table 2, it can be seen that (1) model (10)
and the hybrid intelligent algorithm are of great applicability,
(2) even if stock 𝑚

1
has the advanced technical pattern, not

all investors will buy it using their total asset. Some investors
prefer to buy the high-risk and high-interest stock.

From result 2 in Table 2, it can be seen that the proportion
of stock 𝑚

1
is very large. This is because model (11) uses the

expected value to measure the profit and stock 𝑚
1
has the

largest expected value, so the investor will select stock 𝑚
1

as many as possible, while the constraints are met. However,
model (11) is only suitable for risk-neutral investors, so it is
restricted in real application.

From result 3 in Table 2, it can be seen that the objective
function value of model (12) is larger than it of model (10).
This is because model (12) does not consider the risk, so
consequently, model (12) has a larger solution space than
model (10). Despite achieving the high yield, model (12) is
unpractical in application because it ignores the risk.

Through the comparisons of models (10)–(12), it can be
concluded that model (10) is more practical than model (11)
and model (12), because model (10) not only considers the
effect of disaster, but also can apply to all investors through
parameters adjustment.

4. The Effect of Exit Strategy on the Optimal
Portfolio Selection

Exit strategy is a selling strategy including the stop-loss
strategy and the stop-profit strategy. If an investor sets the
stop-profit point 𝑤% and the stop-loss point 𝑙% for each
stock, he will sell the stocks when the stocks’ actual profit
exceeds 𝑤% or the actual loss exceeds 𝑙%. Now we want to
ask whether result 1 in Table 2 is still available if the investor
set 𝑤 = 0.4 and 𝑙 = 0.5 for each stock.

we know that in the simulation process of result 1, the
stock return of each stock can be any sample point following
corresponding birandom distribution. However, in practice,
the cases that actual stock return is over 4% or below −5%
will not occur due to the setting of the stop-loss point
and the stop-profit point. Thus the calculation of result 1 is
inconsistent with the investor’s decision-making process. In
other words, result 1 cannot reach the investor’ objective in
theory, which causes the failure of model (10).

In order to solve the above conflict, we should adjust the
stock return based on the stop-loss point and the stop-profit
point. Considering the assumptions of model (10), we revise
the calculation in the following ways.

Step 1. The investor should adjust the stock return according
to the stop-profit point and the stop-loss point. Adjustment
method is to take the stop-profit point as stock return when
stock return exceeds the stop-profit point and to take the
stop-loss point as stock return when stock return is less than
the stop-loss point. Take stock 𝑚

1
in Table 1 as an example, if

an investor set the stop-profit point as 4% and the stop-loss
points as −5%, the part exceeding 4% in 𝜀

11
is treated as 4%

and the part below −5% in 𝜀
12
is considered as −5%.

Step 2. Because of the adjustment of the stock return, we
also should modify the steps of birandom simulation. The
adjustment method is that if the sample point exceeds the
stop-profit point or is less than the stop-loss point, we take the
stop-profit point or the stop-loss point as the sample point.
The rest of the steps of the hybrid intelligent algorithm remain
unchanged. Take stock 𝑚

1
in Table 1 as an example. when

samples are selected from 𝜀
11
, the part which is more than

4% is looked upon as 4% and when samples are selected from
𝜀
12
, the part which is below −5% is considered as −5%.
Through the above adjustment, the calculated value can

reach the investor’s goal in theory.The revised result of model
(10) is

max Ch = 0.4908,

𝑥
1

= 0.9991, 𝑥
2

= 0.0002, 𝑥
3

= 0.0007.

(13)

It can be seen from result (13) that

(1) because the objective function value in result (13) is
larger than it in result 1, the performance of taking the
exit strategy is better thanwhen the exit strategy is not
taken, if the stop-loss point is equal to −5% and the
stop-profit point is equal to 4%;

(2) the exit strategy affects the buying strategy and the
investor should adjust the stock return according to
the stop-loss point and the stop-profit point, other-
wise the portfolio model will become invalid;

(3) the investor using exit strategy become conservative.
This is because he is concerned with the accumulated
probability of stock price exceeding the stop-profit
point not the higher stock return any more.

5. Conclusion

In this paper we propose a new method to estimate the stock
return and use a birandom variable to denote the final stock
return which can reflect the features of technology forms and
investors’ heterogeneity simultaneously. Besides, we build a
birandom safety-first model and design a hybrid intelligent
algorithm to help investors make a decision. Moreover, we
innovatively study the effect of exit strategy on the given
birandom safety-first model. The results indicate that the
performance of taking the exit strategy is better than when
the exit strategy is not taken, if the stop-loss point and the
stop-profit point are appropriately set.



6 Journal of Applied Mathematics

Appendix

Proof of Remark 8

Let 𝐴 represent the solution space which satisfies

Ch {𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑚
𝑛

≥ 𝑛} (𝛼
2
) ≥ 𝛽
1
. (A.1)

Let 𝐵 represent the solution space which satisfies

Ch {𝑥
1
𝑚
1

+ 𝑥
2
𝑚
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑚
𝑛

≥ 𝑛} (𝛼
2
) ≥ 𝛽
2
, (A.2)

and 𝛽
1

> 𝛽
2
.

For any 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝐴. If 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) ∈

Ω satisfies

𝑃
𝑟
{𝑥
1
𝑚
1

(𝜔
1
) + 𝑥
2
𝑚
2

(𝜔
2
) + ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑚
𝑛

(𝜔
𝑛
) ≥ 𝑛} ≥ 𝛽

1

(A.3)

then we can obtain that 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) ∈ Ω also

satisfies

𝑃
𝑟
{𝑥
1
𝑚
1

(𝜔
1
) + 𝑥
2
𝑚
2

(𝜔
1
2) + ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑚
𝑛

(𝜔
𝑛
) ≥ 𝑛} ≥ 𝛽

2
.

(A.4)

So if 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝐴 satisfies

𝑃
𝑟
{𝜔 ∈ Ω | 𝑃

𝑟
{𝑥
1
𝑚
1

(𝜔
1
) + 𝑥
2
𝑚
2

(𝜔
1
2) + ⋅ ⋅ ⋅

+ 𝑥
𝑛
𝑚
𝑛

(𝜔
𝑛
) ≥ 𝑛} ≥ 𝛽

1
} ≥ 𝛼,

(A.5)

then we can obtain 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) satisfies

𝑃
𝑟
{𝜔 ∈ Ω | 𝑃

𝑟
{𝑥
1
𝑚
1

(𝜔
1
) + 𝑥
2
𝑚
2

(𝜔
1
2) + ⋅ ⋅ ⋅

+𝑥
𝑛
𝑚
𝑛

(𝜔
𝑛
) ≥ 𝑛} ≥ 𝛽

2
} ≥ 𝛼.

(A.6)

Since (A.6) is equivalent to (A.2), so𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈

𝐵. Hence,𝐴 ⊂ 𝐵.That is to say, the value of𝛽 is in inverse ratio
with the range of solution space.

Since when the range of solution space is enlarged, an
investor has a larger decision range, which means he/she can
try some investments that others dare not try, so the risk
tolerance ability is increased vice versa.

So the range of solution space is in direct ratio to risk
tolerance ability; therefore, the value of 𝛽 is in inverse ratio
with risk tolerance ability.
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